仿生机器鱼介绍..
- 格式:ppt
- 大小:2.81 MB
- 文档页数:31
“仿生鱼”科技技术1.概念仿生机器鱼是一种按照鱼类游动的推进机理,利用机械、电子元器件或智能材料来实现水下推进的装置。
仿生机器鱼可以进行长时间、大范围、工况较复杂的水下作业,可以用于机动性能要求较高的场合,进行海洋生物考察、海底勘探和海洋救生等等许多场合。
最近几年来,国内外许多研究机构和高等院校对仿生机器鱼(图片来源于维基百科)行了大量的研究,并且在各个领域中得到了实际运用。
英国埃塞克斯大学的研究人员向泰晤士河投放专门设计的仿生机器鱼,用于探测水中的污染物,并绘制河水的3D污染图。
日本三菱重工也已经将研究的仿生机器鱼玩具批量生产。
中国北京航空航天大学和中国科学院研制的SPC-II仿生机器鱼也成功地用于水下考古探测。
2. 原理仿生机器鱼主要是模仿机器鱼的外形和运动规律,尽心环境数据收集。
其模仿鱼类外形和运动规律的目的是为了实现鱼类高效的游动效率和良好的机动性。
所以在仿生方面尤其注意鱼体和鱼鳍的模仿和控制。
鱼主要有背鳍、胸鳍、腹鳍、臀鳍和尾鳍。
胸鳍:它的基本功能为运动、平衡和掌握运动方向。
腹鳍:主要协助背鳍、臀鳍维持鱼体的平衡,并有辅助鱼体升降和拐弯功能。
尾鳍:有平衡、推进和转向的作用,尾的扭曲和伸直使鱼体产生前进运动。
鱼类的运动方式主要为波浪式运动,或称游泳。
借助于连续的肌节收缩与舒张,从头部开始的收缩在身体两侧交替进行,形成波浪式的传递,使收缩波传向尾部,身体则向收缩的一侧弯曲使成S型。
收缩在尾部结束,尾部将收缩的力传给水,这个力被水以同等大小、但方向相反的反作用力作用于尾部。
这个力向前的分力是鱼体向前运动的主要推进力。
目前各个研究单位研究的仿生机器鱼的结构不尽相同,但是都主要通过模仿和控制鱼鳍的运动来达到运动目的。
典型仿生机器鱼的结构如下图所示,主要有视频模块、导航模块、(图片来源于维基百科)任务调度模块、运动控制模块、通讯模块、电源模块和尾鳍模块。
仿生机器鱼的推进方式主要有两种:摆动式和波动式。
仿生机器鱼介绍ppt xx年xx月xx日contents •引言•仿生机器鱼的应用场景•仿生机器鱼的原理•仿生机器鱼市场•仿生机器鱼的技术瓶颈•仿生机器鱼的未来展望•其他相关资料与文献目录01引言仿生机器鱼是模仿自然界中鱼类外形结构和游动行为的机器鱼。
定义主要包括机械机构设计、水动力学分析、自主控制方法及系统集成等方面的研究。
研究内容简介1仿生机器鱼的意义23仿生机器鱼可以代替人类在海洋中探索和观测,对海洋资源进行更深入的了解和开发。
探索海洋仿生机器鱼可以监测海洋污染和环境变化,为环境保护提供数据支持。
环境监测在灾难发生时,仿生机器鱼可以快速到达现场进行救援和搜救,提高救援效率。
海洋救援仿生机器鱼的种类与特点水下滑翔机则具有长航程、低能耗的优点,可以在水下持续观测和探测。
群体仿生机器鱼具有分布式、模块化的特点,能够完成大规模的水下任务。
单体仿生机器鱼具有高度的灵活性和机动性,可以执行各种复杂的水下任务。
类型:根据外形和功能,仿生机器鱼可分为单体仿生机器鱼、群体仿生机器鱼和水下滑翔机等类型。
特点02仿生机器鱼的应用场景探测海洋资源仿生机器鱼可以用于探测海洋中的生物、石油、天然气等资源,帮助人类更好地了解海洋资源的分布和储量。
水下考古仿生机器鱼也可以用于水下考古,探索水下遗址和文物,为人类历史文化的研究提供重要资料。
水下探测水质监测仿生机器鱼可以在水域中监测水质,包括pH值、溶解氧、浊度等参数,为环境保护提供数据支持。
气候变化研究仿生机器鱼还可以用于研究气候变化,通过长期监测水域变化,为气候模型提供重要数据。
环境监测仿生机器鱼可以用于电影拍摄,作为特效镜头制作和场景布置的重要元素,营造出更加逼真的水下场景。
电影拍摄仿生机器鱼也可以作为娱乐玩具,供人们休闲娱乐和互动,增加生活情趣。
娱乐玩具娱乐行业侦查探测仿生机器鱼可以用于军事侦查和探测,在水下进行情报收集、目标定位等任务,提高作战效果。
水下威慑仿生机器鱼也可以作为一种水下威慑力量,用于防范敌方潜艇等水下装备的入侵和攻击,维护国家安全。
仿生机器鱼运动控制算法设计及性能评估随着科技的不断发展,仿生机器鱼作为一种模拟真实鱼类行为的智能机器人得到了广泛的关注与研究。
仿生机器鱼具备了真实鱼类的机械结构和运动特征,能够在水中自由地游动、转向和操纵,具备了一定的灵活性和适应性。
在这篇文章中,我将着重探讨仿生机器鱼运动控制算法的设计和性能评估。
首先,我们需要考虑的是仿生机器鱼的运动控制算法的设计。
仿生机器鱼的运动控制算法需要模拟真实鱼类的运动方式,并具备自主的决策能力,以实现在水中灵活自如的运动。
为了实现这一目标,可以考虑以下几个关键因素:1. 运动模式选择:仿生机器鱼可以采用鱼类行为学中已有的运动模式,如直线游动、转向、盘旋等。
选择合适的运动模式可以使机器鱼更加适应不同的环境和任务需求。
2. 运动轨迹规划:仿生机器鱼需要通过计算和规划来确定运动轨迹,以实现预设的任务目标。
可以采用轨迹规划算法来生成运动轨迹,如最优路径规划、遗传算法等。
3. 运动控制策略:仿生机器鱼需要根据环境信息和任务目标来选择合适的运动控制策略,以实现良好的运动性能。
可以采用自适应控制、反馈控制等方法来实现运动控制策略。
4. 感知与感知处理:仿生机器鱼需要通过传感器来感知环境信息,并通过感知处理技术来提取和处理有效的信息。
可以采用视觉传感器、压力传感器等来感知水中的障碍物、水流等信息。
5. 控制器设计:仿生机器鱼的控制器设计需要考虑到运动特性、动力学模型和控制算法的综合因素。
可以采用模糊控制、神经网络控制等方法来设计控制器,以实现精确的运动控制。
在设计完成仿生机器鱼的运动控制算法之后,我们需要对其性能进行评估。
性能评估是评估算法的有效性和可行性的过程,可以通过以下几个方面进行评估:1. 运动准确性:评估仿生机器鱼的运动控制算法在执行各种任务时的准确性。
可以通过比较仿真结果和实际测试结果来评估运动的准确性。
2. 运动稳定性:评估仿生机器鱼在不同环境下的运动稳定性。
可以通过检测机器鱼的姿态、速度等参数来评估运动的稳定性。
仿生学中的机器鱼研究随着科技的不断发展,人类越来越能够模仿自然的形态和动作,而仿生学就是将科技与自然相结合的一门学科。
而在仿生学中,机器鱼的研究是一个备受关注的领域。
机器鱼通过学习鱼类的游动方式,利用先进的技术,成功地进行了模拟。
在本文中,将会介绍机器鱼研究的发展历程、原理以及未来的应用前景。
一、机器鱼研究的发展历程机器鱼的研究起源于上个世纪八十年代,当时,法国Toulon研究所的一组科学家研制出了第一个机器鱼。
虽然这只机器鱼只能进行直线游泳,但这标志着机器鱼领域得以开始。
之后,日本的一所大学进行了更深入的机器鱼研究。
他们研制出的机器鱼,不仅能够进行直线游泳,而且还可以进行弧线游泳和转向等操作。
在后来的研究中,他们实现了机器鱼会通过跳跃来实现避开障碍物的效果,从而让机器鱼看起来更像真实的鱼类。
二、机器鱼模拟原理在仿生学中,机器鱼是通过模拟鱼类运动的方式来实现的。
机器鱼的结构通常包括了鱼类的主要器官,如鳍和尾巴。
此外,它还有一个内部控制系统,能够让机器鱼自主地控制运动。
机器鱼通过一些传感器,如运动传感器和距离传感器,可以从周围环境中收集信息,然后通过控制系统对其处理,最终实现机器鱼的自主运动。
三、机器鱼的应用前景机器鱼的应用前景是非常广泛的。
在工业领域,机器鱼可以作为一种新型的水下机器人,实现深海勘探和维修工作。
在船舶领域,机器鱼可以作为一种有效的船体检测工具,帮助船舶的维护和保养。
医疗领域方面,机器鱼可以作为一种辅助治疗工具。
例如,利用机器鱼在水中控制游动,可以实现让骨折患者进行水中康复训练,从而达到更好的疗效。
在科研领域,机器鱼也可以作为实验工具,帮助科学家们进行相关研究。
例如,在环境保护方面,通过研究机器鱼对水域环境的影响,可以更好地保护水域环境。
总之,机器鱼领域的研究才刚刚开始,未来还有很多应用前景。
随着科技的不断发展和人们对未知领域的探索,机器鱼将会在更多的领域得到应用。
仿生机器鱼三自由度胸鳍尾鳍协同推进性能及控制方法研究近年来,随着科技的发展,仿生机器鱼作为一种新颖的水下机器人,得到了广泛的关注。
仿生机器鱼模仿鱼类的游动方式,通过胸鳍和尾鳍的协同推进实现自主游动。
因此,研究仿生机器鱼的三自由度胸鳍尾鳍协同推进性能及控制方法,对于提高机器鱼的游动性能和应用前景具有重要意义。
首先,仿生机器鱼的三自由度胸鳍尾鳍协同推进性能的研究至关重要。
三自由度指的是仿生机器鱼胸鳍和尾鳍的三个自由度,即水平方向的摆动、垂直方向的摆动以及扭矩控制。
胸鳍和尾鳍的协同推进是仿生机器鱼实现高效游动的关键。
仿生机器鱼胸鳍和尾鳍的协同推进不仅需要考虑它们各自的运动特性,还需要考虑它们之间的相互作用。
通过研究仿生机器鱼的三自由度胸鳍尾鳍协同推进,可以获得更好的推进性能,提高机器鱼在水下环境中的适应能力。
其次,研究仿生机器鱼的三自由度胸鳍尾鳍协同推进的控制方法也是必不可少的。
仿生机器鱼的运动控制是实现协同推进的关键所在。
目前,常用的控制方法包括基于PID控制器的方法、神经网络控制方法以及模糊控制方法等。
这些方法都具有各自的优势和适用范围。
对于仿生机器鱼的控制方法,需要考虑到其运动特性和水下环境的复杂性,并结合实际应用需求进行优化和改进。
此外,为了验证仿生机器鱼的三自由度胸鳍尾鳍协同推进性能及控制方法的有效性,需要进行实验研究。
实验可以通过仿真模拟和实际试验相结合的方式进行。
仿真模拟可以利用计算机软件模拟仿生机器鱼的运动特性和控制方法,评估其推进性能并进行优化。
而实际试验可以通过制作仿生机器鱼的物理模型,观察其运动行为和控制效果,并与仿真结果进行对比分析。
综上所述,仿生机器鱼的三自由度胸鳍尾鳍协同推进性能及控制方法的研究是一个具有挑战性和前景的课题。
通过研究该课题,可以提高仿生机器鱼的游动性能和应用前景,进一步推动水下机器人技术的发展。
在未来的研究中,我们需要不断完善仿生机器鱼的设计原理和控制方法,提高其自主游动的能力和灵活性,为水下工程、海洋探索等领域的应用提供支持综合以上所述,研究仿生机器鱼的三自由度胸鳍尾鳍协同推进性能及控制方法对于提高其游动性能和应用前景具有重要意义。
未来奇兵仿生机器鱼仿生技术的军事应用正在快速发展,各国都投入大量资金深入开展从空中的掌上飞机、地面的微型昆虫到水下的仿生机器鱼等方面的一系列理论和技术研究。
其中,水下仿生机器鱼的发展更是如火如荼。
仿生机器鱼是模仿鱼类游动的推动机理,通过机械、电子机构或功能材料(形状记忆合金、人造肌肉等)来模拟鱼类的游动推进动作,在水中利用身体、尾鳍或胸鳍的摆动产生推进波,并作用于身体产生向前推力,从而实现运动的水下航行器。
三种模式根据推进模式访生机器鱼的推进方式可分为三类:身体波动式,(鱼+参)科及(鱼+参)科加新月形尾鳍模式和胸鳍模式。
身体波动式是模仿鳝鱼等鳗鲡目鱼类的游动方式,整个身体都参与大振幅波动运动,推进波的速度大于鱼的游动速度,并与鱼的游动方向相反地在身体上传播产生推进力。
此类仿生机器鱼多采用多关节机构,每个关节安装一个小型伺服电机配合作用进行扭转摆动推进。
也可采用形状记忆合金做鱼身,采用电激励或其他形式激励,控制合金的温度变化从而产生形变带动身体摆动。
其实人们所熟悉的机器蛇在水中若能浮起就变成了机器鱼。
此类机器鱼由于身体细长,柔韧性好,所以机动性极好,但一般只能飘浮,无法进行沉浮。
(鱼+参)科及(鱼+参)科加新月形尾鳍模式是大部分鱼类(如海豚、鲨鱼、金枪鱼等)采用的推进模式。
由于身体刚度较大,波动主要集中在身体后部分,推进力主要由具有一定刚度的尾鳍提供,其推进速度和推进效率比身体波动式高。
(鱼+参)科模式的推进部分是鱼体的后2/3部分,而(鱼+参)科加新月形尾鳍模式身体刚度更大,推进部分为身体后1/3部分,侧向位移主要产生在后颈部和尾鳍,尾鳍产生90%的推进力,身体前2/3部分保持刚性。
目前,(鱼+参)科及(鱼+参)科加新月形屋鳍模式的机器鱼研究较多,可以采用具有一定刚度的材料做前鱼体和尾鳍,鱼尾采用刚性或弹性材料,由电机驱动进行摆动。
其结构复杂程度不同,最简单的可以由电机直接驱动一根刚性杆状鱼尾摆动,复杂的可做成类似身体波动式的多关节或弹性鱼尾,由一部或多部电机配合驱动或采用形状记忆合金做鱼尾。
04年它是由北京航空航天大学机器人研究所和中国科学院自动化研究所共同研制的仿生机器鱼。
机器鱼系统由动力推进系统、图像采集和图像信号无线传输系统、计算机指挥控制平台3部分组成。
只要将指令通过无线电信号传给机器鱼中的计算机,计算机就可以按指令控制机器鱼做出动作。
机器鱼同时装有卫星定位系统,也就是它头上的那个“小蘑菇”,如果启动该系统,机器鱼还可以自行按设定航线行进。
机器鱼的体表不是软的,非常坚硬,表面很光滑。
机器鱼没有眼睛和嘴,只是在嘴的位置有一个直径5厘米的玻璃圆孔,那是水下摄像的窗口。
让机器鱼在水中自由游动起来,花费了我国科学家4年多的时间,这充分说明了这项技术的复杂性和难度。
究人员想出了去掉尾柄减轻重量的办法,可是只留尾鳍又产生新的问题,这就是如何保证机器鱼要转弯时,尾鳍既能保持方向,又能摆动产生推进力。
总之,问题层出不穷,按下葫芦又浮起瓢。
13年欧盟应用于海上石油和天然气工业开采,虹鳟鱼(Rainbow Trout)是水下“混合泳”高手,研发团队开发的外形、大小、行为和动态类似虹鳟鱼的仿生鱼机器人模型,迄今为止最大的缺陷,是不能像虹鳟鱼一样感知周围的流速并变换游泳姿态。
研发团队的成功,也是最关键的技术突破,来自成功开发出可模仿动物毛发细胞感应生理学(Hair Cell Sensing Physiology)的人工毛发细胞。
研发团队开发的仿生虹鳟鱼,通过安装在鱼胸部的独立变速马达控制尾部摆动,摆动产生的波动波可促使仿生鱼后部摆动而前身基本平行,从而保证仿生鱼类似于虹鳟鱼的前行姿态。
感应装置和控制装置安装在密封不透水的鱼头部,通过控制并改变尾部材料特性改变仿生鱼的游泳姿态。
仿生鱼经过在实验室流体动力学流罐(Flow Tank)的反复试验和优化设计,不仅可以在急速变化的水流中,而且可以在涡流中保持类似虹鳟鱼前行的姿态。
07哈工程这款仿生鱼使用电磁感应方法,并采用多关节的复杂系统使其运动更加灵活,自由度更高,具有噪音低,运动灵活,高效节能等优点。