压杆的临界应力
- 格式:ppt
- 大小:491.50 KB
- 文档页数:23
压杆临界力的计算公式1.欧拉公式:欧拉公式是压杆稳定性分析中最常用的一种方法。
根据欧拉公式,压杆的临界力可以通过以下公式计算:Pcr = ((π^2)EI) / ((KL)^2)其中,Pcr表示压杆的临界力,E表示材料的弹性模量,I表示压杆的截面面积惯性矩,K表示杆的端部支座的系数,L表示杆的长度。
欧拉公式适用于较细长的压杆,在其它条件相同的情况下,杆的截面越大,临界力就越大;杆的长度越长,临界力就越小。
同时,欧拉公式适用于直线变形的杆,不能用于弯曲变形。
2.莱昂哈德公式:莱昂哈德公式是考虑了杆的端部支座的影响,在欧拉公式的基础上进行修正的公式。
该公式计算压杆的临界力如下:Pcr = ((KLEI) / (r + ((2L)/π)) ^ 2)其中,Pcr表示压杆的临界力,E表示材料的弹性模量,I表示压杆的截面面积惯性矩,K表示杆的端部支座的系数,L表示杆的长度,r表示杆的端部支座的半径。
3. Adomian分解法:Adomian分解法是一种近似求解非线性微分方程的方法,在压杆临界力的计算中也有应用。
该方法通过将非线性方程分解为无穷级数的形式,然后将其逐级近似求解。
Adomian分解法的具体步骤如下:-(1)将压杆的平衡方程进行分解:Mx''(x)+f(x)=0,其中,M表示压杆的弯矩,f(x)表示外力。
-(2)将平衡方程表示为无穷级数的形式:x''(x)=∑An(x)。
-(3)通过逐级近似求解无穷级数,得到压杆临界力。
Adomian分解法的优点是可以处理非线性问题,但是在具体应用中需要取不同级数的项进行求解,并选择适当的近似方法。
4.极限平衡法:极限平衡法是一种通过平衡条件来确定压杆临界力的方法,它适用于复杂的压杆分析问题。
该方法的基本思想是,在压杆失稳之前,杆的初始形状必须满足平衡条件。
具体步骤如下:-(1)假设杆的初始形状(如弯曲、扭转等)。
-(2)根据平衡条件计算外力和内力。
怎样推导压杆的临界力和临界应力公式压杆(也称为压杆杆件或柱件)是一种承受压力的结构元素,常见于建筑、机械以及其他工程领域。
为了确定压杆在受力时的安全性,需要推导出压杆的临界力和临界应力公式。
首先,需要理解压杆在受力时的基本概念。
假设有一根长度为L、截面积为A的无限细长压杆,其两端受到等大反向的压力P。
压杆在受到压力时会发生弯曲,压杆的形状会发生改变。
当压力达到一定临界值时,压杆将完全失去稳定,从而发生屈曲(即压杆产生弯曲形变)。
临界力和临界应力是指当压力达到一定临界值时,压杆发生屈曲的压力和应力。
推导过程如下:1. 经典欧拉公式(Euler公式)欧拉公式是分析以柱轴为边界的理想无限长压杆屈曲的基本公式。
该公式基于以下假设:-压杆是均质、各向同性的杆件;-杆件的材料性质可用弹性线性理论描述;-压杆长度远大于其最小截面尺寸,即L>>d(d为压杆的最小截面尺寸)。
欧拉公式表达式如下:Pcr = (π²EI) / L²其中,Pcr为压杆的临界力,E为杨氏模量,I为压杆截面的惯性矩,L为压杆长度。
2. 完整欧拉公式(Timoshenko-Bazant公式)欧拉公式只适用于边界条件为完全铰接(即不受弯曲力矩)的压杆。
然而,在实际情况中,压杆的边界条件一般为受到端部弯曲力矩的约束。
在这种情况下,完整欧拉公式(Timoshenko-Bazant公式)需要被使用。
完整欧拉公式修正了边界条件的影响,并考虑到了剪切变形和截面的非对称性。
完整欧拉公式的表达式如下:Pcr = (π²EI) / [L²(1 + αL / r)^²]其中,α为修正系数,考虑了压杆的边界条件,r为截面回转半径。
3.临界应力临界应力的定义是在压杆屈曲时,杆件中最大的应力值。
根据杆件截面受到均匀分布的压力P,应力σ可以表示为:σ=P/A将欧拉公式(或完整欧拉公式)中的临界力Pcr代入上述表达式可得到临界应力的表达式。