2017年中考数学试题分项版解析汇编:专题16 压轴题 (解析版)
- 格式:pdf
- 大小:1.93 MB
- 文档页数:74
压轴题1、已知,在平行四边形OABC 中,OA=5,AB=4,∠OCA=90°,动点P 从O 点出发沿射线OA 方向以每秒2个单位的速度移动,同时动点Q 从A 点出发沿射线AB 方向以每秒1个单位的速度移动.设移动的时间为t 秒. (1)求直线AC 的解析式;(2)试求出当t 为何值时,△OAC 与△PAQ 相似; (3)若⊙P 的半径为58,⊙Q 的半径为23;当⊙P 与对角线AC 相切时,判断⊙Q 与直线AC 、BC 的位置关系,并求出Q 点坐标。
解:(1)42033y x =-+ (2)①当0≤t≤2.5时,P 在OA 上,若∠OAQ=90°时, 故此时△OAC 与△PAQ 不可能相似.当t>2.5时,①若∠APQ=90°,则△APQ ∽△OCA ,∵t>2.5,∴符合条件.②若∠AQP=90°,则△APQ ∽△∠OAC ,∵t>2.5,∴符合条件.综上可知,当时,△OAC 与△APQ 相似.(3)⊙Q 与直线AC 、BC 均相切,Q 点坐标为(109,531)。
2、如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x 轴,OC 所在的直线为y 轴,建立平面直角坐标系.已知OA =3,OC =2,点E 是AB 的中点,在OA 上取一点D ,将△BDA 沿BD 翻折,使点A 落在BC 边上的点F 处. (1)直接写出点E 、F 的坐标;(2)设顶点为F 的抛物线交y 轴正半轴...于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x 轴、y 轴上是否分别存在点M 、N ,使得四边形MNFE 的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.解:(1)(31)E ,;(12)F ,.(2)在Rt EBF △中,90B ∠=o, 2222125EF EB BF ∴=+=+=.设点P 的坐标为(0)n ,,其中0n >,Q 顶点(12)F ,, ∴设抛物线解析式为2(1)2(0)y a x a =-+≠.①如图①,当EF PF =时,22EF PF =,221(2)5n ∴+-=.解得10n =(舍去);24n =.(04)P ∴,.24(01)2a ∴=-+.解得2a =. ∴抛物线的解析式为22(1)2y x =-+(第2题)②如图②,当EP FP =时,22EP FP =,22(2)1(1)9n n ∴-+=-+. 解得52n =-(舍去).③当EF EP =时,53EP =<,这种情况不存在. 综上所述,符合条件的抛物线解析式是22(1)2y x =-+. (3)存在点M N ,,使得四边形MNFE 的周长最小. 如图③,作点E 关于x 轴的对称点E ',作点F 关于y 轴的对称点F ',连接E F '',分别与x 轴、y 轴交于点M N ,,则点M N ,就是所求点.(31)E '∴-,,(12)F NF NF ME ME '''-==,,,.43BF BE ''∴==,.FN NM ME F N NM ME F E ''''∴++=++=22345+=.又5EF =Q ,∴55FN NM ME EF +++=+,此时四边形MNFE 的周长最小值是553、如图,在边长为2的等边△ABC 中,A D ⊥BC,点P 为边AB 上一个动点,过P 点作PF//AC 交线段BD 于点F,作PG ⊥AB 交AD 于点E,交线段CD 于点G,设BP=x . (1)①试判断BG 与2BP 的大小关系,并说明理由;②用x 的代数式表示线段DG 的长,并写出自变量x 的取值范围;(2)记△DEF 的面积为S,求S 与x 之间的函数关系式,并求出S 的最大值;(3)以P 、E 、F 为顶点的三角形与△EDG 是否可能相似?如果能相似,请求出BP 的长,如果不能,请说明理由。
专题16二次函数解答题压轴题(35题)一、解答题1.(2024·内蒙古赤峰·中考真题)如图,是某公园的一种水上娱乐项目.数学兴趣小组对该项目中的数学问题进行了深入研究.下面是该小组绘制的水滑道截面图,如图1,人从点A处沿水滑道下滑至点B处腾空飞出后落入水池.以地面所在的水平线为x轴,过腾空点B与x轴垂直的直线为y轴,O为坐标原点,建立平面直角坐标系.他们把水滑道和人腾空飞出后经过的路径都近似看作是抛物线的一部分.根据测量和调查得到的数据和信息,设计了以下三个问题,请你解决.(1)如图1,点B与地面的距离为2米,水滑道最低点C与地面的距离为78米,点C到点B的水平距离为3米,则水滑道ACB所在抛物线的解析式为______;(2)如图1,腾空点B与对面水池边缘的水平距离12OE 米,人腾空后的落点D与水池边缘的安全距离DE 不少于3米.若某人腾空后的路径形成的抛物线BD恰好与抛物线ACB关于点B成中心对称.①请直接写出此人腾空后的最大高度和抛物线BD的解析式;②此人腾空飞出后的落点D是否在安全范围内?请说明理由(水面与地面之间的高度差忽略不计);(3)为消除安全隐患,公园计划对水滑道进行加固.如图2,水滑道已经有两条加固钢架,一条是水滑道距地面4米的点M处竖直支撑的钢架MN,另一条是点M与点B之间连接支撑的钢架BM.现在需要在水滑道下方加固一条支撑钢架,为了美观,要求这条钢架与BM平行,且与水滑道有唯一公共点,一端固定在钢架MN上,另一端固定在地面上.请你计算出这条钢架的长度(结果保留根号).2.(2024·广东深圳·中考真题)为了测量抛物线的开口大小,某数学兴趣小组将两把含有刻度的直尺垂直放置,并分别以水平放置的直尺和竖直放置的直尺为x,y轴建立如图所示平面直角坐标系,该数学小组选择不同位置测量数据如下表所示,设BD 的读数为x ,CD 读数为y ,抛物线的顶点为C .(1)(Ⅰ)列表:①②③④⑤⑥x023456y 01 2.254 6.259(Ⅱ)描点:请将表格中的(),x y 描在图2中;(Ⅲ)连线:请用平滑的曲线在图2将上述点连接,并求出y 与x 的关系式;(2)如图3所示,在平面直角坐标系中,抛物线()2y a x h k =-+的顶点为C ,该数学兴趣小组用水平和竖直直尺测量其水平跨度为AB ,竖直跨度为CD ,且AB m =,CD n =,为了求出该抛物线的开口大小,该数学兴趣小组有如下两种方案,请选择其中一种方案,并完善过程:方案一:将二次函数()2y a x h k =-+平移,使得顶点C 与原点O 重合,此时抛物线解析式为2y ax =.①此时点B '的坐标为________;②将点B '坐标代入2y ax =中,解得=a ________;(用含m ,n 的式子表示)方案二:设C 点坐标为(),h k ①此时点B 的坐标为________;②将点B 坐标代入()2y a x h k =-+中解得=a ________;(用含m ,n 的式子表示)(3)【应用】如图4,已知平面直角坐标系xOy 中有A ,B 两点,4AB =,且AB x ∥轴,二次函数()211:2C y x h k =++和()222:C y a x h b =++都经过A ,B 两点,且1C 和2C 的顶点P ,Q 距线段AB 的距离之和为10,求a 的值.3.(2024·四川广元·中考真题)在平面直角坐标系xOy 中,已知抛物线F :2y x bx c =-++经过点()3,1A --,与y 轴交于点()0,2B .(1)求抛物线的函数表达式;(2)在直线AB 上方抛物线上有一动点C ,连接OC 交AB 于点D ,求CD OD的最大值及此时点C 的坐标;(3)作抛物线F 关于直线1y =-上一点的对称图象F ',抛物线F 与F '只有一个公共点E (点E 在y 轴右侧),G 为直线AB 上一点,H 为抛物线F '对称轴上一点,若以B ,E ,G ,H 为顶点的四边形是平行四边形,求G 点坐标.4.(2024·天津·中考真题)已知抛物线()20y ax bx c a b c a =++>,,为常数,的顶点为P ,且20a b +=,对称轴与x 轴相交于点D ,点(),1M m 在抛物线上,1m O >,为坐标原点.(1)当11a c ==-,时,求该抛物线顶点P 的坐标;(2)当132OM OP ==时,求a 的值;(3)若N 是抛物线上的点,且点N 在第四象限,90MDN DM DN ∠=︒=,,点E 在线段MN 上,点F 在线段DN 上,2NE NF +,当DE MF +15a 的值.5.(2024·内蒙古包头·中考真题)如图,在平面直角坐标系中,抛物线22y x bx c =-++与x 轴相交于()1,0A ,B 两点(点A 在点B 左侧),顶点为()2,M d ,连接AM .(1)求该抛物线的函数表达式;(2)如图1,若C 是y 轴正半轴上一点,连接,AC CM .当点C 的坐标为10,2⎛⎫ ⎪⎝⎭时,求证:ACM BAM ∠=∠;(3)如图2,连接BM ,将ABM 沿x 轴折叠,折叠后点M 落在第四象限的点M '处,过点B 的直线与线段AM '相交于点D ,与y 轴负半轴相交于点E .当87BD DE =时,3ABD S △与2M BD S '△是否相等?请说明理由.6.(2024·吉林·中考真题)小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x 的值为2-时,输出y 的值为1;输入x 的值为2时,输出y 的值为3;输入x 的值为3时,输出y 的值为6.(1)直接写出k ,a ,b 的值.(2)小明在平面直角坐标系中画出了关于x 的函数图像,如图(2).Ⅰ.当y 随x 的增大而增大时,求x 的取值范围.Ⅱ.若关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解,求t 的取值范围.Ⅲ.若在函数图像上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为1m -+.小明对P ,Q 之间(含P ,Q 两点)的图像进行研究,当图像对应函数的最大值与最小值均不随m 的变化而变化,直接写出m 的取值范围.7.(2024·四川达州·中考真题)如图1,抛物线23y ax kx =+-与x 轴交于点()3,0A -和点()1,0B ,与y 轴交于点C .点D 是抛物线的顶点.(1)求抛物线的解析式;(2)如图2,连接AC ,DC ,直线AC 交抛物线的对称轴于点M ,若点P 是直线AC 上方抛物线上一点,且2PMC DMC S S =△△,求点P 的坐标;(3)若点N 是抛物线对称轴上位于点D 上方的一动点,是否存在以点N ,A ,C 为顶点的三角形是等腰三角形,若存在,请直接写出满足条件的点N 的坐标;若不存在,请说明理由.8.(2024·四川泸州·中考真题)如图,在平面直角坐标系xOy 中,已知抛物线23y ax bx =++经过点()3,0A ,与y 轴交于点B ,且关于直线1x =对称.(1)求该抛物线的解析式;(2)当1x t -≤≤时,y 的取值范围是021y t ≤≤-,求t 的值;(3)点C 是抛物线上位于第一象限的一个动点,过点C 作x 轴的垂线交直线AB 于点D ,在y 轴上是否存在点E ,使得以B ,C ,D ,E 为顶点的四边形是菱形?若存在,求出该菱形的边长;若不存在,说明理由.9.(2024·四川南充·中考真题)已知抛物线2y x bx c =-++与x 轴交于点()1,0A -,()3,0B .(1)求抛物线的解析式;(2)如图1,抛物线与y 轴交于点C ,点P 为线段OC 上一点(不与端点重合),直线PA ,PB 分别交抛物线于点E ,D ,设PAD 面积为1S ,PBE △面积为2S ,求12S S 的值;(3)如图2,点K 是抛物线对称轴与x 轴的交点,过点K 的直线(不与对称轴重合)与抛物线交于点M ,N ,过抛物线顶点G 作直线l x ∥轴,点Q 是直线l 上一动点.求QM QN +的最小值.10.(2024·四川成都·中考真题)如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =-->与x轴交于A ,B 两点(点A 在点B 的左侧),其顶点为C ,D是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB '' .将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.11.(2024·四川德阳·中考真题)如图,抛物线2y x x c =-+与x 轴交于点()1,0A -和点B ,与y 轴交于点C .(1)求抛物线的解析式;(2)当02x <≤时,求2y x x c =-+的函数值的取值范围;(3)将拋物线的顶点向下平移34个单位长度得到点M ,点P 为抛物线的对称轴上一动点,求55PA +的最小值.12.(2024·山东·中考真题)在平面直角坐标系xOy 中,点()2,3P -在二次函数()230y ax bx a =+->的图像上,记该二次函数图像的对称轴为直线x m =.(1)求m 的值;(2)若点(),4Q m -在23y ax bx =+-的图像上,将该二次函数的图像向上平移5个单位长度,得到新的二次函数的图像.当04x ≤≤时,求新的二次函数的最大值与最小值的和;(3)设23y ax bx =+-的图像与x 轴交点为()1,0x ,()()212,0x x x <.若2146x x <-<,求a 的取值范围.13.(2024·上海·中考真题)在平面直角坐标系中,已知平移抛物线213y x =后得到的新抛物线经过50,3A ⎛⎫- ⎪⎝⎭和(5,0)B .(1)求平移后新抛物线的表达式;(2)直线x m =(0m >)与新抛物线交于点P ,与原抛物线交于点Q .①如果PQ 小于3,求m 的取值范围;②记点P 在原抛物线上的对应点为P ',如果四边形P BPQ '有一组对边平行,求点P 的坐标.14.(2024·四川遂宁·中考真题)二次函数()20y ax bx c a =++≠的图象与x 轴分别交于点()()1,03,0A B -,,与y 轴交于点()0,3C -,P Q ,为抛物线上的两点.(1)求二次函数的表达式;(2)当P C ,两点关于抛物线对称轴对称,OPQ △是以点P 为直角顶点的直角三角形时,求点Q 的坐标;(3)设P 的横坐标为m ,Q 的横坐标为1m +,试探究:OPQ △的面积S 是否存在最小值,若存在,请求出最小值,若不存在,请说明理由.15.(2024·四川凉山·中考真题)如图,抛物线2y x bx c =-++与直线2y x =+相交于()()20,3,A B m -,两点,与x 轴相交于另一点C .(1)求抛物线的解析式;(2)点P 是直线AB 上方抛物线上的一个动点(不与,A B 重合),过点P 作直线PD x ⊥轴于点D ,交直线AB 于点E ,当2PE ED =时,求P 点坐标;(3)抛物线上是否存在点M 使ABM 的面积等于ABC 面积的一半?若存在,请直接写出点M 的坐标;若不存在,请说明理由.16.(2024·江苏连云港·中考真题)在平面直角坐标系xOy 中,已知抛物线21y ax bx =+-(a 、b 为常数,0a >).(1)若抛物线与x 轴交于(1,0)A -、(4,0)B 两点,求抛物线对应的函数表达式;(2)如图,当1b =时,过点(1,)C a -、(1,D a +分别作y轴的平行线,交抛物线于点M 、N ,连接MN MD 、.求证:MD 平分CMN ∠;(3)当1a =,2b ≤-时,过直线1(13)y x x =-≤≤上一点G 作y 轴的平行线,交抛物线于点H .若GH 的最大值为4,求b 的值.17.(2024·江苏苏州·中考真题)如图①,二次函数2y x bx c =++的图象1C 与开口向下....的二次函数图象2C 均过点()1,0A -,()3,0B .(1)求图象1C 对应的函数表达式;(2)若图象2C 过点()0,6C ,点P 位于第一象限,且在图象2C 上,直线l 过点P 且与x 轴平行,与图象2C 的另一个交点为Q (Q 在P 左侧),直线l 与图象1C 的交点为M ,N (N 在M 左侧).当PQ MP QN =+时,求点P 的坐标;(3)如图②,D ,E 分别为二次函数图象1C ,2C 的顶点,连接AD ,过点A 作AF AD ⊥.交图象2C 于点F ,连接EF ,当EF AD ∥时,求图象2C 对应的函数表达式.18.(2024·内蒙古呼伦贝尔·中考真题)如图,在平面直角坐标系中,二次函数()20y ax bx c a =++≠的图像经过原点和点()4,0A .经过点A 的直线与该二次函数图象交于点()1,3B ,与y 轴交于点C .(1)求二次函数的解析式及点C 的坐标;(2)点P 是二次函数图象上的一个动点,当点P 在直线AB 上方时,过点P 作PE x ⊥轴于点E ,与直线AB 交于点D ,设点P 的横坐标为m .①m 为何值时线段PD 的长度最大,并求出最大值;②是否存在点P ,使得BPD △与AOC 相似.若存在,请求出点P 坐标;若不存在,请说明理由.19.(2024·山东威海·中考真题)已知抛物线()20y x bx c b =++<与x 轴交点的坐标分别为()1,0x ,()2,0x ,且12x x <.(1)若抛物线()2110y x bx c b =+++<与x 轴交点的坐标分别为()3,0x ,()4,0x ,且34x x <.试判断下列每组数据的大小(填写<、=或>):①12x x +________34x x +;②13x x -________24x x -;③23x x +________14x x +.(2)若11x =,223x <<,求b 的取值范围;(3)当01x ≤≤时,()20y x bx c b =++<最大值与最小值的差为916,求b 的值.20.(2024·河北·中考真题)如图,抛物线21:2C y ax x =-过点(4,0),顶点为Q .抛物线22211:()222C y x t t =--+-(其中t 为常数,且2t >),顶点为P .(1)直接写出a 的值和点Q 的坐标.(2)嘉嘉说:无论t 为何值,将1C 的顶点Q 向左平移2个单位长度后一定落在2C 上.淇淇说:无论t 为何值,2C 总经过一个定点.请选择其中一人的说法进行说理.(3)当4t =时,①求直线PQ 的解析式;②作直线l PQ ∥,当l 与2C 的交点到x 轴的距离恰为6时,求l 与x 轴交点的横坐标.(4)设1C 与2C 的交点A ,B 的横坐标分别为,A B x x ,且A B x x <.点M 在1C 上,横坐标为()2B m m x ≤≤.点N 在2C 上,横坐标为()A n x n t ≤≤.若点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d ,直接用含t 和m 的式子表示n .21.(2024·四川宜宾·中考真题)如图,抛物线2y x bx c =++与x 轴交于点()1,0A -和点B ,与y 轴交于点()0,4C -,其顶点为D .(1)求抛物线的表达式及顶点D 的坐标;(2)在y 轴上是否存在一点M ,使得BDM 的周长最小.若存在,求出点M 的坐标;若不存在,请说明理由;(3)若点E 在以点()3,0P 为圆心,1为半径的P 上,连接AE ,以AE 为边在AE 的下方作等边三角形AEF ,连接BF .求BF 的取值范围.22.(2024·湖南·中考真题)已知二次函数2y x c =-+的图像经过点()2,5A -,点()11,P x y ,()22,Q x y 是此二次函数的图像上的两个动点.(1)求此二次函数的表达式;(2)如图1,此二次函数的图像与x 轴的正半轴交于点B ,点P 在直线AB 的上方,过点P 作PC x ⊥轴于点C ,交AB 于点D ,连接AC DQ PQ ,,.若213x x =+,求证DCPDQ A S S △△的值为定值;(3)如图2,点P 在第二象限,212x x =-,若点M 在直线PQ 上,且横坐标为11x -,过点M 作MN x ⊥轴于点N ,求线段MN 长度的最大值.23.(2024·四川乐山·中考真题)在平面直角坐标系xOy 中,我们称横坐标、纵坐标都为整数的点为“完美点”.抛物线222y ax ax a =-+(a 为常数且0a >)与y 轴交于点A.(1)若1a =,求抛物线的顶点坐标;(2)若线段OA (含端点)上的“完美点”个数大于3个且小于6个,求a 的取值范围;(3)若抛物线与直线y x =交于M 、N 两点,线段MN 与抛物线围成的区域(含边界)内恰有4个“完美点”,求a 的取值范围.24.(2024·四川眉山·中考真题)如图,抛物线2y x bx c =-++与x 轴交于点()3,0A -和点B ,与y 轴交于点()0,3C ,点D 在抛物线上.(1)求该抛物线的解析式;(2)当点D 在第二象限内,且ACD 的面积为3时,求点D 的坐标;(3)在直线BC 上是否存在点P ,使OPD △是以PD 为斜边的等腰直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.25.(2024·黑龙江绥化·中考真题)综合与探究如图,在平面直角坐标系中,已知抛物线2y x bx c =-++与直线相交于A ,B 两点,其中点()3,4A ,()0,1B .(1)求该抛物线的函数解析式.(2)过点B 作BC x ∥轴交抛物线于点C ,连接AC ,在抛物线上是否存在点P 使1tan tan 6BCP ACB ∠=∠.若存在,请求出满足条件的所有点P 的坐标;若不存在,请说明理由.(提示:依题意补全图形,并解答)(3)将该抛物线向左平移2个单位长度得到()2111110y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点D ,点E 为原抛物线对称轴上的一点,F 是平面直角坐标系内的一点,当以点B 、D 、E 、F 为顶点的四边形是菱形时,请直接写出点F 的坐标.26.(2024·黑龙江齐齐哈尔·中考真题)综合与探究:如图,在平面直角坐标系中,已知直线122y x =-与x 轴交于点A ,与y 轴交于点C ,过A ,C 两点的抛物线()20y ax bx c a =++≠与x 轴的另一个交点为点(10)B -,,点P 是抛物线位于第四象限图象上的动点,过点P 分别作x 轴和y 轴的平行线,分别交直线AC 于点E ,点F .(1)求抛物线的解析式;(2)点D 是x 轴上的任意一点,若ACD 是以AC 为腰的等腰三角形,请直接写出点D 的坐标;(3)当EF AC =时,求点P 的坐标;(4)在(3)的条件下,若点N 是y 轴上的一个动点,过点N 作抛物线对称轴的垂线,垂足为M ,连接NA MP ,,则NA MP +的最小值为______.27.(2024·重庆·中考真题)如图,在平面直角坐标系中,抛物线23y ax bx =+-与x 轴交于()1,0A -,B 两点,交y 轴于点C ,抛物线的对称轴是直线52x =.(1)求抛物线的表达式;(2)点P 是直线BC 下方对称轴右侧抛物线上一动点,过点P 作PD x ∥轴交抛物线于点D ,作PE BC ⊥于点E ,求52PD PE +的最大值及此时点P 的坐标;(3)将抛物线沿射线BC 552PD PE +取得最大值的条件下,点F 为点P 平移后的对应点,连接AF 交y 轴于点M ,点N 为平移后的抛物线上一点,若45NMF ABC ∠-∠=︒,请直接写出所有符合条件的点N 的坐标.28.(2024·重庆·中考真题)如图,在平面直角坐标系中,抛物线()240y ax bx a =++≠经过点()1,6-,与y轴交于点C ,与x 轴交于A B ,两点(A 在B 的左侧),连接tan 4AC BC CBA ∠=,,.(1)求抛物线的表达式;(2)点P 是射线CA 上方抛物线上的一动点,过点P 作PE x ⊥轴,垂足为E ,交AC 于点D .点M 是线段DE 上一动点,MN y ⊥轴,垂足为N ,点F 为线段BC 的中点,连接AM NF ,.当线段PD 长度取得最大值时,求AM MN NF ++的最小值;(3)将该抛物线沿射线CA 方向平移,使得新抛物线经过(2)中线段PD 长度取得最大值时的点D ,且与直线AC 相交于另一点K .点Q 为新抛物线上的一个动点,当QDK ACB ∠∠=时,直接写出所有符合条件的点Q 的坐标.29.(2024·广东广州·中考真题)已知抛物线232:621(0)G y ax ax a a a =--++>过点()1,2A x 和点()2,2B x ,直线2:l y m x n =+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+.(1)求抛物线G 的对称轴;(2)求m 的值;(3)直线l 绕点C 以每秒3︒的速度顺时针旋转t 秒后(045)t ≤<得到直线l ',当l AB '∥时,直线l '交抛物线G 于E ,F 两点.①求t 的值;②设AEF △的面积为S ,若对于任意的0a >,均有S k ≥成立,求k 的最大值及此时抛物线G 的解析式.30.(2024·四川广安·中考真题)如图,抛物线223y x bx c =-++与x 轴交于A ,B 两点,与y 轴交于点C ,点A 坐标为(1,0)-,点B 坐标为(3,0).(1)求此抛物线的函数解析式.(2)点P 是直线BC 上方抛物线上一个动点,过点P 作x 轴的垂线交直线BC 于点D ,过点P 作y 轴的垂线,垂足为点E ,请探究2PD PE +是否有最大值?若有最大值,求出最大值及此时P 点的坐标;若没有最大值,请说明理由.(3)点M 为该抛物线上的点,当45∠=︒MCB 时,请直接写出所有满足条件的点M 的坐标.31.(2024·山东烟台·中考真题)如图,抛物线21y ax bx c =++与x 轴交于A ,B 两点,与y 轴交于点C ,OC OA =,4AB =,对称轴为直线1:1l x =-,将抛物线1y 绕点O 旋转180︒后得到新抛物线2y ,抛物线2y 与y 轴交于点D ,顶点为E ,对称轴为直线2l .(1)分别求抛物线1y 和2y 的表达式;(2)如图1,点F 的坐标为()6,0-,动点M 在直线1l 上,过点M 作MN x ∥轴与直线2l 交于点N ,连接FM ,DN .求FM MN DN ++的最小值;(3)如图2,点H 的坐标为()0,2-,动点P 在抛物线2y 上,试探究是否存在点P ,使2PEH DHE ∠=∠?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.32.(2024·甘肃·中考真题)如图1,抛物线()2y a x h k =-+交x 轴于O ,()4,0A 两点,顶点为(2,B .点C 为OB 的中点.(1)求抛物线2()y a x h k =-+的表达式;(2)过点C 作CH OA ⊥,垂足为H ,交抛物线于点E .求线段CE 的长.(3)点D 为线段OA 上一动点(O 点除外),在OC 右侧作平行四边形OCFD .①如图2,当点F 落在抛物线上时,求点F 的坐标;②如图3,连接BD ,BF ,求BD BF +的最小值.33.(2024·湖北·中考真题)如图1,二次函数23y x bx =-++交x 轴于()1,0A -和B ,交y 轴于C .(1)求b 的值.(2)M 为函数图象上一点,满足MAB ACO ∠=∠,求M 点的横坐标.(3)如图2,将二次函数沿水平方向平移,新的图象记为,L L 与y 轴交于点D ,记DC d =,记L 顶点横坐标为n .①求d 与n 的函数解析式.②记L 与x 轴围成的图象为,U U 与ABC 重合部分(不计边界)记为W ,若d 随n 增加而增加,且W 内恰有2个横坐标与纵坐标均为整数的点,直接写出n 的取值范围.34.(2024·湖北武汉·中考真题)抛物线215222y x x =+-交x 轴于A ,B 两点(A 在B 的右边),交y 轴于点C .(1)直接写出点A ,B ,C 的坐标;(2)如图(1),连接AC ,BC ,过第三象限的抛物线上的点P 作直线PQ AC ∥,交y 轴于点Q .若BC 平分线段PQ ,求点P 的坐标;(3)如图(2),点D 与原点O 关于点C 对称,过原点的直线EF 交抛物线于E ,F 两点(点E 在x 轴下方),线段DE 交抛物线于另一点G ,连接FG .若90EGF ∠=︒,求直线DE 的解析式.35.(2024·吉林长春·中考真题)在平面直角坐标系中,点O 是坐标原点,抛物线22y x x c =++(c 是常数)经过点()2,2--.点A 、B 是该抛物线上不重合的两点,横坐标分别为m 、m -,点C 的横坐标为5m -,点C 的纵坐标与点A 的纵坐标相同,连结AB 、AC .(1)求该抛物线对应的函数表达式;(2)求证:当m 取不为零的任意实数时,tan CAB ∠的值始终为2;(3)作AC 的垂直平分线交直线AB 于点D ,以AD 为边、AC 为对角线作菱形ADCE ,连结DE .①当DE 与此抛物线的对称轴重合时,求菱形ADCE 的面积;②当此抛物线在菱形ADCE 内部的点的纵坐标y 随x 的增大而增大时,直接写出m 的取值范围.。
专题17 四川中考填空题压轴专题【典例1】(2019•眉山)如图,反比例函数y =kx (x >0)的图象经过矩形OABC 对角线的交点M ,分别交AB ,BC 于点D 、E .若四边形ODBE 的面积为12,则k 的值为 4 .【点拨】本题可从反比例函数图象上的点E 、M 、D 入手,分别找出△OCE 、△OAD 、▱OABC 的面积与|k |的关系,列出等式求出k 值.【解答】解:由题意得:E 、M 、D 位于反比例函数图象上,则S △OCE =12|k |,S △OAD =12|k |, 过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S ▱ONMG =|k |, 又∵M 为矩形ABCO 对角线的交点,则S 矩形ABCO =4S ▱ONMG =4|k |, 由于函数图象在第一象限, ∴k >0,则k2+k 2+12=4k ,∴k =4.【点睛】本题考查了反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k |.本知识点是中考的重要考点,同学们应高度关注.【典例2】(2019•凉山州)如图,正方形ABCD 中,AB =12,AE =14AB ,点P 在BC 上运动(不与B 、C 重合),过点P 作PQ ⊥EP ,交CD 于点Q ,则CQ 的最大值为 4 .【点拨】先证明△BPE ∽△CQP ,得到与CQ 有关的比例式,设CQ =y ,BP =x ,则CP =12﹣x ,代入解析式,得到y 与x 的二次函数式,根据二次函数的性质可求最值. 【解答】解:∵∠BEP +∠BPE =90°,∠QPC +∠BPE =90°, ∴∠BEP =∠CPQ . 又∠B =∠C =90°, ∴△BPE ∽△CQP . ∴BE PC=BP CQ.设CQ =y ,BP =x ,则CP =12﹣x . ∴912−x=xy ,化简得y =−19(x 2﹣12x ),整理得y =−19(x ﹣6)2+4, 所以当x =6时,y 有最大值为4. 故答案为4.【点睛】本题主要考查了正方形的性质、相似三角形的判定和性质,以及二次函数最值问题,几何最值用二次函数最值求解考查了树形结合思想.【典例3】(2019•自贡)如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos (α+β)=√217.【点拨】给图中相关点标上字母,连接DE ,利用等腰三角形的性质及三角形内角和定理可得出∠α=30°,同理,可得出:∠CDE =∠CED =30°=∠α,由∠AEC =60°结合∠AED =∠AEC +∠CED 可得出∠AED =90°,设等边三角形的边长为a ,则AE =2a ,DE =√3a ,利用勾股定理可得出AD 的长,再结合余弦的定义即可求出cos (α+β)的值.【解答】解:给图中相关点标上字母,连接DE ,如图所示. 在△ABC 中,∠ABC =120°,BA =BC , ∴∠α=30°.同理,可得出:∠CDE =∠CED =30°=∠α. 又∵∠AEC =60°,∴∠AED =∠AEC +∠CED =90°.设等边三角形的边长为a ,则AE =2a ,DE =2×sin60°•a =√3a , ∴AD =√AE 2+DE 2=√7a , ∴cos (α+β)=DE AD =√217. 故答案为:√217.【点睛】本题考查了解直角三角形、等边三角形的性质以及规律型:图形的变化类,构造出含一个锐角等于∠α+∠β的直角三角形是解题的关键.【典例4】(2019•雅安)已知函数y ={−x 2+2x(x >0)−x(x ≤0)的图象如图所示,若直线y =x +m 与该图象恰有三个不同的交点,则m 的取值范围为 0<m <14 .【点拨】直线与y =﹣x 有一个交点,与y =﹣x 2+2x 有两个交点,则有m >0,x +m =﹣x 2+2x 时,△=1﹣4m >0,即可求解.【解答】解:直线y =x +m 与该图象恰有三个不同的交点, 则直线与y =﹣x 有一个交点, ∴m >0,∵与y=﹣x2+2x有两个交点,∴x+m=﹣x2+2x,△=1﹣4m>0,∴m<1 4,∴0<m<1 4;故答案为0<m<1 4.【点睛】本题考查二次函数与一次函数的图象及性质;能够根据条件,数形结合的进行分析,可以确定m的范围.【典例5】(2019•广元)如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0),(0,2),且顶点在第一象限,设M=4a+2b+c,则M的取值范围是﹣6<M<6.【点拨】将(﹣1,0)与(0,2)代入y=ax2+bx+c,可知b=a+2,利用对称轴可知:a>﹣2,从而可知M的取值范围.【解答】解:将(﹣1,0)与(0,2)代入y=ax2+bx+c,∴0=a﹣b+c,2=c,∴b=a+2,∵−b2a>0,a<0,∴b>0,∴a>﹣2,∴﹣2<a<0,∴M=4a+2(a+2)+2 =6a+6=6(a+1)∴﹣6<M<6,故答案为:﹣6<M<6;【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.【典例6】(2019•巴中)如图,等边三角形ABC内有一点P,分別连结AP、BP、CP,若AP=6,BP=8,CP=10.则S△ABP+S△BPC=24+16√3.【点拨】将△BPC绕点B逆时针旋转60°后得△AP'B,根据旋转的性质可得∠PBP′=∠CAB=60°,BP=BP′,可得△BPP′为等边三角形,可得BP′=BP=8=PP',由勾股定理的逆定理可得,△APP′是直角三角形,由三角形的面积公式可求解.【解答】解:如图,将△BPC绕点B逆时针旋转60°后得△AP'B,连接PP′,根据旋转的性质可知,旋转角∠PBP′=∠CAB=60°,BP=BP′,∴△BPP′为等边三角形,∴BP′=BP=8=PP';由旋转的性质可知,AP′=PC=10,在△BPP′中,PP′=8,AP=6,由勾股定理的逆定理得,△APP′是直角三角形,∴S△ABP+S△BPC=S四边形AP'BP=S△BP'B+S△AP'P=√34BP2+12×PP'×AP=24+16√3故答案为:24+16√3【点评】本题考查了旋转的性质,等边三角形的性质,勾股定理,作辅助线构造出等边三角形和直角三角形是解题的关键,也是本题的难点.【典例7】(2019•内江)如图,在平行四边形ABCD中,AB<AD,∠A=150°,CD=4,以CD为直径的⊙O交AD于点E,则图中阴影部分的面积为2π3+√3.【点拨】连接OE ,作OF ⊥DE ,先求出∠COE =2∠D =60°、OF =12OD =1,DF =OD cos ∠ODF =√3,DE =2DF =2√3,再根据阴影部分面积是扇形与三角形的面积和求解可得. 【解答】解:如图,连接OE ,作OF ⊥DE 于点F ,∵四边形ABCD 是平行四边形,且∠A =150°, ∴∠D =30°,则∠COE =2∠D =60°, ∵CD =4, ∴CO =DO =2,∴OF =12OD =1,DF =OD cos ∠ODF =2×√32=√3, ∴DE =2DF =2√3, ∴图中阴影部分的面积为60⋅π⋅22360+12×2√3×1=2π3+√3, 故答案为:2π3+√3.【点睛】本题考查的是扇形面积计算、平行四边形的性质,掌握扇形面积公式:S =nπr 2360是解题的关键.【典例8】(2019•泸州)如图,在等腰Rt △ABC 中,∠C =90°,AC =15,点E 在边CB 上,CE =2EB ,点D 在边AB 上,CD ⊥AE ,垂足为F ,则AD 的长为 9√2 .【点拨】过D 作DH ⊥AC 于H ,根据等腰三角形的性质得到AC =BC =15,∠CAD =45°,求得AH =DH ,得到CH =15﹣DH ,根据相似三角形的性质即可得到结论.【解答】解:过D 作DH ⊥AC 于H , ∵在等腰Rt △ABC 中,∠C =90°,AC =15, ∴AC =BC =15, ∴∠CAD =45°, ∴AH =DH , ∴CH =15﹣DH , ∵CF ⊥AE ,∴∠DHA =∠DF A =90°, ∴∠HAF =∠HDF , ∴△ACE ∽△DHC , ∴DH AC=CH CE,∵CE =2EB , ∴CE =10, ∴DH 15=15−DH 10,∴DH =9, ∴AD =9√2, 故答案为:9√2.【点睛】本题考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.【典例9】(2019•乐山)如图1,在四边形ABCD 中,AD ∥BC ,∠B =30°,直线l ⊥AB .当直线l 沿射线BC 方向,从点B 开始向右平移时,直线l 与四边形ABCD 的边分别相交于点E 、F .设直线l 向右平移的距离为x ,线段EF 的长为y ,且y 与x 的函数关系如图2所示,则四边形ABCD 的周长是 .【点拨】根据题意和函数图象中的数据,可以得到AB、BC、AD的长,再根据平行线的性质和图形中的数据可以得到CD的长,从而可以求得四边形ABCD的周长.【解答】解:∵∠B=30°,直线l⊥AB,∴BE=2EF,由图可得,AB=4cos30°=4×√32=2√3,BC=5,AD=7﹣4=3,由图象可得,AN=5﹣4=1,ND=CM=7﹣5=2,DM=2,∵∠B=30°,EF⊥AB,∴∠M=60°,又∵DM=MC=2,∴△DMC是等边三角形,∴DC=DM=2,∴四边形ABCD的周长是:AB+BC+AD+CD=2√3+5+3+2=10+2√3,故答案为:10+2√3.【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.【典例10】(2019•攀枝花)正方形A1B1C1A2,A2B2C2A3,A3B3C3A4,…按如图所示的方式放置,点A1,A2,A3,…和点B1,B2,B3,…分别在直线y=kx+b(k>0)和x轴上.已知点A1(0,1),点B1(1,0),则C5的坐标是(47,16),.【点拨】由题意可知A1纵坐标为1,A2的纵坐标为2,A3的纵坐标为4,A4的纵坐标为8,…,即可得到C1,C2,C3,C4,C5的纵坐标,根据图象得出C1(2,1),C2(5,2),C3(11,4),即可得到C1,C2,C3,C4,C5…在一条直线上,直线的解析式为y=13x+13,把C5的纵坐标代入即可求得横坐标.【解答】解:由题意可知A1纵坐标为1,A2的纵坐标为2,A3的纵坐标为4,A4的纵坐标为8,…,∵A1和C1,A2和C2,A3和C3,A4和C4的纵坐标相同,∴C1,C2,C3,C4,C5的纵坐标分别为1,2,4,8,16,…∴根据图象得出C1(2,1),C2(5,2),C3(11,4),∴直线C1C2的解析式为y=13x+13,∵A5的纵坐标为16,∴C5的纵坐标为16,把y=16代入y=13x+13,解得x=47,∴C5的坐标是(47,16),故答案为(47,16).【点睛】此题考查了待定系数法求一次函数的解析式、等腰直角三角形和正方形的性质.此题难度适中,属于规律型题目,注意掌握数形结合思想的应用.【典例11】(2019•广安)如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt△OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt △OA3A4,并使∠A3OA4=60°…按此规律进行下去,则点A2019的坐标为(﹣22017,22017√3).【点拨】通过解直角三角形,依次求A1,A2,A3,A4,…各点的坐标,再从其中找出规律,便可得结论.【解答】解:由题意得,A1的坐标为(1,0),A2的坐标为(1,√3),A3的坐标为(﹣2,2√3),A4的坐标为(﹣8,0),A5的坐标为(﹣8,﹣8√3),A6的坐标为(16,﹣16√3),A7的坐标为(64,0),…由上可知,A点的方位是每6个循环,与第一点方位相同的点在x正半轴上,其横坐标为2n﹣1,其纵坐标为0,与第二点方位相同的点在第一象限内,其横坐标为2n﹣2,纵坐标为2n﹣2√3,与第三点方位相同的点在第二象限内,其横坐标为﹣2n﹣2,纵坐标为2n﹣2√3,与第四点方位相同的点在x负半轴上,其横坐标为﹣2n﹣1,纵坐标为0,与第五点方位相同的点在第三象限内,其横坐标为﹣2n﹣2,纵坐标为﹣2n﹣2√3,与第六点方位相同的点在第四象限内,其横坐标为2n﹣2,纵坐标为﹣2n﹣2√3,∵2019÷6=336…3,∴点A2019的方位与点A3的方位相同,在第二象限内,其横坐标为﹣2n﹣2=﹣22017,纵坐标为22017√3,故答案为:(﹣22017,22017√3).【点睛】本题主点的坐标的规律题,主要考查了解直角三角形的知识,关键是求出前面7个点的坐标,找出其存在的规律.【典例12】(2019•南充)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB =24,BC =5.给出下列结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积最大值为144;③当OD 最大时,点D 的坐标为(25√2626,125√2626).其中正确的结论是 ②③ .(填写序号)【点拨】①由条件可知AB =24,则AB 的中点E 的运动轨迹是圆弧,最后根据弧长公式即可计算出点E 所经过的路径长;②当△OAB 的面积最大时,因为AB =24,所以△OAB 为等腰直角三角形,即OA =OB ,可求出最大面积为144;③当O 、E 、D 三点共线时,OD 最大,过点D 作DF ⊥y 轴于点F ,可求出OD =25,证明△DF A ∽△AOB 和△DFO ∽△BOA ,可求出DF 长,则D 点坐标可求出. 【解答】解:∵点E 为AB 的中点,AB =24, ∴OE =12AB =12,∴AB 的中点E 的运动轨迹是以点O 为圆心,12为半径的一段圆弧, ∵∠AOB =90°, ∴点E 经过的路径长为90×12×π180=6π,故①错误;当△OAB 的面积最大时,因为AB =24,所以△OAB 为等腰直角三角形,即OA =OB , ∵E 为AB 的中点,∴OE ⊥AB ,OE =12AB =12,∴S △AOB =12×24×12=144,故②正确;如图,当O 、E 、D 三点共线时,OD 最大,过点D 作DF ⊥y 轴于点F ,∵AD =BC =5,AE =12AB =12, ∴DE =√AD 2+AE 2=√52+122=13, ∴OD =DE +OE =13+12=25, 设DF =x ,∴OF =√OD 2−DF 2=√252−x 2, ∵四边形ABCD 是矩形, ∴∠DAB =90°, ∴∠DF A =∠AOB , ∴∠DAF =∠ABO , ∴△DF A ∽△AOB ∴DF OA =DA AB ,∴x OA=524,∴OA =24x5, ∵E 为AB 的中点,∠AOB =90°, ∴AE =OE , ∴∠AOE =∠OAE , ∴△DFO ∽△BOA , ∴OD AB =OF OA,∴2524=√252−x 224x 5,解得x =25√2626,x =−25√2626舍去,∴OF=125√26 26,∴D(25√2626,125√2626).故③正确.故答案为:②③.【点睛】本题考查四边形综合题、直角形的性质、矩形的性质、相似三角形的判定和性质等知识.解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.【典例13】(2019•绵阳)如图,△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2√2.将△BDE绕点B逆时针方向旋转后得△BD′E′,当点E′恰好落在线段AD′上时,则CE′=√2+√6.【点拨】如图,连接CE′,根据等腰三角形的性质得到AB=BC=2√2,BD=BE=2,根据性质的性质得到D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,由全等三角形的性质得到∠D′=∠CE′B=45°,过B作BH⊥CE′于H,解直角三角形即可得到结论.【解答】解:如图,连接CE′,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2√2,∴AB=BC=2√2,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90°,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′H=√22BE′=√2,在Rt△BCH中,CH=√BC2−BH2=√6,∴CE′=√2+√6,故答案为:√2+√6.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.【典例14】(2019•宜宾)如图,△ABC 和△CDE 都是等边三角形,且点A 、C 、E 在同一直线上,AD 与BE 、BC 分别交于点F 、M ,BE 与CD 交于点N .下列结论正确的是 ①③④ (写出所有正确结论的序号).①AM =BN ;②△ABF ≌△DNF ;③∠FMC +∠FNC =180°;④1MN=1AC+1CE【点拨】①根据等边三角形性质得出AC =BC ,CE =CD ,∠ACB =∠ECD =60°,求出∠BCE =∠ACD ,根据SAS 推出两三角形全等即可;②根据∠ABC =60°=∠BCD ,求出AB ∥CD ,可推出△ABF ∽△DNF ,找不出全等的条件; ③根据角的关系可以求得∠AFB =60°,可求得MFN =120°,根据∠BCD =60°可解题; ④根据CM =CN ,∠MCN =60°,可求得∠CNM =60°,可判定MN ∥AE ,可求得MN AC=DN CD=CD−CN CD,可解题.【解答】证明:①∵△ABC 和△CDE 都是等边三角形, ∴AC =BC ,CE =CD ,∠ACB =∠ECD =60°, ∴∠ACB +∠ACE =∠ECD +∠ACE , 即∠BCE =∠ACD , 在△BCE 和△ACD 中, {BC =AC∠BCE =∠ACD CE =CD,∴△BCE ≌△ACD (SAS ),∴AD =BE ,∠ADC =∠BEC ,∠CAD =∠CBE , 在△DMC 和△ENC 中, {∠MDC =∠NEC DC =BC ∠MCD =∠NCE =60°, ∴△DMC ≌△ENC (ASA ), ∴DM =EN ,CM =CN ,∴AD ﹣DM =BE ﹣EN ,即AM =BN ; ②∵∠ABC =60°=∠BCD , ∴AB ∥CD , ∴∠BAF =∠CDF , ∵∠AFB =∠DFN ,∴△ABF ∽△DNF ,找不出全等的条件;③∵∠AFB +∠ABF +∠BAF =180°,∠FBC =∠CAF , ∴∠AFB +∠ABC +∠BAC =180°, ∴∠AFB =60°, ∴∠MFN =120°, ∵∠MCN =60°, ∴∠FMC +∠FNC =180°; ④∵CM =CN ,∠MCN =60°, ∴△MCN 是等边三角形, ∴∠MNC =60°, ∵∠DCE =60°, ∴MN ∥AE , ∴MN AC=DN CD=CD−CN CD,∵CD =CE ,MN =CN , ∴MN AC =CE−MN CE ,∴MNAC=1−MNCE ,两边同时除MN 得1AC=1MN−1CE,∴1MN=1AC+1CE.故答案为①③④【点睛】本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,考查了平行线的运用,考查了正三角形的判定,本题属于中档题.【典例15】(2019•资阳)如图,在△ABC 中,已知AC =3,BC =4,点D 为边AB 的中点,连结CD ,过点A 作AE ⊥CD 于点E ,将△ACE 沿直线AC 翻折到△ACE ′的位置.若CE ′∥AB ,则CE ′=95.【点拨】如图,作CH ⊥AB 于H .首先证明∠ACB =90°,解直角三角形求出AH ,再证明CE ′=AH 即可.【解答】解:如图,作CH ⊥AB 于H .由翻折可知:∠AE ′C =∠AEC =90°,∠ACE =∠ACE ′, ∵CE ′∥AB , ∴∠ACE ′=∠CAD , ∴∠ACD =∠CAD , ∴DC =DA , ∵AD =DB , ∴DC =DA =DB , ∴∠ACB =90°, ∴AB =√AC 2+BC 2=5, ∵12•AB •CH =12•AC •BC ,∴CH =125,∴AH =√AC 2−CH 2=95, ∵CE ′∥AB ,∴∠E ′CH +∠AHC =180°, ∵∠AHC =90°, ∴∠E ′CH =90°, ∴四边形AHCE ′是矩形, ∴CE ′=AH =95, 故答案为95.【点睛】本题考查翻折变换,平行线的性质等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,属于中考常考题型.【典例16】(2019•达州)如图,抛物线y =﹣x 2+2x +m +1(m 为常数)交y 轴于点A ,与x 轴的一个交点在2和3之间,顶点为B .①抛物线y =﹣x 2+2x +m +1与直线y =m +2有且只有一个交点;②若点M (﹣2,y 1)、点N (12,y 2)、点P (2,y 3)在该函数图象上,则y 1<y 2<y 3;③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为y =﹣(x +1)2+m ; ④点A 关于直线x =1的对称点为C ,点D 、E 分别在x 轴和y 轴上,当m =1时,四边形BCDE 周长的最小值为√34+√2.其中正确判断的序号是 ①③④ .【点拨】①把y =m +2代入y =﹣x 2+2x +m +1中,判断所得一元二次方程的根的情况便可得判断正确; ②根据二次函数的性质进行判断;③根据平移的公式求出平移后的解析式便可;④因BC 边一定,只要其他三边和最小便可,作点B 关于y 轴的对称点B ′,作C 点关于x 轴的对称点C′,连接B′C′,与x轴、y轴分别交于D、E点,求出B′C′便是其他三边和的最小值.【解答】解:①把y=m+2代入y=﹣x2+2x+m+1中,得x2﹣2x+1=0,∵△=4﹣4=0,∴此方程两个相等的实数根,则抛物线y=﹣x2+2x+m+1与直线y=m+2有且只有一个交点,故此小题结论正确;②∵抛物线的对称轴为x=1,∴点P(2,y3)关于x=1的对称点为P′(0,y3),∵a=﹣1<0,∴当x<1时,y随x增大而增大,又∵﹣2<0<12,点M(﹣2,y1)、点N(12,y2)、点P′(0,y3)在该函数图象上,∴y2>y3>y1,故此小题结论错误;③将该抛物线向左平移2个单位,再向下平移2个单位,抛物线的解析式为:y=﹣(x+2)2+2(x+2)x+m+1﹣2,即y=﹣(x+1)2+m,故此小题结论正确;④当m=1时,抛物线的解析式为:y=﹣x2+2x+2,∴A(0,2),C(2,2),B(1,3),作点B关于y轴的对称点B′(﹣1,3),作C点关于x轴的对称点C′(2,﹣2),连接B′C′,与x轴、y轴分别交于D、E点,如图,则BE+ED+CD+BC=B′E+ED+C′D+BC=B′C′+BC,根据两点之间线段最短,知B′C′最短,而BC的长度一定,∴此时,四边形BCDE周长=B′C′+BC最小,为:√B′M2+C′M2+√BM2+CM2=√32+52+√12+12=√34+√2,故此小题结论正确;故答案为:①③④.【点睛】本题考查二次函数的应用、二次函数的图象与性质、二次函数与坐标轴的交点、求线段和的最小值等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.【典例17】(2019•遂宁)如图,在平面直角坐标系中,矩形OABC的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段OA上一点,将△OCG沿CG翻折,O点恰好落在对角线AC上的点P处,反比例函数y=12x经过点B.二次函数y=ax2+bx+c(a≠0)的图象经过C(0,3)、G、A三点,则该二次函数的解析式为y=12x2−114x+3.(填一般式)【点拨】点C (0,3),反比例函数y =12x 经过点B ,则点B (4,3),由勾股定理得:(4﹣x )2=4+x 2,故点G (32,0),将点C 、G 、A 坐标代入二次函数表达式,即可求解.【解答】解:点C (0,3),反比例函数y =12x经过点B ,则点B (4,3), 则OC =3,OA =4, ∴AC =5,设OG =PG =x ,则GA =4﹣x ,P A =AC ﹣CP =AC ﹣OC =5﹣3=2, 由勾股定理得:(4﹣x )2=4+x 2, 解得:x =32,故点G (32,0),将点C 、G 、A 坐标代入二次函数表达式得:{c =394a +32b +c =014a +4b +c =0,解得:{ a =12b =−114c =3,故答案为:y =12x 2−114x +3.【点睛】本题考查的是二次函数综合运用,涉及到矩形基本性质、反比例函数基本性质与应用,其中用勾股定理求OG 的长度,是本题解题的关键.【典例18】(2018•凉山州)△AOC 在平面直角坐标系中的位置如图所示,OA =4,将△AOC 绕O 点,逆时针旋转90°得到△A 1OC 1,A 1C 1,交y 轴于B (0,2),若△C 1OB ∽△C 1A 1O ,则点C 1的坐标 (43,83) .【点拨】如图作C 1H ⊥x 轴于H .由△C 1OB ∽△C 1A 1O ,推出OC 1A 1C 1=OB OA 1=12,由tan ∠C 1A 1H =OBOA 1=C 1K A 1H =12,设C 1H =m ,则A 1H =2m ,OH =2m ﹣4,构建方程即可解决问题; 【解答】解:如图作C 1H ⊥x 轴于H .∵△C 1OB ∽△C 1A 1O , ∴OC 1A 1C 1=OB OA 1=12,∵tan ∠C 1A 1H =OBOA 1=C 1HA 1H =12,设C 1H =m ,则A 1H =2m ,OH =2m ﹣4,∴A 1C 1=√5m ,OC 1=√m 2+(2m −4)2, ∴√5m =2√m 2+(2m −4)2, 解得m =83或85(舍弃),∴C 1(43,83).(本题也可以证明tan ∠OC 1H =OH HC 1=12,S 设C 1(m ,2m ),根据A 1H =4m ,构建方程)【点睛】本题考查相似三角形的性质、坐标与图形的旋转等知识,解题的关键是学会利用参数构建方程解决问题,属于中考填空题中的压轴题.【精练1】(2019秋•河东区期末)如图,在反比例函数y =−6x (x <0)的图象上任取一点P ,过P 点分别作x 轴,y 轴的垂线,垂足分别为M ,N ,那么四边形PMON 的面积为 .【点拨】设出点P 的坐标,四边形PMON 的面积等于点P 的横纵坐标的积的绝对值,把相关数值代入即可.【解答】解:设点P 的坐标为(x ,y ),∵点P 的反比例函数解析式上, ∴xy =﹣6,易得四边形PMON 为矩形, ∴四边形PMON 的面积为|xy |=6, 故答案为6.【点睛】考查反比例函数的比例系数的意义;用到的知识点为:在反比例函数图象上的点的横纵坐标的积等于反比例函数的比例系数.注意面积应为正值.【精练2】(2016秋•江阴市校级月考)如图,正方形ABCD 的边长为1cm ,M 、N 分别是BC 、CD 上两个动点,且始终保持AM ⊥MN ,则△ADN 的最小面积为 .【点拨】设BM =xcm ,则MC =(1﹣x )cm ,当AM ⊥MN 时,利用互余关系可证△ABM ∽△MCN ,利用相似比求CN ,根据三角形的面积公式表示出△ADN 的面积,用二次函数的性质求面积的最小值. 【解答】解:设BM =xcm ,则MC =(1﹣x )cm , ∵∠AMN =90°,∴∠AMB +∠NMC =90°,∠NMC +∠MNC =90°, ∴∠AMB =∠MNC , 又∵∠B =∠C , ∴△ABM ∽△MCN ,则AB MC=BM CN,即11−x=x CN,解得:CN =x(1−x)1=x (1﹣x ), ∴S △ADN =S 正方形ABCD =12×1×[1﹣x (1﹣x )]=12x 2−12x +12, ∵12<0,∴当x =12cm 时,S △ADN 最小,最小值是4×12×12−(−12)24×12=38(cm 2).故答案是:38cm 2.【点睛】本题考查了二次函数的性质的运用.关键是根据已知条件判断相似三角形,利用相似比求函数关系式.【精练3】(2019秋•香坊区期末)等边△ABC 中,点P 是BC 所在直线上一点,且PC :BC =1:4,则tan ∠APB 的值是 .【点拨】过A 作AD ⊥BC 于D ,设等边△ABC 的边长为4a ,则DC =2a ,AD =2√3a ,PC =a ,分类讨论:当P 在BC 的延长线上时,DP =DC +CP =2a +a =3a ;当P 点在线段BC 上,即在P ′的位置,则DP ′=DC ﹣CP ′=a ,然后分别利用正切的定义求解即可. 【解答】解:如图,过A 作AD ⊥BC 于D ,设等边△ABC 的边长为4a ,则DC =2a ,AD =2√3a ,PC =a , 当P 在BC 的延长线上时,DP =DC +CP =2a +a =3a , 在Rt △ADP 中,tan ∠APD =AD DP =2√3a 3a =2√33; 当P 点在线段BC 上,即在P ′的位置,则DP ′=DC ﹣CP ′=a , 在Rt △ADP ′中,tan ∠AP ′D =AD DP′=2√3aa =2√3.故答案为2√3或2√33.【点睛】本题考查了解直角三角形:利用三角函数和勾股定理求三角形中未知的边或角的过程叫解直角三角形.也考查了分类讨论思想的运用.【精练4】(2019秋•长清区期中)如图,在△ABC 中,∠BAC =90°,AB =AC =√2,点D 、E 分别在BC 、AC 上(点D 不与点B 、C 重合),且∠ADE =45°,若△ADE 是等腰三角形,则CE = .【点拨】可得∠B =∠C =45°,可证得△DCE ∽△ABD ,由于D 与B 、C 不重合,显然∠ADE =∠AED=45°不符合题意,即AD≠AE,所以此题分两种情况讨论:①AD=DE,此时(2)的相似三角形全等,由此可求得CD、BD的长,进而可得CE、AE的值.【解答】解:∵点D不能与B点重合,∴AD=AE不能成立,(或:∵∠ADE=45°,若AD=AE,则∠AED=ADE=45°,从而∠DAE=90°,即B与D重合,这与已知条件矛盾).①当AE、DE为腰,即AE=DE时(如图1),∠EAD=∠EDA=45°,此时,AD平分∠BAC,∴D为BC边的中点(“三线合一”性质),且E也为AC边的中点,∴CE=AE=√2 2;②当AD、DE为腰,即AD=DE时(如图2),∵∠BAC=90°,AB=AC=2,∴∠B=∠C=45°.∵∠ADE=45°,∴∠B=∠C=∠ADE.∵∠ADB=∠C+∠DAC,∠DEC=∠ADE+∠DAC,∴∠ADB=∠DEC.∵∠ADC +∠B +∠BAD =180,∠DEC +∠C +∠CDE =180°, ∴∠ADC +∠B +∠BAD =∠DEC +∠C +∠CDE , ∴∠EDC =∠BAD , ∴△ABD ∽△DCE 此时AD 与DE 为对应边,∴△ABD ≌△DCE ,DC =AB =√2, CE =BD =BC ﹣CD =2−√2. 因此CE 的长为2−√2或√22. 故答案为:2−√2或√22. 【点睛】本题考查了相似三角形的判定与性质,等腰三角形的判定,解答时证明三角形相似是关键. 【精练5】(2019秋•江岸区校级月考)我们把函数y ={x 2−2x −3(x ≥0)x 2+2x −3(x ≤0)的图象记为C ,若直线y =x +b与图象C 有且只有三个公共点,则b 的取值是 .【点拨】画出分段函数的图象,结合图象找到直线与该图象有三个交点的两端情况:直线经过点(0,﹣3)时;直线y =x +b 与y =x 2+2x ﹣3(x ≤0)部分只有一个交点时. 【解答】解:根据函数解析式分别画出函数图象,如图所示: 当直线经过点(0,﹣3)时,此时函数与直线y =x +b 恰有三个交点, ∴b =﹣3,当直线y =x +b 与y =x 2+2x ﹣3(x ≤0)部分只有一个交点时, ∴x 2+2x ﹣3=x +b , ∴b =−134; ∴b =﹣3或b =−134时两图象有三个交点; 故答案为−134或﹣3.【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.【精练6】(2018秋•越秀区期末)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④6a﹣2b+c<0;⑤若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2,其中正确的判断是(填写所有正确判断的序号)【点拨】根据抛物线的开口方向,对称轴,抛物线与x轴的交点情况,二次函数图象上点的坐标特征判断即可.【解答】解:∵抛物线对称轴x=﹣1,经过(1,0),∴−b2a=−1,a+b+c=0,∴b=2a,c=﹣3a,∵抛物线开口向上,∴a>0,∴b>0,c<0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵抛物线与x轴交于(﹣3,0),∴9a﹣3b+c=0,故③正确;∵9a﹣3b+c=0,b=2a,c=﹣3a,∴6a﹣2b+c=6a﹣4a﹣3a=﹣a<0,故④正确;∵抛物线对称轴x=﹣1,∴x=﹣0.5与x=﹣1.5的函数值相等,∵﹣1.5>﹣2,∴则y1<y2;故⑤错误;故答案为:②③④.【点睛】本题考查二次函数与系数的关系,二次函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题,灵活运用数形结合思想.【精练7】(2019春•东海县期中)如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°,得到线段AQ,连接BQ,若P A=3,PB=4,PC=5,则四边形APBQ的面积为【点拨】连结PQ,如图,根据等边三角形的性质得∠BAC=60°,AB=AC,再根据旋转的性质得AP=AQ=3,∠P AQ=60°,则可判断△APQ为等边三角形,所以PQ=AP=3,接着证明△APC≌△ABQ得到PC=QB=5,然后利用勾股定理的逆定理证明△PBQ为直角三角形,再根据三角形面积公式,利用S=S△BPQ+S△APQ进行计算.四边形APBQ【解答】解:连结PQ,如图,∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵线段AP绕点A顺时针旋转60°得到线段AQ,∴AP=AQ=3,∠P AQ=60°,∴△APQ为等边三角形,∴PQ=AP=3,∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ,且AC=AB,AP=AQ∴△APC≌△ABQ(SAS),∴PC=QB=5,在△BPQ中,∵PB2=42=16,PQ2=32=9,BQ2=52=25,∴PB2+PQ2=BQ2,∴△PBQ为直角三角形,∠BPQ=90°,∴S四边形APBQ=S△BPQ+S△APQ=12BP×PQ+√34×PQ2=6+9√34故答案为:6+9√3 4【点睛】本题考查了旋转的性质,全等三角形的性质,勾股定理以及逆定理,证明△APQ为等边三角形是本题的关键.【精练8】(2019•吉林)如图,在扇形OAB中,∠AOB=90°.D,E分别是半径OA,OB上的点,以OD,OE为邻边的▱ODCE的顶点C在AB̂上.若OD=8,OE=6,则阴影部分图形的面积是(结果保留π).【点拨】连接OC,根据同样只统计得到▱ODCE是矩形,由矩形的性质得到∠ODC=90°.根据勾股定理得到OC=10,根据扇形的面积公式和矩形的面积公式即可得到结论.【解答】解:连接OC,∵∠AOB=90°,四边形ODCE是平行四边形,∴▱ODCE是矩形,∴∠ODC=90°.∵OD=8,OE=6,∴OC=10,∴阴影部分图形的面积=90⋅π×102360−8×6=25π﹣48.故答案为:25π﹣48.【点睛】本题考查了扇形的面积的计算,矩形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.【精练9】(2019•虞城县一模)如图1,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C停止,它们运动的速度都是1cm/s.设P、Q出发ts时,△BPQ的面积为ycm2,已知y与t的函数关系如图2所示(其中曲线OM为抛物线的一部分,其余各部分均为线段)当点P在ED上运动时,连接QD,若QD平分∠PQC,则t的值为.【点拨】根据题意和函数图象可以得到BE和BC的长,然后根据当t=5时,y=10可以得到AB的长,然后根据QD平分∠PQC,可得DG=DC,进而可以求得相应的t的值.【解答】解:由题意可得,BE =5,BC =12, ∵当t =5时,S =10, ∴10=5×AB2,得AB =4, 作EH ⊥BC 于点H ,作EF ∥PQ ,P 1Q 2∥EF ,作DG ⊥P 1Q 2于点G , 则EH =AB =4,BE =BF =5, ∵∠EHB =90°, ∴BH =√52−42=3, ∴HF =2,∴EF =√42+22=2√5, ∴P 1Q 2=2√5,设当点P 运动到P 1时,Q 2D 平分∠P 1Q 2C ,则DG =DC =4,P 1D =17﹣AE ﹣EP 1=12﹣3﹣(t ﹣5)=14﹣t , ∴(14−t)×42=2√5×42,解得,t =14﹣2√5, 故答案为:14﹣2√5.【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.【精练10】(2018秋•市中区期末)将正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2按如图所示方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,则点B 2019的横坐标是 .【点拨】根据直线y=x+1可求与x轴、y轴的交点坐标,得出第一个正方形的边长,得出点B1的横坐标,根据第二个正方形与第一个正方形的关系,可求出第二个正方形的边长,进而确定B2的横坐标,依此类推,可得出B2019的横坐标.【解答】解:当x=0时,y=x+1=1,∴A(0,1),当y=0时,x=﹣1,∴直线与x轴的交点(﹣1,0)∴B1(1,1),易得△A1B1A2、△A2B2A3、△A3B3A4、△A4B4A5……均是等腰直角三角形,可得:每一个正方形的边长都是它前一个正方形边长的2倍,因此:B2的横坐标为1+1×2=1+2=20+21=3=22﹣1,B3的横坐标为1+1×2+2×2=1+2+4=20+21+22=7=23﹣1,B4的横坐标为24﹣1,B5的横坐标为25﹣1,……B2019的横坐标为22019﹣1,故答案为:22019﹣1.【点睛】此题主要考查了一次函数图形上的点与坐标特征,规律型问题常用的方法是,分别求出前几个数据,然后依据变化规律,得出一般的结论.本题就是先求出B1的横坐标为21﹣1,B2的横坐标为22﹣1,B3的横坐标为23﹣1,B4的横坐标为24﹣1,……进而得到B n的横坐标为2n﹣1.【精练11】(2019•鄂尔多斯模拟)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),根据这个规律探索可得,第56个点的坐标为.【点拨】根据题意和图象中的点的坐标,可以发现这些点的变化规律,从而可以求得第56个点的坐标.【解答】解:由题意可得,横坐标是1的点有1个,横坐标是2的点有2个,横坐标是3的点有3个,…,∵56=(1+2+3+…+10)+1,∴第56个点的坐标为(11,10),故答案为:(11,10)【点睛】本题考查规律性:点的坐标,解答本题的关键是明确题意,发现题目中点的变化规律,求出相应的点的坐标.【精练12】(2019春•徐州期中)如图,在矩形ABCD中,AB=2cm,BC=3cm,现有一根长为2cm的棒EF紧贴着矩形的边(即两个端点始终落在矩形的边上),按逆时针方向滑动一周,则木棒EF的中点P 在运动过程中所经过的路径长度为cm.【点拨】根据题意可以判断出点P的运动轨迹是4段弧长和2段线段的长度.【解答】解:连接BP,如图所示:∵P是EF的中点,∴BP=12EF=12×2=1,如图所示,点P的运动轨迹是4段弧长+2段线段的长度,即4×90π×1180+2×1=2π+2.故答案为:2π+2.【点睛】本题考查了轨迹、矩形的性质、直角三角形斜边上的中线等于斜边的一半的性质以及弧长的计算.判断出点的P运动的轨迹是解题的关键.【精练13】(2018秋•雨花区校级期末)如图,在Rt△ABC中,∠ABC=90°,AB=BC,点D是AC的中点,直角∠EDF的两边分别交AB、BC于点E、F,给出以下结论:①AE=BF;②S四边形BEDF=12S△ABC;③EF=BD;④∠BFE=∠CDF;⑤△DEF是等腰直角三角形,当∠EDF在△ABC内绕顶点D旋转时(点E不与点A、B重合),上述结论始终成立的有个.。
中考数学分项解析2--压轴题(2017版)专题16:压轴题一、选择题1.(2017天津第12题)已知抛物线与轴相交于点(点在点左侧),顶点为.平移该抛物线,使点平移后的对应点落在轴上,点平移后的对应点落在轴上,则平移后的抛物线解析式为()A.B.C.D.【答案】A.2.(2017福建第10题)如图,网格纸上正方形小格的边长为1.图中线段和点绕着同一个点做相同的旋转,分别得到线段和点,则点所在的单位正方形区域是()A.1区B.2区C.3区D.4区【答案】D【解析】如图,根据题意可得旋转中心O,旋转角是90°,旋转方向为逆时针,因此可知点P的对应点落在了4区,故选D.3.(2017河南第10题)如图,将半径为2,圆心角为的扇形绕点逆时针旋转,点,的对应点分别为,,连接,则图中阴影部分的面积是()A.B.C.D.【答案】C.【解析】考点:扇形的面积计算.4.(2017湖南长沙第12题)如图,将正方形折叠,使顶点与边上的一点重合(不与端点重合),折痕交于点,交于点,边折叠后与边交于点,设正方形的周长为,的周长为,则的值为()A.B.C.D.随点位置的变化而变化【答案】B【解析】试题分析:设正方形ABCD的边长为2a,正方形的周长为m=8a,设CM=x,DE=y,则DM=2a-x,EM=2a-y,∵∠EMG=90°,∴∠DME+∠CMG=90°.∵∠DME+∠DEM=90°,∴∠DEM=∠CMG,又∵∠D=∠C=90°△DEM∽△CMG,∴,即∴CG=△CMG的周长为CM+CG+MG=在Rt△DEM中,DM2+DE2=EM2即(2a-x)2+y2=(2a-y)2整理得4ax-x2=4ay∴CM+MG+CG==n.所以故选:B.考点:1、正方形,2、相似三角形的判定与性质,3、勾股定理5.(2017广东广州第10题),函数与在同一直角坐标系中的大致图象可能是()【答案】D【解析】考点:二次函数与反比例函数的图像的判断.6.(2017山东临沂第14题)如图,在平面直角坐标系中,反比例函数()的图象与边长是6的正方形的两边,分别相交于,两点,的面积为10.若动点在轴上,则的最小值是()A.B.10C.D.【答案】C【解析】试题分析:由正方形OABC的边长为6可得M的坐标为(6,),N的坐标为(,6),因此可得BN=6-,BM=6-,然后根据△OMN的面积为10,可得,解得k=24,得到M (6,4)和N(4,6),作M关于x轴的对称点M′,连接NM′交x轴于P,则M′N的长=PM+PN的值最小,最后由AM=AM′=4,得到BM′=10,BN=2,根据勾股定理求得NM′=.故选:C考点:1、反比例函数与正方形,2、三点之间的最小值7.(2017山东青岛第8题)一次函数的图像经过点A(),B(2,2)两点,P为反比例函数图像上的一个动点,O为坐标原点,过P作y轴的垂线,垂足为C,则△PCO的面积为()A、2B、4C、8D、不确定【答案】【解析】试题分析:如下图,把点A(),B(2,2)代入得,即k=-2,b=-2所以反比例函数表达式为设P(m,n),则,即mn=4△PCO的面积为OCPC=mn=2考点:1、一次函数,2、反比例函数图像与性质8.(2017四川泸州第12题)已知抛物线+1具有如下性质:给抛物线上任意一点到定点的距离与到轴的距离相等,如图,点的坐标为,是抛物线上一动点,则周长的最小值是()A.B.C.D.【答案】C.9.(2017山东滨州第12题)在平面直角坐标系内,直线AB 垂直于x轴于点C(点C在原点的右侧),并分别与直线y=x和双曲线y=相交于点A、B,且AC+BC=4,则△OAB的面积为()A.2+3或2-3B.+1或-1C.2-3D.-1【答案】A.【解析】如图,分线段AB在双曲线和直线y=x交点的左右两侧两种情况,设点C的坐标为(m,0),则点A的坐标为(m,m),点B的坐标为(m,),因AC+BC=4,所以m+=4,解得m=2±,当m=2-时,即线段AB在双曲线和直线y=x交点的左侧,求得AC=2-,BC=2+,所以AB=(2+)-(2-)=2,即可求得△OAB的面积为;当m=2+时,即线段AB在双曲线和直线y=x交点的右侧,求得AC=2+,BC=2-,所以AB=(2+)-(2-)=2,即可求得△OAB的面积为,故选A.10.(2017山东日照第12题)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤【答案】C.考点:抛物线与x轴的交点;二次函数图象与系数的关系.11.(2017江苏宿迁第8题)如图,在中,,,.点在边上,从点向点移动,点在边上,从点向点移动,若点、均以的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接,则线段的最小值是A.B.C.D.【答案】C.【解析】试题分析:设运动时间为t秒,则AP=t,CQ=t,所以CP=6-t,根据勾股定理可得,即,所以,因t≤2,根据二次函数的性质可得当t=2时,的值最小为20,即可得线段的最小值是cm,故选C.12.(2017江苏苏州第10题)如图,在菱形中,,,是的中点.过点作,垂足为.将沿点到点的方向平移,得到.设、分别是、的中点,当点与点重合时,四边形的面积为A.B.C.D.【答案】A.【解析】试题分析:作在菱形中,,,是的中点是的中点,故答案选A.考点:平行四边形的面积,三角函数.13.(2017山东菏泽第8题)一次函数和反比例函数在同一个平面直角坐标系中的图象如图所示,则二次函数的图c象可能是()A.B.C.D.【答案】C.14.(2017浙江台州第10题)如图,矩形的四个顶点分别在菱形的四条边上,,将分别沿折叠,当重叠部分为菱形且面积是菱形面积的时,则为()A.B.2C.D.4【答案】A【解析】试题分析:依题可得阴影部分是菱形.设S菱形ABCD=16,BE=x.从而得出AB=4,阴影部分边长为4-2x.根据(4-2x)2=1求出x=或x=,从而得出.故选:A.考点:1、菱形的性质,2、翻折变换(折叠问题)15.(2017浙江金华第10题)如图,为了监控一不规则多边形艺术走廊内的活动情况,现已在两处各安装了一个监控探头(走廊内所用探头的观测区为圆心角最大可取到的扇形),图中的阴影部分是处监控探头观测到的区域,要使整个艺术走廊都能被监控到,还需要安装一个监控探头,则安装的位置是()A.处B.处C.处D.处【答案】D.【解析】试题分析:根据两点确定一条直线,观察可以摄像头应安装在点H的位置,故选D.16.(2017浙江湖州第10题)在每个小正方形的边长为的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换.例如,在的正方形网格图形中(如图1),从点经过一次跳马变换可以到达点,,,等处.现有的正方形网格图形(如图2),则从该正方形的顶点经过跳马变换到达与其相对的顶点,最少需要跳马变换的次数是()A.B.C.D.【答案】B考点:1、勾股定理,2、规律探索17.(2017浙江舟山第10题)下列关于函数的四个命题:①当时,有最小值10;②为任何实数,时的函数值大于时的函数值;③若,且是整数,当时,的整数值有个;④若函数图象过点和,则.其中真命题的序号是()A.①B.②C.③D.④【答案】C.【解析】试题分析:①错,理由:当x=时,y取得最小值;②错,理由:因为=3,即横坐标分别为x=3+n,x=3−n的两点的纵坐标相等,即它们的函数值相等;③对,理由:若n3,则当x=n时,y=n2−6n+101,当x=n+1时,y=(n+1)2−6(n+1)+10=n2−4n+5,则n2−4n+5-(n2−6n+10)=2n-5,因为当n为整数时,n2−6n+10也是整数,2n-5也是整数,n2−4n+5也是整数,故y有2n-5+1=2n-4个整数值;④错,理由:当x3时,y随x的增大而减小,所以当a3,b3时,因为y0y0+1,所以ab,故错误;故选C.考点:二次函数图象上点的坐标特征.二、填空题1.(2017北京第16题)下图是“作已知直角三角形的外接圆”的尺规作图过程已知:,求作的外接圆.作法:如图.(1)分别以点和点为圆心,大于的长为半径作弧,两弧相交于两点;(2)作直线,交于点;(3)以为圆心,为半径作.即为所求作的圆.请回答:该尺规作图的依据是.【答案】到线段两端点距离相等的点在线段的垂直平分线上;两点确定一条直线;垂直平分线的定义;90°的圆周角所对弦为直径.不在同一条直线上的三个点确定一个圆.(答案不唯一)【解析】找到外接圆的圆心和半径是解本题的关键,由题意得:圆心是线段AB的中点,半径是AB长的一半,所以只需作出AB的中垂线,找到交点O即可.考点:作图-基本作图;线段垂直平分线的性质2.(2017天津第18题)如图,在每个小正方形的边长为1的网格中,点均在格点上.(1)的长等于;(2)在的内部有一点,满足,请在如图所示的网格中,用无刻度的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明).【答案】(1);(2)详见解析.【解析】试题分析:(1)根据勾股定理即可求得AB=;(2)如图,AC与网络线相交,得点D、E,取格点F,连结FB并延长,与网格线相交,得点M、N,连结DN、EM,DN与EM相交于点P,点P即为所求.3.(2017福建第16题)已知矩形的四个顶点均在反比例函数的图象上,且点A的横坐标是2,则矩形的面积为.【答案】7.5【解析】因为双曲线既关于原点对称,又关于直线y=±x 对称,矩形既是轴对称图形又是中心对称图形,所以可知点C与点A关于原点对称,点A与点B关于直线y=x对称,由已知可得A(2,0.5),∴C(-2,-0.5)、B(0.5,2),从而可得D(-0.5,-2),继而可得S矩形ABCD=7.5.4.(2017河南第15题)如图,在中,,,,点,分别是边,上的动点,沿所在的直线折叠,使点的对应点始终落在边上.若为直角三角形,则的长为.【答案】1或.考点:折叠(翻折变换).5.(2017湖南长沙第18题)如图,点是函数与的图象在第一象限内的交点,,则的值为.【答案】考点:一次函数与反比例函数6.(2017广东广州第16题)如图9,平面直角坐标系中是原点,的顶点的坐标分别是,点把线段三等分,延长分别交于点,连接,则下列结论:①是的中点;②与相似;③四边形的面积是;④;其中正确的结论是.(填写所有正确结论的序号)【答案】①③【解析】试题分析:如图,分别过点A、B作于点N,轴于点M 在中,是线段AB的三等分点,是OA的中点,故①正确.不是菱形.故和不相似.则②错误;由①得,点G是AB的中点,是的中位线是OB的三等分点,解得:四边形是梯形则③正确,故④错误.综上:①③正确.考点:平行四边形和相似三角形的综合运用7.(2017山东临沂第19题)在平面直角坐标系中,如果点坐标为,向量可以用点的坐标表示为.已知:,,如果,那么与互相垂直.下列四组向量:①,;②,;③,;④,.其中互相垂直的是(填上所有正确答案的序号).【答案】①③④【解析】试题分析:根据向量垂直的定义:②因为2×(﹣1)+1×2=0,所以与互相垂直;③因为cos30°×1+tan45°sin60°=×1+1×=≠0,所以与不互相垂直;④因为(﹣)(+)+(﹣2)×=3﹣2﹣1=0,所以与互相垂直;④因为π0×2+2×(﹣1)=2﹣2=0,所以与互相垂直.综上所述,①③④互相垂直.故答案是:①③④.考点:1、平面向量,2、零指数幂,3、解直角三角形8.(2017四川泸州第16题)在中,已知和分别是边上的中线,且,垂足为,若,则线段的长为.【答案】4.【解析】试题分析:如图,由和分别是边上的中线,可得DE∥BC,且,因,,根据勾股定理可得DE=2,又因,可得BC=4,连结AO并延长AO交BC于点M,由和分别是边上的中线交于点M,可知AM也是△ABC的边BC上的中线,在Rt△BOC中,根据斜边的中线等于斜边的一半可得OM=BC=2,最后根据三角形重心的性质可得AO=2OM=4.9.(2017山东滨州第18题)观察下列各式:,……请利用你所得结论,化简代数式+++…+(n≥3且为整数),其结果为__________.【答案】.【解析】根据题目中所给的规律可得,原式====.10.(2017江苏宿迁第16题)如图,矩形的顶点在坐标原点,顶点、分别在、轴的正半轴上,顶点在反比例函数(为常数,,)的图象上,将矩形绕点按逆时针方向旋转得到矩形,若点的对应点恰好落在此反比例函数图象上,则的值是.【答案】.【解析】试题分析:设点A的坐标为(a,b),即可得OB=a,OC=b,已知矩形绕点按逆时针方向旋转得到矩形,可得点C、A、B’在一条直线上,点A、C’、B在一条直线上,AC’=a,AB’=b,所以点O’的坐标为)(a+b,b-a),根据反比例函数k的几何意义可得ab=(a+b)(b-a),即可得,解这个以b为未知数的一元二次方程得(舍去),所以所以.11.(2017辽宁沈阳第16题)如图,在矩形中,,将矩形绕点按顺时针方向旋转得到矩形,点落在矩形的边上,连接,则的长是.【答案】.【解析】考点:四边形与旋转的综合题.12.(2017山东日照第16题)如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则k的值为.【答案】1+.试题分析:过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,如图所示:则OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,在△AOM和△BAN中,,∴△AOM≌△BAN(AAS),∴AM=BN=,OM=AN=,∴OD=+,OD=BD=﹣,∴B(+,﹣),∴双曲线y=(x>0)同时经过点A和B,∴(+)(﹣)=k,整理得:k2﹣2k﹣4=0,解得:k=1±(负值舍去),∴k=1+.考点:反比例函数图象上点的坐标特征.13.(2017江苏苏州第18题)如图,在矩形中,将绕点按逆时针方向旋转一定角度后,的对应边交边于点.连接、,若,,,则(结果保留根号).【答案】.【解析】试题分析:连接AG,设DG=x,则在中,,则考点:旋转的性质,勾股定理.14.(2017山东菏泽第14题)如图,轴,垂足为,将绕点逆时针旋转到的位置,使点的对应点落在直线上,再将绕点逆时针旋转到的位置,使点的对应点落在直线上,依次进行下去若点的坐标是,则点的纵坐标为.【答案】【解析】15.(2017浙江金华第16题)在一空旷场地上设计一落地为矩形的小屋,.拴住小狗的长的绳子一端固定在点处,小狗在不能进人小屋内的条件下活动,其可以活动的区域面积为.(1)如图,若,则.(2)如图,现考虑在(1)中的矩形小屋的右侧以为边拓展一正区域,使之变成落地为五边的小屋,其它条件不变.则在的变化过程中,当取得最小值时,边长的长为.【答案】.【解析】试题分析:(1)在B点处是以点B为圆心,10为半径的个圆;在A处是以A为圆心,4为半径的个圆;在C处是以C为圆心,6为半径的个圆;所以S=;(2)设BC=x,则AB=10-x,=(-10x+250),当x=时,S最小,即BC=.16.(2017浙江湖州第16题)如图,在平面直角坐标系中,已知直线()分别交反比例函数和在第一象限的图象于点,,过点作轴于点,交的图象于点,连结.若是等腰三角形,则的值是.【答案】或【解析】试题分析:令B点坐标为(a,)或(a,ka),则C点的坐标为(a,),令A点的坐标为(b,kb)或(b,),可知BC=,ka=,kb=,可知,,然后可知BA=,然后由等腰三角形的性质,可列式为=,解得k=或.考点:反比例函数与k的几何意义17.(2017湖南湘潭第16题)阅读材料:设,,如果,则.根据该材料填空:已知,,且,则.【答案】6.【解析】试题分析:利用新定义设,,如果,则,2m=4×3,m=6. 18.(2017浙江台州第16题)如图,有一个边长不定的正方形,它的两个相对的顶点分别在边长为1的正六边形一组平行的对边上,另外两个顶点在正六边形内部(包括边界),则正方形边长的取值范围是.【答案】()【解析】试题分析:因为AC为对角线,故当AC最小时,正方形边长此时最小.①当A、C都在对边中点时(如下图所示位置时),显然AC取得最小值,∵正六边形的边长为1,∴AC=,∴a2+a2=AC2=.∴a==.②当正方形四个顶点都在正六边形的边上时,a最大(如下图所示).设A′(t,)时,正方形边长最大.∵OB′⊥OA′.∴B′(-,t)设直线MN解析式为:y=kx+b,M(-1,0),N(-,-)(如下图)∴.∴.∴直线MN的解析式为:y=(x+1),将B′(-,t)代入得:t=-.此时正方形边长为A′B′取最大.∴a==3-.故答案为:.考点:1、勾股定理,2、正多边形和圆,3、计算器—三角函数,4、解直角三角形三、解答题1.(2017北京第29题)在平面直角坐标系中的点和图形,给出如下的定义:若在图形上存在一点,使得两点间的距离小于或等于1,则称为图形的关联点.(1)当的半径为2时,①在点中,的关联点是_______________.②点在直线上,若为的关联点,求点的横坐标的取值范围.(2)的圆心在轴上,半径为2,直线与轴、轴交于点.若线段上的所有点都是的关联点,直接写出圆心的横坐标的取值范围【答案】(1)①,②-≤x≤-或≤x≤,(2)-2≤x≤1或2≤x≤2【解析】本题解析:(1),点与⊙的最小距离为,点与⊙的最小距离为1,点与⊙的最小距离为,∴⊙的关联点为和.②根据定义分析,可得当直线y=-x上的点P到原点的距离在1到3之间时符合题意;∴设点P的坐标为P(x,-x),当OP=1时,由距离公式可得,OP=,解得,当OP=3时,由距离公式可得,OP=,,解得,∴点的横坐标的取值范围为-≤x≤-或≤x≤(2)∵y=-x+1与轴、轴的交点分别为A、B两点,∴令y=0得,-x+1=0,解得x=1,令得x=0得,y=0,∴A(1,0),B(0,1),分析得:如图1,当圆过点A时,此时CA=3,∴点C坐标为,C(-2,0)如图2,当圆与小圆相切时,切点为D,∴CD=1,又∵直线AB所在的函数解析式为y=-x+1,∴直线AB与x轴形成的夹角是45°,∴RT△°ACD中,CA=,∴C点坐标为(1-,0)∴C点的横坐标的取值范围为;-2≤≤1-,如图3,当圆过点A时,AC=1,C点坐标为(2,0)如图4,当圆过点B时,连接BC,此时BC=3,在Rt△OCB中,由勾股定理得OC=,C点坐标为(2,0).∴C点的横坐标的取值范围为2≤≤2;∴综上所述点C的横坐标的取值范围为-≤≤-或≤≤.考点:切线,同心圆,一次函数,新定义.2.(2017天津第25题)已知抛物线(是常数)经过点. (1)求该抛物线的解析式和顶点坐标;(2)P(m,t)为抛物线上的一个动点,关于原点的对称点为.①当点落在该抛物线上时,求的值;②当点落在第二象限内,取得最小值时,求的值.【答案】(1),顶点的坐标为(1,-4);(2);(3). 【解析】试题解析:(1)∵抛物线经过点,∴0=1-b-3,解得b=-2.∴抛物线的解析式为,∵,∴顶点的坐标为(1,-4).(2)①由点P(m,t)在抛物线上,有.∵关于原点的对称点为,有P’(-m,-t).∴,即∴解得②由题意知,P’(-m,-t)在第二象限,∴-m0,-t0,即m0,t0.又抛物线的顶点的坐标为(1,-4),得-4≤t0.过点P’作P’H⊥x轴,H为垂足,有H(-m,0). 又,,则当点A和H不重合时,在Rt△P’AH中,当点A和H重合时,AH=0,,符合上式.∴,即记,则,∴当t=-时,y’取得最小值.把t=-代入,得解得由m0,可知不符合题意∴3.(2017福建第25题)已知直线与抛物线有一个公共点,且.(Ⅰ)求抛物线顶点的坐标(用含的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为.(ⅰ)若,求线段长度的取值范围;(ⅱ)求面积的最小值.【答案】(Ⅰ)抛物线顶点Q的坐标为(-,-);(Ⅱ)理由见解析;(Ⅲ)(i)5≤MN≤7.(ii)△QMN面积的最小值为. 【解析】试题分析:(Ⅰ)由抛物线过点M(1,0),可得b=-2a,将解析式y=ax2+ax+b=ax2+ax-2a配方得y=a(x+)2-,从而可得抛物线顶点Q的坐标为(-,-).(Ⅱ)由直线y=2x+m经过点M(1,0),可得m=-2.由y=2x-2、y=ax2+ax-2a,可得ax2+(a-2)x-2a+2=0,(*),由根的判别式可得方程(*)有两个不相等的实数根,从而可得直线与抛物线有两个交点.(Ⅲ)由y=2x-2、y=ax2+ax-2a,可得点N(-2,-6). (i)根据勾股定理得,MN2=20()2,再由-1≤a≤-,可得-2≤≤-1,从而可得0,继而可得MN=3,从而可得MN的取值范围.(ii)作直线x=-交直线y=2x-2于点E,得E(-,-3),从而可得△QMN的面积S=S△QEN+S△QEM=,即27a2+(8S-54)a+24=0,(*)因为关于a的方程(*)有实数根,从而可和S≥,继而得到面积的最小值.(Ⅲ)把y=2x-2代入y=ax2+ax-2a,得ax2+(a-2)x-2a+2=0,即x2+(1-)x-2+=0,所以(x-1)(x+2-)=0,解得x1=1,x2=-2,所以点N(-2,-6).(i)根据勾股定理得,MN2=[(-2)-1]2+(-6)2=20()2,因为-1≤a≤-,由反比例函数性质知-2≤≤-1,所以0,所以MN=2()=3,所以5≤MN≤7.(ii)作直线x=-交直线y=2x-2于点E,把x=-代入y=2x-2得,y=-3,即E(-,-3),又因为M(1,0),N(-2,-6),且由(Ⅱ)知a0,所以△QMN的面积S=S△QEN+S△QEM==,即27a2+(8S-54)a+24=0,(*)因为关于a的方程(*)有实数根,所以△=(8S-54)2-4×27×24≥0,即(8S-54)2≥(36)2,又因为a0,所以S=,所以8S-540,所以8S-540,所以8S-54≥36,即S≥,当S=时,由方程(*)可得a=-满足题意.故当a=-,b=时,△QMN面积的最小值为.4.(2017河南第23题)如图,直线与轴交于点,与轴交于点,抛物线经过点,.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一个动点,过点M垂直于x轴的直线与直线AB和抛物线分别交于点P、N,①点在线段上运动,若以,,为顶点的三角形与相似,求点的坐标;②点在轴上自由运动,若三个点,,中恰有一点是其它两点所连线段的中点(三点重合除外),则称,,三点为“共谐点”.请直接写出使得,,三点成为“共谐点”的的值.【答案】(1)B(0,2),;(2)①点M的坐标为(,0)或M(,0);②m=-1或m=或m=.【解析】试题分析:(1)把点代入求得c值,即可得点B的坐标;抛物线经过点,即可求得b值,从而求得抛物线的解析式;(2)由轴,M(m,0),可得N(),①分∠NBP=90°和∠BNP=90°两种情况求点M的坐标;②分N为PM的中点、P为NM的中点、M为PN的中点3种情况求m的值. 试题解析:(1)直线与轴交于点,∴,解得c=2∴B(0,2),∵抛物线经过点,∴,∴b=∴抛物线的解析式为;(2)∵轴,M(m,0),∴N()①有(1)知直线AB的解析式为,OA=3,OB=2∵在△APM中和△BPN中,∠APM=∠BPN,∠AMP=90°,若使△APM中和△BPN相似,则必须∠NBP=90°或∠BNP=90°,分两种情况讨论如下:(I)当∠NBP=90°时,过点N作NC轴于点C,则∠NBC+∠BNC=90°,NC=m,BC=∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠BNC=∠ABO,∴Rt△NCB∽Rt△BOA∴,即,解得m=0(舍去)或m=∴M(,0);(II)当∠BNP=90°时,BNMN,∴点N的纵坐标为2,∴解得m=0(舍去)或m=∴M(,0);综上,点M的坐标为(,0)或M(,0);②m=-1或m=或m=.考点:二次函数综合题.5.(2017广东广州第25题)如图14,是的直径,,连接.(1)求证:;(2)若直线为的切线,是切点,在直线上取一点,使所在的直线与所在的直线相交于点,连接.①试探究与之间的数量关系,并证明你的结论;②是否为定值?若是,请求出这个定值;若不是,请说明理由.【答案】(1)详见解析;(2)①②【解析】试题分析:(1)直径所对的圆周角是圆心角的一半,等弧所对的圆周角是圆心角的一半;(2)①等角对等边;②试题解析:(1)证明:如图,连接BC.是的直径,(2)①如图所示,作于F由(1)可得,为等腰直角三角形.是的中点.为等腰直角三角形.又是的切线,四边形为矩形②当为钝角时,如图所示,同样,(3)当D在C左侧时,由(2)知,,在中,当D在C右侧时,过E作于由(2)得,在中,考点:圆的相关知识的综合运用6.(2017湖南长沙第26题)如图,抛物线与x轴交于A,B 两点(点B在点A左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接OD、BD、AC、AD,延长AD交y轴于点E。
专题16 压轴题一、选择题1.(2017贵州遵义第12题)如图,△ABC中,E是BC中点,AD是∠BAC的平分线,EF∥AD交AC于F.若AB=11,AC=15,则FC的长为()A.11 B.12 C.13 D.14【答案】C.考点:平行线的性质;角平分线的性质.2. (2017湖南株洲第10题)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF 中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()2A .5B .4C .2D .2【答案】D.考点:旋转的性质;平行线的判定与性质;等腰直角三角形.3. (2017湖北咸宁第8题)在平面直接坐标系xOy 中,将一块含义45角的直角三角板如图放置,直角顶点C 的坐标为)0,1(,顶点A 的坐标为)2,0(,顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此点C 的对应点C 的坐标为()A .)0,23( B .)0,2( C. )0,25( D .)0,3( 【答案】C.将B(3,1)代入y=kx,∴k=3,∴y=3x,∴把y=2代入y=3x,∴x=32,当顶点A恰好落在该双曲线上时,此时点A移动了32个单位长度,∴C也移动了32个单位长度,此时点C的对应点C′的坐标为(52,0)故选C.4考点:反比例函数图象上点的坐标特征;坐标与图形变化﹣平移.4. (2017湖南常德第8题)如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加,其和是定值,则方阵中第三行三列的“数”是( )2sin60°﹣sin45°((A .5B .6C .7D .8 【答案】C .考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.5. (2017广西百色第12题)关于x 的不等式组0230x a x a -≤⎧⎨+>⎩的解集中至少有5个整数解,则正数a 的最小值是( )A .3B .2 C. 1 D .23【答案】B 【解析】 试题分析:0230x a x a -≤⎧⎨+>⎩①②,解①得x ≤a , 解②得x >﹣32a . 则不等式组的解集是﹣32a <x ≤a . ∵不等式至少有5个整数解,则a 的范围是a ≥2. a 的最小值是2. 故选B .考点:一元一次不等式组的整数解.6. (2017黑龙江齐齐哈尔第10题)如图,抛物线2y ax bx c =++(0a ≠)的对称轴为直线2x =-,与x 轴的一个交点在(3,0)-和(4,0)-之间,其部分图象如图所示,则下列结论:①40a b -=;②0c <;③30a c -+>;④242a b at bt ->+(t 为实数);⑤点19(,)2y -,25(,)2y -,31(,)2y -是该抛物线上的点,则123y y y <<,正确的个数有( )A .4个B .3个C .2个D .1个【答案】B6故选B .考点:1.二次函数图象与系数的关系;2.二次函数的性质;3.二次函数图象上点的坐标特征;4.抛物线与x 轴的交点.7. (2017黑龙江绥化第10题)如图,在ABCD Y 中, ,AC BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知4AEF S ∆=,则下列结论: ①12AF FD =,②36BCE S ∆=,③12ABE S ∆=,④AFE ∆∽ACD ∆,其中正确的是( )A .①②③④B .①④C . ②③④D .①②③ 【答案】D考点:1.相似三角形的判定与性质;2.平行四边形的性质.8. (2017湖北孝感第10题)如图,六边形ABCDEF 的内角都相等,60,DAB AB DE ∠==,则下列结论成立的个数是①AB DE;②E F A D B C;③A F C D=;④四边形ACDF是平行四边形;⑤六边形ABCDEF即是中心对称图形,又是轴对称图形()A.2 B.3 C.4 D.5【答案】考点:1.平行四边形的判定和性质;2.平行线的判定和性质;3.轴对称图形;4.中心对称图形.9. (2017内蒙古呼和浩特第10题)函数21||xyx+=的大致图象是()8A.B.C.D.【答案】B考点:函数的图象.10. (2017青海西宁第10题)如图,在正方形ABCD 中,3AB cm =,动点M 自A 点出发沿AB 方向以每秒1cm 的速度运动,同时动点N 自D 点出发沿折线DC CB -以每秒2cm 的速度运动,到达B 点时运动同时停止,设AMN ∆的面积为()2y cm ,运动时间为x (秒),则下列图象中能大致反映y 与x 之间的函数关系的是( )A .B . C. D .【答案】A【解析】试题分析:∵点N自D点出发沿折线DC﹣CB以每秒2cm的速度运动,到达B点时运动同时停止,∴N到C的时间为:t=3÷2=1.5,分两部分:①当0≤x≤1.5时,如图1,此时N在DC上,S△AMN=y=12AM•AD=12x×3=32x,②当1.5<x≤3时,如图2,此时N在BC上,∴DC+CN=2x,∴BN=6﹣2x,∴S△AMN=y=12AM•BN=12x(6﹣2x)=﹣x2+3x,故选A.考点:动点问题的函数图象.11. (2017海南第14题)如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数kyx在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16 【答案】C.考点:反比例函数的性质.1012. (2017河池第12题)已知等边ABC ∆的边长为12,D 是AB 上的动点,过D 作AC DE ⊥于点E ,过E 作BC EF ⊥于点F ,过F 作AB FG ⊥于点G .当G 与D 重合时,AD 的长是() A .3 B .4 C. 8 D .9 【答案】B.考点:等边三角形的性质;含30度角的直角三角形.13. (2017贵州六盘水第12题)三角形的两边,a b 的夹角为60°且满足方程23240x x -+=,则第三边长的长是( ) 6B.22C.23D.32【答案】试题分析:解方程23240x -+=可a=22,2b =,如图所示,在Rt △ACD 中,2×cos60°=22,2-22=322,2×sin60°=62,所以226AB AD BD =+==,故选A.考点:一元二次方程;勾股定理.14. (2017新疆乌鲁木齐第10题)如图,点()(),3,,1A a B b 都在双曲线3y x=上,点,C D ,分别是x 轴,y 轴上的动点,则四边形ABCD 周长的最小值为( )A .. C. .【答案】B .12故选B .考点:反比例函数图象上点的坐标特征;轴对称﹣最短路线问题.二、填空题1. (2017贵州遵义第18题)如图,点E ,F 在函数y=2x的图象上,直线EF 分别与x 轴、y 轴交于点A 、B ,且BE :BF=1:3,则△EOF 的面积是 .【答案】83.考点:反比例函数系数k 的几何意义.2. (2017湖南株洲第18题)如图示二次函数y=ax 2+bx+c 的对称轴在y 轴的右侧,其图象与x 轴交于点A (﹣1,0)与点C (x 2,0),且与y 轴交于点B (0,﹣2),小强得到以下结论:①0<a <2;②﹣1<b <0;③c=﹣1;④当|a|=|b|时x 21;以上结论中正确结论的序号为 .【答案】①④.考点:抛物线与x 轴的交点;二次函数图象与系数的关系.3. (2017郴州第16题)已知12345357911,,,,,25101726a a a a a =-==-==- ,则8a = .14 【答案】1765. 【解析】 试题分析:由题意给出的5个数可知:a n =221(1)1nn n +-+ ,所以当n=8时,a 8=1765. 考点:数字规律问题.4. (2017湖北咸宁第16题)如图,在ACB Rt ∆中, 30,2=∠=BAC BC ,斜边AB 的两个端点分别在相互垂直的射线ON OM ,上滑动,下列结论:①若O C 、两点关于AB 对称,则32=OA ;②O C 、两点距离的最大值为4;③若AB 平分CO ,则CO AB ⊥;④斜边AB 的中点D 运动路径的长为2π.其中正确的是 .【答案】①②③.考点:三角形综合题.5. (2017湖南常德第16题)如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(2,2),A2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,则k的值为.【答案】12n .【解析】16试题分析:∵A 1(0,0),A 2(4,0),A 3(8,0),A 4(12,0),…,∴A n (4n ﹣4,0).∵直线y =kx +2与此折线恰有2n (n ≥1,且为整数)个交点,∴点A n +1(4n ,0)在直线y =kx +2上,∴0=4nk +2,解得:k =12n -.故答案为:12n-. 考点:一次函数图象上点的坐标特征;坐标与图形变化﹣平移;规律型;综合题.6. (2017广西百色第18题)阅读理解:用“十字相乘法”分解因式223x x --的方法.(1)二次项系数212=⨯;(2)常数项 3131(3)-=-⨯=⨯-验算:“交叉相乘之和”;132(1)1⨯+⨯-= 1(1)235⨯-+⨯= 1(3)211⨯-+⨯=- 112(3)5⨯+⨯-=-(3)发现第③个“交叉相乘之和”的结果1(3)211⨯-+⨯=-,等于一次项系数-1,即22(1)(23)232323x x x x x x x +-=-+-=--,则223(1)(23)x x x x --=+-.像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:23512x x +-= .【答案】(x+3)(3x ﹣4).考点:因式分解﹣十字相乘法.7. (2017哈尔滨第20题)如图,在矩形ABCD 中,M 为BC 边上一点,连接AM ,过点D 作DE AM ^,垂足为E ,若1DE DC ==,2AE EM =,则BM 的长为.考点:1.矩形的性质;2.全等三角形的判定与性质.8. (2017黑龙江齐齐哈尔第19题)如图,在平面直角坐标系中,等腰直角三角形12OA A 的直角边1OA 在y 轴的正半轴上,且1121OA A A ==,以2OA 为直角边作第二个等腰直角三角形23OA A ,以3OA 为直角边作第三个等腰直角三角形20172018OA A ,则点2017A 的坐标为 .18 【答案】(0,)2016)或(0,21008).考点:规律型:点的坐标.9. (2017黑龙江绥化第21题)如图,顺次连接腰长为2 的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n 个小三角形的面积为 .【答案】2n-112【解析】试题分析:记原来三角形的面积为s ,第一个小三角形的面积为s 1,第二个小三角形的面积为s 2,…,∵s 1=14 •s=212•s, s 2=14•14s=412•s, s 3=612•s, ……∴s n =2n 12•s=2n 12•12•2•2=2n-112.考点:1.三角形中位线定理;2.等腰直角三角形.10. (2017湖北孝感第16题)如图,在平面直角坐标系中,,90OA AB OAB =∠=,反比例函数()0k y x x=>的图象经过,A B 两点,若点A 的坐标为(),1n ,则k 的值为 .【答案】12考点:1.全等三角形的判定与性质;2.反比例函数图象上点的坐标特征;3.解方程.11. (2017内蒙古呼和浩特第16题)我国魏晋时期数学家刘徽首创“割圆术”计算圆周率.随着时代发展,现在人们依据频率估计概率这一原理,常用随机模拟的方法对圆周率π进行估计.用计算机随机产生m 个20 有序对(,)x y (x ,y 是实数,且01x ≤≤,01y ≤≤),它们对应的点在平面直角坐标系中全部在某一个正方形的边界及其内部,如果统计出这些点中到原点的距离小于或等于1的点有n 个,则据此可估计π的值为 .(用含m ,n 的式子表示) 【答案】4nm【解析】试题分析:根据题意,点的分布如图所示:则有14=1n m π ,∴π=4nm .考点:1.利用频率估计概率;2.规律型:点的坐标.12. (2017青海西宁第20题)如图,将ABCD 沿EF 对折,使点A 落在点C 处,若060,4,6A AD AB ∠===,则AE 的长为___. 【答案】285解得:x=AE=28 5考点: 1.翻折变换(折叠问题);2.平行四边形的性质.13. (2017上海第18题)我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6= .【答案】222考点:1.正多边形与圆;2.等边三角形的性质;3.锐角三角函数14. (2017湖南张家界第14题)如图,在正方形ABCD 中,AD =23BC 绕点B 逆时针旋转30°得到线段BP ,连接AP 并延长交CD 于点E ,连接PC ,则三角形PCE 的面积为 .【答案】953考点:旋转的性质;正方形的性质;综合题.15. (2017海南第18题)如图,AB 是⊙O 的弦,AB=5,点C 是⊙O 上的一个动点,且∠ACB=45°,若点M 、N 分别是AB 、AC 的中点,则MN 长的最大值是 .【答案】2. 【解析】试题分析:根据中位线定理得到MN 的最大时,BC 最大,当BC 最大时是直径,从而求得直径后就可以求得最大值.如图,∵点M ,N 分别是AB ,AC 的中点,∴MN=12BC , ∴当BC 取得最大值时,MN 就取得最大值,当BC 是直径时,BC 最大, 连接BO 并延长交⊙O 于点C′,连接AC′, ∵BC′是⊙O 的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′=sin 45AB24∴MN 最大.考点:三角形的中位线定理,等腰直角三角形的性质,圆周角定理,解直角三角形. 16. (2017河池第18题)如图,在矩形ABCD 中,2=AB ,E 是BC 的中点,BD AE ⊥于点F ,则CF 的长是 .2∵E 是BC 的中点,∴AD=2BE ,∴2BE 2=AB 2=2,∴BE=1,∴BC=2, ∴223AB BE +=,226BC CD +=BF=6AB BE AE ⋅=, 过F 作FG ⊥BC 于G ,∴FG ∥CD ,∴△BFG ∽△BDC , ∴FG BF BG CD BD BC ==,∴2,BG=23,∴CG=43,∴222FG CG +考点:勾股定理;矩形的性质,相似三角形的判定与性质.17. (2017贵州六盘水第20题)计算1491625+++++…的前29项的和是.【答案】8555.考点:数列.18. (2017新疆乌鲁木齐第15题)如图,抛物线2y ax bx c =++过点()1,0-,且对称轴为直线1x =,有下列结论:①0abc <;②1030a b c ++>;③抛物线经过点()14,y 与点()23,y -,则12y y >;④无论,,a b c 取何值,抛物线都经过同一个点,0c a ⎛⎫-⎪⎝⎭;⑤20am bm a ++≥,其中所有正确的结论是 .【答案】②④⑤. 【解析】26即无论a ,b ,c 取何值,抛物线都经过同一个点(﹣ca,0),故④正确; x=m 对应的函数值为y=am 2+bm+c , x=1对应的函数值为y=a+b+c , 又∵x=1时函数取得最小值, ∴am 2+bm+c ≥a+b+c ,即am 2+bm ≥a+b , ∵b=﹣2a ,∴am 2+bm+a ≥0,故⑤正确; 故答案为:②④⑤.考点:二次函数图象与系数的关系. 三、解答题1. (2017贵州遵义第26题)边长为2的正方形ABCD 中,P 是对角线AC 上的一个动点(点P 与A 、C 不重合),连接BP ,将BP 绕点B 顺时针旋转90°到BQ ,连接QP ,QP 与BC 交于点E ,QP 延长线与AD (或AD 延长线)交于点F . (1)连接CQ ,证明:CQ=AP ;(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE=38 BC;(3)猜想PF与EQ的数量关系,并证明你的结论.【答案】(1)证明见解析;(2)当x=3或1时,CE=38BC;(3). 结论:PF=EQ,理由见解析.(2)解:如图1,∵四边形ABCD是正方形,∴∠BAC=12∠BAD=45°,∠BCA=12∠BCD=45°,∴∠APB+∠ABP=180°﹣45°=135°,,由勾股定理得:4 =,∵AP=x,∴PC=4﹣x,∵△PBQ是等腰直角三角形,∴∠BPQ=45°,∴∠APB+∠CPQ=180°﹣45°=135°,∴∠CPQ=∠ABP,∵∠BAC=∠ACB=45°,∴△APB∽△CEP,∴AP AB CE CP=,∴224xy x=-22x(4﹣x)=﹣2224x x+(0<x<4),由CE=38BC=33228⨯=22322x+=x2﹣4x=3=0,(x﹣3)(x﹣1)=0,x=3或1,∴当x=3或1时,CE=38 BC;28考点:四边形综合题.2. (2017贵州遵义第27题)如图,抛物线y=ax2+bx﹣a﹣b(a<0,a、b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为y=89x+163.(1)求该抛物线的函数关系式与C点坐标;(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E 两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,NPNB始终保持不变,若存在,试求出P点坐标;若不存在,请说明理由;ii:试求出此旋转过程中,(NA+34NB)的最小值.【答案】(1)抛物线的函数关系式为:y=﹣89x2﹣409x+163,C(1,0);(2)当m=﹣4时,△BDE恰好是以DE为底边的等腰三角形;(3). 存在,理由见解析;(NA+34 NB=(2)∵点M(m,0),过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,∴D(m,89m+163),当DE为底时,作BG⊥DE于G,则EG=GD=12ED,GM=OB=163,∴89m+163+12(﹣89m2﹣409+163+89m+163)=163,解得:m1=﹣4,m2=9(不合题意,舍去),30考点:二次函数综合题.3. (2017湖南株洲第26题)已知二次函数y=﹣x2+bx+c+1,①当b=1时,求这个二次函数的对称轴的方程;②若c=14b2﹣2b,问:b为何值时,二次函数的图象与x轴相切?③若二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<x2,与y轴的正半轴交于点M,以AB为直径的半圆恰好过点M,二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足13 DEEF,求二次函数的表达式.【答案】①.二次函数的对称轴的方程为x=12;②.b为2或22时,二次函数的图象与x轴相切;③. 二次函数的表达式为y=﹣x2+32x+1.3234∵二次函数的对称轴l 与x 轴、直线BM 、直线AM 分别交于点D 、E 、F ,且满足13DE EF =, ∴AD=BD ,DF=4DE ,DF ∥OM ,∴△BDE ∽△BOM ,△AOM ∽△ADF , ∴,DE BD OM OA OM OB DF AD ==,∴DE=BD OB ,DF=AD OA ,∴AD BD OA OB=×4,∴OB=4OA ,即x 2=﹣4x 1, ∵x 1•x 2=﹣(c+1)=﹣1,∴122114x x x x ⋅=-⎧⎨=-⎩,解得:12122x x ⎧=-⎪⎨⎪=⎩,∴b=﹣12+2=32, ∴二次函数的表达式为y=﹣x 2+32x+1. 考点:二次函数综合题;二次函数的性质. 4. (2017内蒙古通辽第26题)在平面直角坐标系xOy 中,抛物线22++=bx ax y 过点)0,2(-A ,,与y轴交于点C .(1)求抛物线22++=bx ax y 的函数表达式;(2)若点D 在抛物线22++=bx ax y 的对称轴上,求ACD ∆的周长的最小值;(3)在抛物线22++=bx ax y 的对称轴上是否存在点P ,使ACP ∆是直角三角形?若存在,直接写出点P 的坐标,若不存在,请说明理由.【答案】(1)y=﹣14x 2+12x+2(2)△ACD 的周长的最小值是(3)存在,点P 的坐标为(1,1)或(1,﹣3)36(3)存在,分两种情况:①当∠ACP=90°时,△ACP是直角三角形,如图2,过P作PD⊥y轴于D,设P(1,y),38则△PEA ∽△AOC , ∴AE PE OC AO= , ∴322PE =, ∴PE=3,∴P (1,﹣3);综上所述,△ACP 是直角三角形时,点P 的坐标为(1,1)或(1,﹣3).考点:二次函数综合题5. (2017郴州第25题) 如图,已知抛物线285y ax x c =++与x 轴交于,A B 两点,与y 轴交于C 点,且(2,0),(0,4)A C -,直线1:42l y x =--与x 轴交于D 点,点P 是抛物线285y ax x c =++上的一动点,过点P 作PE x ⊥轴,垂足为E ,交直线l 于点F .(1)试求该抛物线的表达式;(2)如图(1),若点P 在第三象限,四边形PCOF 是平行四边形,求P 点的坐标;(3)如图(2),过点P 作PH x ⊥轴,垂足为H ,连接AC ,①求证:ACD ∆是直角三角形;②试问当P 点横坐标为何值时,使得以点,,P C H 为顶点的三角形与ACD ∆相似?【答案】(1)y=15x 2+85x ﹣4;(2)点P 的坐标为(﹣52,﹣274)或(﹣8,﹣4);(3)①详见解析;②,点P 的横坐标为﹣5.5或﹣10.5或2或﹣18时,使得以点P 、C 、H 为顶点的三角形与△ACD 相似.40②由①得∠ACD=90°.当△ACD ∽△CHP 时,AC CH CD HP =218255545n n n --=- 218255545n n n +=-, 解得:n=0(舍去)或n=﹣5.5或n=﹣10.5.当△ACD ∽△PHC 时,AC PH CD CH =25184555n n n -=--225184555n n n -=+. 解得:n=0(舍去)或n=2或n=﹣18.综上所述,点P 的横坐标为﹣5.5或﹣10.5或2或﹣18时,使得以点P 、C 、H 为顶点的三角形与△ACD 相似.考点:二次函数综合题.6. (2017郴州第26题)如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1/cm s 的速度运动,当D 不与点A 重合是,将ACD ∆绕点C 逆时针方向旋转060得到BCE ∆,连接DE .(1)求证:CDE ∆是等边三角形;(2)当610t <<时,的BDE ∆周长是否存在最小值?若存在,求出BDE ∆的最小周长; 若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以,,D E B 为顶点的三角形是直角三角形? 若存在,求出此时t 的值;若不存在,请说明理由.【答案】(1)详见解析;(2)存在,;(3)当t=2或14s 时,以D 、E 、B 为顶点的三角形是直角三角形.42②当0≤t <6时,由旋转可知,∠ABE=60°,∠BDE <60°, ∴∠BED=90°,由(1)可知,△CDE 是等边三角形, ∴∠DEB=60°, ∴∠CEB=30°, ∵∠CEB=∠CDA , ∴∠CDA=30°, ∵∠CAB=60°, ∴∠ACD=∠ADC=30°, ∴DA=CA=4,∴OD=OA ﹣DA=6﹣4=2, ∴t=2÷1=2s ;③当6<t <10s 时,由∠DBE=120°>90°, ∴此时不存在;④当t >10s 时,由旋转的性质可知,∠DBE=60°, 又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC , 而∠BDC >0°,考点:旋转与三角形的综合题.7. (2017湖北咸宁第24题)如图,抛物线c bx x y ++=221与x 轴交于B A 、两点,与y 轴交于点C ,其对称轴交抛物线于点D ,交x 轴于点E ,已知6==OC OB .⑴求抛物线的解析式及点D 的坐标;⑵连接F BD ,为抛物线上一动点,当EDB FAB ∠=∠时,求点F 的坐标;⑶平行于x 轴的直线交抛物线于N M ,两点,以线段MN 为对角线作菱形MPNQ ,当点P 在x 轴上,且MN PQ 21=时,求菱形对角线MN 的长. 【答案】(1)y=12x 2﹣2x ﹣6,D (2,﹣8);(2)F 点的坐标为(7,92)或(5,﹣72);(3)菱形对角线MN 1.试题分析:(1)由条件可求得B 、C 坐标,利用待定系数法可求得抛物线解析式,进一步可求得D 点坐标;(2)过F 作FG ⊥x 轴于点G ,可设出F 点坐标,利用△FAG ∽△BDE ,由相似三角形的性质可得到关于F 点坐标的方程,可求得F 点的坐标;(3)可求得P 点坐标,设T 为菱形对角线的交点,设出PT 的长为n ,从而可表示出M 点的坐标,代入抛物线解析式可得到n 的方程,可求得n 的值,从而可求得MN 的长. 试题解析:44设F (x ,12x 2﹣2x ﹣6),则FG=|12x 2﹣2x ﹣6|, 在y=12x 2﹣2x ﹣6中,令y=0可得12x 2﹣2x ﹣6=0,解得x=﹣2或x=6,∴A (﹣2,0), ∴OA=2,则AG=x+2, ∵B (6,0),D (2,﹣8), ∴BE=6﹣2=4,DE=8,当∠FAB=∠EDB 时,且∠FGA=∠BED , ∴△FAG ∽△BDE ,∴FG AG BE DE= ,即21264228x x x --=+=12, 当点F 在x 轴上方时,则有21261222x x x --=+,解得x=﹣2(舍去)或x=7,此进F 点坐标为(7,92);∴n=12(2+2n )2﹣2(2+2n )﹣6,解得或,∴;当MN 在x 轴下方时,同理可设PT=n ,则M (2+2n ,﹣n ),∴﹣n=12(2+2n )2﹣2(2+2n )﹣6,解得n=或(舍去),∴1;综上可知菱形对角线MN 1. 考点:二次函数综合题.8. (2017湖南常德第25题)如图,已知抛物线的对称轴是y 轴,且点(2,2),(1,54)在抛物线上,点46P 是抛物线上不与顶点N 重合的一动点,过P 作PA ⊥x 轴于A ,PC ⊥y 轴于C ,延长PC 交抛物线于E ,设M是O 关于抛物线顶点N 的对称点,D 是C 点关于N 的对称点. (1)求抛物线的解析式及顶点N 的坐标; (2)求证:四边形PMDA 是平行四边形;(3)求证:△DPE ∽△PAM 3时的点P 的坐标.【答案】(1)2114y x =+, N (0,1);(2)证明见解析;(3)证明见解析,P (234)或(﹣34).∴OD =2114t -,∴D (0,2114t -+),∴DM =2﹣(2114t -+)=2114t +=PA ,且PM ∥DM ,∴四边形PMDA 为平行四边形;(3)解:同(2)设P (t ,2114t +),则C (0,2114t +),PA =2114t +,PC =|t |,∵M (0,2),∴CM =2114t +﹣2=2114t -,在Rt △PMC 中,由勾股定理可得PM====2114t +=PA ,且四边形PMDA 为平行四边形,∴四边形PMDA 为菱形,∴∠APM =∠ADM =2∠PD M ,∵PE ⊥y 轴,且抛物线对称轴为y 轴,∴DP =DE ,且∠PDE =2∠PDM ,∴∠PDE =∠APM ,且PD DEPA PM=,∴△DPE ∽△PAM ;∵OA =|t |,OM =2,∴AMPE =2PC =2|t |AMPE,解得t=t =﹣P点坐标为(4)或(﹣4). 考点:二次函数综合题;压轴题.9. (2017湖南常德第26题)如图,直角△ABC 中,∠BAC =90°,D 在BC 上,连接AD ,作BF ⊥AD 分别交AD 于E ,AC 于F .(1)如图1,若BD =BA ,求证:△ABE ≌△DBE ;(2)如图2,若BD =4DC ,取AB 的中点G ,连接CG 交AD 于M ,求证:①GM =2MC ;②AG 2=AF •AC .【答案】(1)证明见解析;(2)①证明见解析;②证明见解析.48考点:相似三角形的判定与性质;全等三角形的判定与性质;和差倍分.10. (2017广西百色第26题)以菱形ABCD 的对角线交点O 为坐标原点,AC 所在的直线为x 轴,已知(4,0)A -,(0,2)B -,(0,4)M ,P 为折线BCD 上一动点,内行PE y ⊥轴于点E ,设点P 的纵坐标为.a(1)求BC 边所在直线的解析式;(2)设22y MP OP =+,求y 关于a 的函数关系式; (3)当OPM 为直角三角形,求点P 的坐标.【答案】(1)直线BC 的解析式为y=12x ﹣2; (2)当点P 在边BC 上时, y=10a 2+24a+48; 当点P 在边CD 上时,y= 10a 2﹣40a+48;(3)点P,2),(4,0).(2)由(1)知,C(4,0),D(0,2),∴直线CD的解析式为y=﹣12x+2,由(1)知,直线BC的解析式为y=12x﹣2,当点P在边BC上时,设P(2a+4,a)(﹣2≤a<0),∵M(0,4),∴y=MP2+OP2=(2a+4)2+(a﹣4)2+(2a+4)2+a2=2(2a+4)2+(a﹣4)2+a2=10a2+24a+48当点P在边CD上时,∵点P的纵坐标为a,∴P(4﹣2a,a)(0≤a≤2),∵M(0,4),∴y=MP2+OP2=(4﹣2a)2+(a﹣4)2+(4﹣2a)2+a2=10a2﹣40a+48,(3)①当点P在边BC上时,即:0≤a≤2,由(2)知,P(2a+4,a),∵M(0,4),∴OP2=(2a+4)2+a2=5a2+16a+16,PM2=(2a+4)2+(a﹣4)2=5a2﹣8a+32,OM2=16,∵△POM是直角三角形,易知,PM最大,∴OP2+OM2=PM2,∴5a2+16a+16+16=5a2﹣8a+32,∴a=0(舍)②当点P在边CD上时,即:0≤a≤2时,由(2)知,P(4﹣2a,a),5考点:四边形综合题.11. (2017哈尔滨第26题)已知:AB 是O ⊙的弦,点C 是AB 的中点,连接OB 、OC ,OC 交AB 于点D . (1)如图1,求证:AD BD =;(2)如图2,过点B 作O ⊙的切线交OC 的延长线于点M ,点P 是AC 上一点,连接AP 、BP ,求证:90APB OMB -=∠∠°.(3)如图3,在(2)的条件下,连接DP 、MP ,延长MP 交O ⊙于点Q ,若6MQ DP =,3sin 5ABO =∠,求MP MQ 的值.。
专题16:压轴题一、选择题1.(2017天津第12题)已知抛物线342+-=x x y 与x 轴相交于点B A ,(点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点'M 落在x 轴上,点B 平移后的对应点'B 落在y 轴上,则平移后的抛物线解析式为( )A .122++=x x yB .122-+=x x y C. 122+-=x x y D .122--=x x y【答案】A.2.(2017福建第10题)如图,网格纸上正方形小格的边长为1.图中线段AB 和点P 绕着同一个点做相同的旋转,分别得到线段A B ''和点P ',则点P '所在的单位正方形区域是( )A .1区B .2区C .3区D .4区【答案】D【解析】如图,根据题意可得旋转中心O ,旋转角是90°,旋转方向为逆时针,因此可知点P 的对应点落在了4区,故选D.3.(2017河南第10题)如图,将半径为2,圆心角为120︒的扇形OAB 绕点A 逆时针旋转60︒,点O ,B 的对应点分别为'O ,'B ,连接'BB ,则图中阴影部分的面积是( )A .23πB .3π C.23π D .23π 【答案】C.【解析】考点:扇形的面积计算.4.(2017湖南长沙第12题)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则mn 的值为( ) A .22 B .21 C .215- D .随H 点位置的变化而变化【答案】B【解析】试题分析:设正方形ABCD 的边长为2a ,正方形的周长为m=8a ,设CM=x ,DE=y ,则DM=2a-x ,EM=2a-y ,∵∠EMG=90°,∴∠DME+∠CMG=90°.∵∠DME+∠DEM=90°,∴∠DEM=∠CMG ,又∵∠D=∠C=90°△DEM ∽△CMG , ∴CG CM MG DM DE EM ==,即22CG x MG a x y a y==-- ∴CG=(2)(2)=,x a x x a y CG MG y y--= △CMG 的周长为CM+CG+MG=24ax x y- 在Rt △DEM 中,DM 2+DE 2=EM 2即(2a-x )2+y 2=(2a-y )2整理得4ax-x 2=4ay ∴CM+MG+CG=2444ax x ay a y y-===n . 所以12n m =故选:B .考点:1、正方形,2、相似三角形的判定与性质,3、勾股定理5. (2017广东广州第10题) 0a ≠,函数a y x=与2y ax a =-+在同一直角坐标系中的大致图象可能是( )【答案】D【解析】考点: 二次函数与反比例函数的图像的判断.6. (2017山东临沂第14题)如图,在平面直角坐标系中,反比例函数k y x=(0x >)的图象与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点,OMN V 的面积为10.若动点P 在x 轴上,则PM PN +的最小值是( )A .B .10C .D .【答案】C【解析】试题分析:由正方形OABC 的边长为6可得M 的坐标为(6,6k ),N 的坐标为(6k ,6),因此可得BN=6-6k ,BM=6-6k ,然后根据△OMN 的面积为10,可得21116666(6)10262626k k k ⨯-⨯⨯-⨯⨯-⨯-=,解得k=24,得到M (6,4)和N (4,6),作M 关于x 轴的对称点M ′,连接NM ′交x 轴于P ,则M ′N 的长=PM+PN 的值最小,最后由AM=AM ′=4,得到BM ′=10,BN=2,根据勾股定理求得NM ′故选:C考点:1、反比例函数与正方形,2、三点之间的最小值7. (2017山东青岛第8题)一次函数)0(≠+=k b kx y 的图像经过点A (4,1--),B (2,2)两点,P 为反比例函数xkb y =图像上的一个动点,O 为坐标原点,过P 作y 轴的垂线,垂足为C ,则△PCO 的面积为( ) A 、2 B 、4 C 、8 D 、不确定【答案】【解析】试题分析:如下图,把点A (4,1--),B (2,2)代入)0(≠+=k b kx y 得22--=x y ,即k=-2,b=-2 所以反比例函数表达式为x y 4=设P (m ,n ),则nm 4=,即mn=4△PCO 的面积为21OCPC=21mn=2 考点: 1、一次函数,2、反比例函数图像与性质8. (2017四川泸州第12题)已知抛物线214y x =+1具有如下性质:给抛物线上任意一点到定点(0,2)F 的距离与到x 轴的距离相等,如图,点M 的坐标为,P 是抛物线2114y x =+上一动点,则PMF ∆周长的最小值是( )A .3B .4C .5D .6【答案】C.9. (2017山东滨州第12题)在平面直角坐标系内,直线AB 垂直于x 轴于点C (点C 在原点的右侧),并分别与直线y =x 和双曲线y =1x 相交于点A 、B ,且AC +BC =4,则△OAB 的面积为( )A .3或 3B 1 1C . 3D 1【答案】A.【解析】如图,分线段AB在双曲线1yx=和直线y=x交点的左右两侧两种情况,设点C的坐标为(m,0),则点A的坐标为(m,m),点B的坐标为(m,1m ),因AC+BC=4,所以m+1m=4,解得m=2,当时,即线段AB在双曲线1yx=和直线y=x交点的左侧,求得所以即可求得△OAB的面积为1(232⨯-=;当线段AB在双曲线1yx=和直线y=x交点的右侧,求得所以即可求得△OAB的面积为1(232⨯+=,故选A.10.(2017山东日照第12题)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A .①②③B .③④⑤C .①②④D .①④⑤【答案】C .考点:抛物线与x 轴的交点;二次函数图象与系数的关系.11.(2017江苏宿迁第8题)如图,在Rt C ∆AB 中,C 90∠=,C 6A =cm ,C 2B =cm .点P 在边C A 上,从点A 向点C 移动,点Q 在边C B 上,从点C 向点B 移动,若点P 、Q 均以1cm/s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接Q P ,则线段Q P 的最小值是A .20cmB .18cm C.cm D .cm【答案】C.【解析】试题分析:设运动时间为t 秒,则AP=t ,CQ=t ,所以CP=6-t ,根据勾股定理可得222PQ PC CQ =+,即222(6)PQ t t =-+,所以222212362(3)18PQ t t t =-+=-+,因t ≤2,根据二次函数的性质可得当t=2时,2PQ 的值最小为20,即可得线段Q P 的最小值是,故选C.12.(2017江苏苏州第10题)如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A .B ..8【答案】A.【解析】试题分析:作,,DH AB PK AB FL AB ⊥⊥⊥在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点4AF EF EL ∴==∴=,P 是F E 的中点,PK ∴= DH =1PP CD ∴= 高为8S ∴==L K H故答案选A. 考点:平行四边形的面积,三角函数.13. (2017山东菏泽第8题)一次函数b ax y +=和反比例函数xc y =在同一个平面直角坐标系中的图象如图所示,则二次函数c bx ax y ++=2的图c 象可能是( )A .B . C. D .【答案】C.14. (2017浙江台州第10题) 如图,矩形EFGH 的四个顶点分别在菱形ABCD 的四条边上,BE BF =,将,AEH CFG ∆∆分别沿,EH FG 折叠,当重叠部分为菱形且面积是菱形ABCD 面积的116时,则AE EB为 ( )A.53B.2 C.52D.4【答案】A【解析】试题分析:依题可得阴影部分是菱形.设S菱形ABCD=16,BE=x.从而得出AB=4,阴影部分边长为4-2x.根据(4-2x)2=1求出x=32或x=52,从而得出3452332AEEB-==.故选:A.考点:1、菱形的性质,2、翻折变换(折叠问题)15. (2017浙江金华第10题)如图,为了监控一不规则多边形艺术走廊内的活动情况,现已在,A B两处各安装了一个监控探头(走廊内所用探头的观测区为圆心角最大可取到180 的扇形),图中的阴影部分是A处监控探头观测到的区域,要使整个艺术走廊都能被监控到,还需要安装一个监控探头,则安装的位置是()A.E处 B.F处 C.G处 D.H处【答案】D.【解析】试题分析:根据两点确定一条直线,观察可以摄像头应安装在点H的位置,故选D.16.(2017浙江湖州第10题)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从44⨯的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有2020⨯的正方形网格图形(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A.13 B.14 C.15 D.16【答案】B考点:1、勾股定理,2、规律探索17. (2017浙江舟山第10题)下列关于函数1062+-=x x y 的四个命题:①当0=x 时,y 有最小值10;②n 为任何实数,n x +=3时的函数值大于n x -=3时的函数值;③若3>n ,且n 是整数,当1+≤≤n x n 时,y 的整数值有)42(-n 个;④若函数图象过点),(0y a 和)1,(0+y b ,则b a <.其中真命题的序号是( )A .①B .② C.③ D .④【答案】C.【解析】试题分析:①错,理由:当x=6321--=⨯时,y 取得最小值;②错,理由:因为332n n ++-=3, 即横坐标分别为x=3+n , x=3−n 的两点的纵坐标相等,即它们的函数值相等;③对,理由:若n>3,则当x=n 时,y=n 2− 6n+10>1,当x=n+1时,y=(n+1)2− 6(n+1)+10=n 2−4n+5,则n 2−4n+5-(n 2− 6n+10)=2n-5,因为当n 为整数时,n 2− 6n+10也是整数,2n-5也是整数,n 2−4n+5也是整数,故y 有2n-5+1=2n-4个整数值;④错,理由:当x<3时,y 随x 的增大而减小,所以当a<3,b<3时,因为y 0<y 0+1,所以a>b ,故错误;故选C. 考点:二次函数图象上点的坐标特征.二、填空题1.(2017北京第16题)下图是“作已知直角三角形的外接圆”的尺规作图过程已知:0,90Rt ABC C ∆∠=,求作Rt ABC ∆的外接圆.作法:如图.(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于,P Q 两点; (2)作直线PQ ,交AB 于点O ;(3)以O 为圆心,OA 为半径作O . O 即为所求作的圆.请回答:该尺规作图的依据是 .【答案】到线段两端点距离相等的点在线段的垂直平分线上;两点确定一条直线;垂直平分线的定义;90°的圆周角所对弦为直径.不在同一条直线上的三个点确定一个圆.(答案不唯一)【解析】找到外接圆的圆心和半径是解本题的关键,由题意得:圆心是线段AB 的中点,半径是AB 长的一半,所以只需作出AB 的中垂线,找到交点O 即可.考点:作图-基本作图;线段垂直平分线的性质2. (2017天津第18题)如图,在每个小正方形的边长为1的网格中,点C B A ,,均在格点上.(1)AB 的长等于 ;(2)在ABC ∆的内部有一点P ,满足2:1:::=∆∆∆PCA PBC PAB S S S ,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .【答案】(1;(2)详见解析.【解析】试题分析:(1)根据勾股定理即可求得(2)如图,AC 与网络线相交,得点D 、E ,取格点F ,连结FB 并延长,与网格线相交,得点M 、N ,连结DN 、EM ,DN 与EM 相交于点P ,点P 即为所求.3.(2017福建第16题) 已知矩形ABCD 的四个顶点均在反比例函数1y x=的图象上,且点A 的横坐标是2,则矩形ABCD 的面积为 .【答案】7.5【解析】因为双曲线既关于原点对称,又关于直线y=±x 对称,矩形既是轴对称图形又是中心对称图形,所以可知点C 与点A 关于原点对称,点A 与点B 关于直线y=x 对称,由已知可得A (2,0.5),∴C (-2,-0.5)、B (0.5,2),从而可得D (-0.5,-2),继而可得S 矩形ABCD =7.5.【答案】1或12. 考点:折叠(翻折变换).5. (2017湖南长沙第18题)如图,点M 是函数x y 3=与xk y =的图象在第一象限内的交点,4=OM ,则k 的值为 .【答案】考点:一次函数与反比例函数6. (2017广东广州第16题)如图9,平面直角坐标系中O 是原点,OABC 的顶点,A C 的坐标分别是()()8,0,3,4,点,D E 把线段OB 三等分,延长,CD CE 分别交,OA AB 于点,F G ,连接FG ,则下列结论:①F 是OA 的中点;②OFD ∆与BEG ∆相似;③四边形DEGF 的面积是203;④OD =;其中正确的结论是 .(填写所有正确结论的序号)【答案】①③【解析】试题分析:如图,分别过点A 、B 作AN OB ⊥ 于点N ,BM x ⊥ 轴于点M在OABC 中,(80)(34)(114)A C B OB ∴= ,,,,,D E 、 是线段AB 的三等分点, 12OD BD ∴= ,CB OF ODF BDC ∴∆∆111222OF OD OF BC OA BC BD ∴==∴==, F ∴ 是OA 的中点,故①正确.(34)5C OC OA ∴=≠ ,,OABC ∴ 不是菱形.,DOF COD EBG ODF COD EBG ∴∠≠∠=∠∠≠∠=∠(40),F CF OC CFO COF ∴<∴∠>∠ ,,DFO EBG ∴∠≠∠故OFD ∆ 和BEG ∆ 不相似.则②错误;由①得,点G 是AB 的中点,FG ∴ 是OAB ∆ 的中位线1,2FG OB FG OB ∴==D E 、 是OB 的三等分点,DE ∴=1118416222OAB S OB AN OA BM ∆=⋅=⋅=⨯⨯= 解得:1162AN OB= ,DF FG ∴ 四边形DEGH 是梯形()551202121223DEGF DE FG h S OB h OB AN -∴==⋅=⋅=四边形 则③正确13OD OB == ,故④错误. 综上:①③正确.考点: 平行四边形和相似三角形的综合运用7. (2017山东临沂第19题)在平面直角坐标系中,如果点P 坐标为(),m n ,向量OP uu u r 可以用点P 的坐标表示为(),OP m n =uu u r .已知:()11,OA x y =uu r ,()22,OB x y =uu u r ,如果12120x x y y ⋅+⋅=,那么OA uu r 与OB uu u r 互相垂直.下列四组向量:①()2,1OC =uuu r ,()1,2OD =-uuu r ;②()cos30,tan 45OE =︒︒uu u r ,()1,sin 60OF =︒uu u r ;③)2OG =-uuu r,12OH ⎫=⎪⎭uuu r ; ④()0,2OM π=uuu r ,()2,1ON =-uuu r .其中互相垂直的是 (填上所有正确答案的序号).【答案】①③④【解析】试题分析:根据向量垂直的定义:② 因为2³(﹣1)+1³2=0,所以OC 与OD 互相垂直;③ 因为cos30°³1+tan45°•sin60°=21+1³20,所以OE 与OF 不互相垂直; ④+(﹣2)³12=3﹣2﹣1=0,所以OG 与OH 互相垂直; ④因为π0³2+2³(﹣1)=2﹣2=0,所以OM 与ON 互相垂直.综上所述,①③④互相垂直.故答案是:①③④.考点:1、平面向量,2、零指数幂,3、解直角三角形8. (2017四川泸州第16题)在ABC ∆中,已知BD 和CE 分别是边,AC AB 上的中线,且BD CE ⊥,垂足为O ,若2,4OD cm OE cm ==,则线段AO 的长为 cm .【答案】【解析】试题分析:如图,由BD 和CE 分别是边,AC AB 上的中线,可得DE ∥BC ,且12DE OD OE BC OB OC === , 因BD CE ⊥,2,4OD cm OE cm ==,根据勾股定理可得,又因12DE OD OE BC OB OC ===,可得AO 并延长AO 交BC 于点M ,由BD 和CE 分别是边,AC AB 上的中线交于点M ,可知AM 也是△ABC 的边BC 上的中线,在Rt △BOC 中,根据斜边的中线等于斜边的一半可得OM=12三角形重心的性质可得9. (2017山东滨州第18题)观察下列各式:2111313=-⨯, 2112424=-⨯ 2113535=-⨯ ……请利用你所得结论,化简代数式213⨯+224⨯+235⨯+…+2(2)n n +(n ≥3且为整数),其结果为__________. 【答案】2354(1)(2)n n n n +++ . 【解析】根据题目中所给的规律可得,原式=12222(...)2132435(2)n n ++++⨯⨯⨯+ =111111111(1...)23243512n n n -+-+-+-+-++=111113(1)(2)2(2)2(1)(1)221222(1)(2)n n n n n n n n ++-+-++--=⨯++++=2354(1)(2)n n n n +++ . 10. (2017江苏宿迁第16题)如图,矩形C ABO 的顶点O 在坐标原点,顶点B 、C 分别在x 、y 轴的正半轴上,顶点A 在反比例函数k y x=(k 为常数,0k >,0x >)的图象上,将矩形C ABO 绕点A 按逆时针方向旋转90 得到矩形C '''AB O ,若点O 的对应点'O 恰好落在此反比例函数图象上,则C OB O 的值是 .【解析】试题分析:设点A 的坐标为(a ,b ),即可得OB=a ,OC=b,已知矩形C ABO 绕点A 按逆时针方向旋转90 得到矩形C '''AB O ,可得点C 、A 、B ’在一条直线上,点A 、C ’、B 在一条直线上,AC ’=a ,AB ’=b ,所以点O ’的坐标为)(a+b , b -a ),根据反比例函数k 的几何意义可得ab=(a+b )(b-a ),即可得220b ab a --=,解这个以b为未知数的一元二次方程得11,b b ==(舍去),所以,b =所以C OB ===O 11. (2017辽宁沈阳第16题)如图,在矩形ABCD 中,53AB BC ==,,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是.【答案】5. 【解析】考点:四边形与旋转的综合题.12. (2017山东日照第16题)如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则k的值为.【答案】试题分析:过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,如图所示:则OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,在△AOM和△BAN中,AOM BANAMO BNA OA BA∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOM≌△BAN(AAS),∴,∴∴B,∴双曲线y=(x>0)同时经过点A和B,=k,整理得:k2﹣2k﹣4=0,解得:k=1,∴考点:反比例函数图象上点的坐标特征.13. (2017江苏苏州第18题)如图,在矩形CDAB中,将C∠AB绕点A按逆时针方向旋转一定角度后,CB的对应边C''B交CD边于点G.连接'BB、CC',若D7A=,CG4=,G''AB=B,则CC'='BB(结果保留根号).【解析】试题分析:连接AG,设DG=x,则 G=4+x ''AB =B在'Rt AB G ∆ 中,22492(4)1x x x +=+⇒= ,则5,7AB BC ==''CC BB ∴==考点:旋转的性质 ,勾股定理 .14. (2017山东菏泽第14题)如图,y AB ⊥轴,垂足为B ,将ABO ∆绕点A 逆时针旋转到11O AB ∆的位置,使点B 的对应点1B 落在直线x y 33-=上,再将11O AB ∆绕点1B 逆时针旋转到111O B A ∆的位置,使点1O 的对应点2O 落在直线x y 33-=上,依次进行下去......若点B 的坐标是)1,0(,则点12O 的纵坐标为 .【答案】()3333+【解析】15. (2017浙江金华第16题)在一空旷场地上设计一落地为矩形ABCD 的小屋,10AB BC m +=.拴住小狗的10m 长的绳子一端固定在B 点处,小狗在不能进人小屋内的条件下活动,其可以活动的区域面积为()2S m .(1)如图1,若4BC m =,则S = 2m .(2)如图2,现考虑在(1)中的矩形ABCD 小屋的右侧以CD 为边拓展一正CDE ∆区域,使之变成落地为五边ABCDE 的小屋,其它条件不变.则在BC 的变化过程中,当S 取得最小值时,边长BC 的长为 m .【答案】52. 【解析】试题分析:(1)在B 点处是以点B 为圆心,10为半径的34个圆;在A 处是以A 为圆心,4为半径的14个圆;在C 处是以C 为圆心,6为半径的14个圆;所以S=222113641088444ππππ⨯+⨯+⨯= ;(2)设BC=x,则AB=10-x ,222330110(10)43604S x x πππ=⨯+⨯-+⨯ =3π(-10x+250),当x=52时,S 最小,即BC=52. 16. (2017浙江湖州第16题)如图,在平面直角坐标系x y O 中,已知直线y kx =(0k >)分别交反比例函数1y x =和9y x =在第一象限的图象于点A ,B ,过点B 作D x B ⊥轴于点D ,交1y x=的图象于点C ,连结C A .若C ∆AB 是等腰三角形,则k 的值是 .【解析】试题分析:令B 点坐标为(a ,9a )或(a ,ka ),则C 点的坐标为(a ,1a),令A 点的坐标为(b ,kb )或(b ,1b ),可知BC=8a ,ka=9a ,kb=1b ,可知29a k =,21b k =,然后可知8a ,解得. 考点:反比例函数与k 的几何意义17. (2017湖南湘潭第16题)阅读材料:设11(,)a x y = ,22(,)b x y = ,如果//a b ,则2121x y x y ⋅=⋅.根据该材料填空:已知(2,3)a = ,(4,)b m = ,且//a b ,则m = .【答案】6.【解析】试题分析:利用新定义设11(,)a x y = ,22(,)b x y = ,如果//a b ,则2121x y x y ⋅=⋅,2m=4³3,m=6.18. (2017浙江台州第16题)如图,有一个边长不定的正方形ABCD ,它的两个相对的顶点,A C 分别在边长为1的正六边形一组平行的对边上,另外两个顶点,B D 在正六边形内部(包括边界),则正方形边长a 的取值范围是 .3a ≤≤a ≤≤ ) 【解析】试题分析:因为AC 为对角线,故当AC 最小时,正方形边长此时最小.①当 A 、C 都在对边中点时(如下图所示位置时),显然AC 取得最小值,∵正六边形的边长为1,∴∴a 2+a 2=AC 2=2.∴②当正方形四个顶点都在正六边形的边上时,a 最大(如下图所示).设A ′(. ∵OB ′⊥OA ′.∴B ′(-2,t ) 设直线MN 解析式为:y=kx+b,M (-1,0),N (-12,(如下图)∴0122k b k b -+=⎧⎪⎨-+=-⎪⎩.∴k b ⎧=⎪⎨=⎪⎩.∴直线MN 的解析式为:x+1),将B ′(t )代入得:t=32此时正方形边长为A ′B ′取最大.∴3a ≤≤.考点:1、勾股定理,2、正多边形和圆,3、计算器—三角函数,4、解直角三角形三、解答题1.(2017北京第29题)在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 上存在一点Q ,使得P Q 、两点间的距离小于或等于1,则称P 为图形M 的关联点.(1)当O 的半径为2时,①在点123115,0,,,0222P P P ⎛⎛⎫⎛⎫ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭中,O 的关联点是_______________. ②点P 在直线y x =-上,若P 为O 的关联点,求点P 的横坐标的取值范围.(2)C 的圆心在x 轴上,半径为2,直线1y x =-+与x 轴、y 轴交于点A B 、.若线段AB 上的所有点都是C 的关联点,直接写出圆心C 的横坐标的取值范围【答案】(1)①23,P P ≤x ≤-2 或2 ≤x ≤2,(2)-2≤x ≤1或2≤x ≤【解析】本题解析:(1)12315,01,22OP P OP ===, 点1P 与⊙的最小距离为32 ,点2P 与⊙的最小距离为1,点3P 与⊙的最小距离为12, ∴⊙的关联点为2P 和3P .②根据定义分析,可得当直线y=-x 上的点P 到原点的距离在1到3之间时符合题意;∴ 设点P 的坐标为P (x ,-x) ,当OP=1时,由距离公式可得,1= ,解得x = ,当OP=3时,由距离公式可得,3= ,229x x +=,解得2x =±,∴ 点的横坐标的取值范围为-2≤x ≤-2 或2 ≤x ≤2(2)∵y=-x+1与轴、轴的交点分别为A 、B 两点,∴ 令y=0得,-x+1=0,解得x=1, 令得x=0得,y=0,∴A(1,0) ,B (0,1) ,分析得:如图1,当圆过点A 时,此时CA=3,∴ 点C 坐标为,C ( -2,0)如图2,当圆与小圆相切时,切点为D ,∴CD=1 ,又∵直线AB所在的函数解析式为y=-x+1,∴直线AB与x轴形成的夹角是45°,∴ RT△°ACD中,,∴ C点坐标为x≤∴ C点的横坐标的取值范围为;-2≤c如图3,当圆过点A时,AC=1,C点坐标为(2,0)如图4,当圆过点 B 时,连接 BC ,此时 BC =3,在 Rt△OCB中,由勾股定理得=点坐标为.∴ C 点的横坐标的取值范围为2≤c x ≤;∴综上所述点C ≤c x ≤-2 或2 ≤c x ≤2. 考点:切线,同心圆,一次函数,新定义.2.(2017天津第25题)已知抛物线32-+=bx x y (b 是常数)经过点)0,1(-A .(1)求该抛物线的解析式和顶点坐标;(2)P(m ,t)为抛物线上的一个动点,P 关于原点的对称点为'P .①当点'P 落在该抛物线上时,求m 的值;②当点'P 落在第二象限内,2'A P 取得最小值时,求m 的值.【答案】(1)223y x x =--,顶点的坐标为(1,-4);(2)12m m ==;(3)22m +=【解析】试题解析:(1)∵抛物线32-+=bx x y 经过点)0,1(-A ,∴0=1-b-3,解得b=-2.∴抛物线的解析式为223y x x =--,∵2223(1)4y x x x =--=--,∴顶点的坐标为(1,-4).(2)①由点P(m ,t)在抛物线223y x x =--上,有223t m m =--.∵P 关于原点的对称点为'P ,有P’(-m ,-t ).∴2()2()3t m m -=----,即223t m m =--+∴222323m m m m --=--+解得12m m ==②由题意知,P’(-m ,-t )在第二象限,∴-m<0,-t>0,即m>0,t<0.又抛物线223y x x =--的顶点的坐标为(1,-4),得-4≤t<0.过点P’作P’H⊥x 轴,H 为垂足,有H (-m ,0).又)0,1(-A ,223t m m =--,则22222',(1)214P H t AH m m m t ==-+=-+=+当点A 和H 不重合时,在Rt △P’AH 中,222''P A P H AH =+当点A 和H 重合时,AH=0, 22''P A P H =,符合上式.∴222''P A P H AH =+,即22'4(40)P A t t t =++-≤≤记2'4(40)y t t t =++-≤≤,则2115'()24y t =++, ∴当t=-12时,y’取得最小值. 把t=-12代入223t m m =--,得21232m m -=--解得122222m m +==由m>0,可知22m =不符合题意∴m =3.(2017福建第25题)已知直线m x y +=2与抛物线2y ax ax b =++有一个公共点(1,0)M ,且a b <. (Ⅰ)求抛物线顶点Q 的坐标(用含a 的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N . (ⅰ)若211-≤≤-a ,求线段MN 长度的取值范围; (ⅱ)求QMN ∆面积的最小值.【答案】(Ⅰ)抛物线顶点Q 的坐标为(-12,-94a );(Ⅱ)理由见解析;(Ⅲ)(i )MN ≤(ii )△QMN 面积的最小值为2742+. 【解析】 试题分析:(Ⅰ)由抛物线过点M (1,0),可得b=-2a ,将解析式y=ax 2+ax+b=ax 2+ax-2a 配方得y=a(x+ 12)2- 94a ,从而可得抛物线顶点Q 的坐标为(- 12,- 94a ). (Ⅱ)由直线y=2x+m 经过点M (1,0),可得m=-2.由y=2x-2、y=ax 2+ax-2a ,可得ax 2+(a-2)x-2a+2=0,(*),由根的判别式可得方程(*)有两个不相等的实数根,从而可得直线与抛物线有两个交点. (Ⅲ)由y=2x-2、y=ax 2+ax-2a ,可得点N (2a -2,4a-6). (i )根据勾股定理得,MN 2=20(132a -)2,再由-1≤a ≤-12,可得-2≤1a ≤-1,从而可得132a -<0,继而可得,从而可得MN 的取值范围. (ii )作直线x=-12 交直线y=2x-2于点E ,得 E (-12,-3), 从而可得△QMN 的面积S=S △QEN +S △QEM =2732748a a -- ,即27a 2+(8S-54)a+24=0,(*)因为关于a 的方程(*)有实数根, 从而可和S ≥2742+,继而得到面积的最小值.(Ⅲ)把y=2x-2代入y=ax 2+ax-2a ,得ax 2+(a-2)x-2a+2=0, 即x 2+(1-2a )x-2+2a =0,所以(x-1)(x+2-2a)=0, 解得x 1=1,x 2 =2a -2,所以点N (2a -2,4a-6). (i )根据勾股定理得,MN 2=[(2a -2)-1]2+(4a -6)2=20(132a -)2, 因为-1≤a ≤-12,由反比例函数性质知-2≤1a ≤-1,所以132a -<0,所以(312a - ),所以MN ≤(ii )作直线x=-12 交直线y=2x-2于点E ,把x=-12代入y=2x-2得,y=-3,即E (-12,-3), 又因为M (1,0),N (2a -2,4a -6),且由(Ⅱ)知a<0, 所以△QMN 的面积S=S △QEN +S △QEM =()12921324a a ⎛⎫----- ⎪⎝⎭ =2732748a a -- , 即27a 2+(8S-54)a+24=0,(*)因为关于a 的方程(*)有实数根,所以△=(8S-54)2-4³27³24≥0,即(8S-54)2≥()2, 又因为a<0,所以S=2732748a a -- >274,所以8S-54>0,所以8S-54>0,所以8S-54≥S ≥2742+ ,当S=274+*)可得满足题意.故当a=-3,b =3时,△QMN 面积的最小值为2742+.4.(2017河南第23题)如图,直线23y x c =-+与x 轴交于点(3,0)A ,与y 轴交于点B ,抛物线243y x bx c =-++经过点A ,B .(1)求点B 的坐标和抛物线的解析式;(2)M (m ,0)为x 轴上一个动点,过点M 垂直于x 轴的直线与直线AB 和抛物线分别交于点P 、N , ①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与APM ∆相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M ,P ,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M ,P ,N 三点为“共谐点”.请直接写出使得M ,P ,N 三点成为“共谐点”的m 的值.【答案】(1)B (0,2),2410233y x x =-++;(2)①点M 的坐标为(118,0)或M (52,0);②m=-1或m=14-或m=12. 【解析】 试题分析:(1) 把点(3,0)A 代入23y x c =-+求得c 值,即可得点B 的坐标;抛物线243y x bx c =-++经过点(3,0)A ,即可求得b 值,从而求得抛物线的解析式;(2)由MN x ⊥轴,M (m ,0),可得N(2410,233m m m -++ ),①分∠NBP=90°和∠BNP =90°两种情况求点M 的坐标;②分N 为PM 的中点、P 为NM 的中点、M 为PN 的中点3种情况求m 的值.试题解析:(1)直线23y x c =-+与x 轴交于点(3,0)A , ∴2303c -⨯+=,解得c=2 ∴B (0,2), ∵抛物线243y x bx c =-++经过点(3,0)A , ∴2433203b -⨯++=,∴b=103∴抛物线的解析式为2410233y x x =-++; (2)∵MN x ⊥轴,M (m ,0),∴N(2410,233m m m -++ ) ①有(1)知直线AB 的解析式为223y x =-+,OA=3,OB=2 ∵在△APM 中和△BPN 中,∠APM=∠BPN, ∠AMP=90°,若使△APM 中和△BPN 相似,则必须∠NBP=90°或∠BNP =90°,分两种情况讨论如下:(I )当∠NBP=90°时,过点N 作NC y ⊥轴于点C ,则∠NBC+∠BNC=90°,NC=m , BC=22410410223333m m m m -++-=-+ ∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠BNC=∠ABO ,∴Rt △NCB ∽ Rt △BOA ∴NC CB OB OA = ,即24103323m m m -+= ,解得m=0(舍去)或m=118 ∴M (118,0); (II )当∠BNP=90°时, BN ⊥MN ,∴点N 的纵坐标为2, ∴24102233m m -++= 解得m=0(舍去)或m=52∴M (52,0); 综上,点M 的坐标为(118,0)或M (52,0); ②m=-1或m=14-或m=12. 考点:二次函数综合题.5. (2017广东广州第25题)如图14,AB 是O 的直径, ,2AC BCAB ==,连接AC .(1)求证:045CAB ∠=; (2)若直线l 为O 的切线,C 是切点,在直线l 上取一点D ,使,B D A B B D =所在的直线与AC 所在的直线相交于点E ,连接AD .①试探究AE 与AD 之间的数量关系,并证明你的结论; ②EB CD是否为定值?若是,请求出这个定值;若不是,请说明理由. 【答案】(1)详见解析;(2)①AE AD = ②2BE CD = 【解析】试题分析:(1)直径所对的圆周角是圆心角的一半,等弧所对的圆周角是圆心角的一半;(2)①等角对等边;②试题解析:(1)证明:如图,连接BC.222BE EI AE ==⨯= 是O 的直径, 90ACB ∴∠=︒ AC BC CAB CBA =∴∠=∠18090452CAB CBA ︒-︒∴∠=∠==︒ (2)①如图所示,作BF l ⊥ 于F由(1)可得,ACB ∆ 为等腰直角三角形.O 是AB 的中点. CO AO BO ∴== ACB ∴∆ 为等腰直角三角形.又l 是O 的切线,OC l BF l ∴⊥⊥∴ 四边形OBEC 为矩形 22AB BFBD BF ∴=∴= 303075BDF DBA BDA BAD ∴∠=︒∴∠=︒∠=∠=︒,15901575CBE CEB DEA ∴∠=︒∠=︒-︒=︒=∠,,ADE AED AD AE ∴∠=∠∴=②当ABD ∠ 为钝角时,如图所示,同样,1,302BF BD BDC =∴∠=︒ 1801501509015152ABD AEB CBE ADB ︒-︒∴∠=︒∠=︒-∠=︒∠==︒,, AE AD ∴=(3)当D 在C 左侧时,由(2)知CD AB ,,30ACD BAE DAC EBA ∠=∠∠=∠=︒,AC CD CAD BAE AB AE ∴∆∆∴==,,15AE BA BD BAD BDA ∴=∠=∠=︒30IBE ∴∠=︒,在Rt IBE ∆ 中,2222BE EI AE CD ==⨯== 2BE CD∴=当D 在C 右侧时,过E 作EI AB ⊥ 于I由(2)得,15ADC BEA ∠=∠=︒AB CD EAB ACD ∴∠=∠AC CD ACD BAEAB AE ∴∆∆∴== AE ∴= ,15BA BD BAD BDA =∠=∠=︒ 30IBE ∴∠=︒在Rt IBE ∆ 中,2222BE EI AE CD ==⨯== 2BE CD∴= 考点:圆的相关知识的综合运用6. (2017湖南长沙第26题)如图,抛物线21648(0)y mx mx m m =-+>与x 轴交于A,B 两点(点B 在点A 左侧),与y 轴交于点C ,点D 是抛物线上的一个动点,且位于第四象限,连接OD 、BD 、AC 、AD ,延长AD 交y 轴于点E 。
山东省青岛市2017年中考数学真题试题(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本试题分第Ⅰ卷和第Ⅱ卷两部分,共有24道题.第Ⅰ卷1—8题为选择题,共24分; 第Ⅱ卷9—14题为填空题,15题为作图题,16—24题为解答题,共96分. 要求所有题目均在答题卡上作答,在本卷上作答无效.第(Ⅰ)卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分. 1.81-的相反数是( ). A .8 B .8-C .81 D .81-【答案】C 【解析】试题分析:根据只有符号不同的两个数是互为相反数,知:81-的相反数是81. 故选:C考点:相反数定义2.下列四个图形中,是轴对称图形,但不是中心对称图形的是( ).【答案】A考点:轴对称图形和中心对称图形的定义3.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( ).A 、众数是6吨B 、平均数是5吨C 、中位数是5吨D 、方差是34【答案】C考点:1、方差;2、平均数;3、中位数;4、众数 4.计算326)2(6m m -÷的结果为( ). A .m - B .1- C .43 D .43- 【答案】D 【解析】试题分析:根据幂的混合运算,利用积的乘方性质和同底数幂相除计算为:()4386)2(666326-=-÷=-÷m m m m故选:D考点:1、同底数幂的乘除法运算法则;2、积的乘方运算法则;3、幂的乘方运算 5. 如图,若将△ABC 绕点O 逆时针旋转90°则顶点B 的对应点B 1的坐标为( )A.)2,4(-B.)4,2(-C. )2,4(-D.)4,2(- 【答案】B 【解析】试题分析:将△ABC 绕点O 逆时针旋转90°后,图形如下图所以B 1的坐标为)4,2(- 故选:B考点:1、同底数幂的乘除法运算法则;2、积的乘方运算法则;3、幂的乘方运算6. 如图,AB 是⊙O 的直径,C ,D ,E 在⊙O 上,若∠AED =20°,则∠BCD 的度数为( ) A 、100° B 、110° C 、115° D 、120°【答案】B【解析】试题分析:如下图,连接AD ,AD ,根据同弧所对的圆周角相等,可知∠ABD=∠AED =20°,然后根据直径所对的圆周角为直角得到∠ADB =90°,从而由三角形的内角和求得∠BAD =70°,因此可求得∠BCD=110°. 故选:B考点:圆的性质与计算7. 如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,3=AB ,AC =2,BD =4,则AE 的长为( )A .23 B .23C .721 D .7212 【答案】D考点:1、平行四边形的性质,2、勾股定理,3、面积法求线段长度8. 一次函数)0(≠+=k b kx y 的图像经过点A (4,1--),B (2,2)两点,P 为反比例函数xkby =图像上的一个动点,O 为坐标原点,过P 作y 轴的垂线,垂足为C ,则△PCO 的面积为( )A 、2B 、4C 、8D 、不确定 【答案】 【解析】试题分析:如下图,考点: 1、一次函数,2、反比例函数图像与性质第Ⅱ卷二、填空题(本题满分18分,共有6道小题,每小题3分)9.近年来,国家重视精准扶贫,收效显著,据统计约65 000 000人脱贫。
专题16 压轴题一、选择题1.(2017四川省达州市)已知函数()()12030x xy x x⎧->⎪⎪=⎨⎪<⎪⎩的图象如图所示,点P 是y 轴负半轴上一动点,过点P 作y 轴的垂线交图象于A ,B 两点,连接OA 、OB .下列结论: ①若点M 1(x 1,y 1),M 2(x 2,y 2)在图象上,且x 1<x 2<0,则y 1<y 2; ②当点P 坐标为(0,﹣3)时,△AOB 是等腰三角形; ③无论点P 在什么位置,始终有S △AOB =7.5,AP =4BP ;④当点P 移动到使∠AOB =90°时,点A的坐标为(,). 其中正确的结论个数为( )A .1B .2C .3D .4 【答案】C . 【解析】试题分析:①错误.∵x 1<x 2<0,函数y 随x 是增大而减小,∴y 1>y 2,故①错误.②正确.∵P (0,﹣3),∴B (﹣1,﹣3),A (4,﹣3),∴AB =5,OA,∴AB =AO ,∴△AOB 是等腰三角形,故②正确.④正确.设P (0,m ),则B (3m ,m ),A (﹣12m ,m ),∴PB =﹣3m,PA =﹣12m ,OP =﹣m ,∵∠AOB =90°,∠OPB =∠OPA =90°,∴∠BOP +∠AOP =90°,∠AOP +∠OPA =90°,∴∠BOP =∠OAP ,∴△OPB ∽△APO ,∴OP PB AP OP =,∴OP 2=PB •PA ,∴m 2=﹣3m•(﹣12m ),∴m 4=36,∵m <0,∴m =,∴A(),故④正确,∴②③④正确,故选C.考点:1.反比例函数综合题;2.综合题.二、填空题2.(2017浙江省丽水市)如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B 两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是;(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是.【答案】(1;(2)12.【解析】试题分析:(1)当直线AB经过点C时,点A与点C重合,当x=2时,y=﹣2+m=0,即m=2,所以直线AB的解析式为y=﹣x+2,则B(0,2),∴OB=OA=2,AB=设点O到直线AB的距离为d,由S△OAB=12OA2=12AB•d,得:4=d,则d.(2)作OD=OC=2,连接CD.则∠PDC=45°,如图,由y=﹣x+m可得A(m,0),B(0,m).所以OA=OB,则∠OBA=∠OAB=45°.当m<0时,∠APC>∠OBA=45°,所以,此时∠CPA>45°,故不合题意.所以m>0.因为∠CPA=∠ABO=45°,所以∠BPA+∠OPC=∠BAP+∠BPA=135°,即∠OPC=∠BAP,则△PCD∽△APB,所以PD CDAB PB=122mm+=,解得m=12.故答案为:12.考点:1.一次函数综合题;2.分类讨论;3.综合题.3.(2017浙江省绍兴市)如图,∠AOB=45°,点M、N在边OA上,OM=x,ON=x+4,点P是边OB上的点.若使点P、M、N构成等腰三角形的点P恰好有三个,则x的值是.<<.【答案】x=0或x=4或4x【解析】试题分析:以MN为底边时,可作MN的垂直平分线,与OB的必有一个交点P1,且MN=4,以M为圆心MN为半径画圆,以N为圆心MN为半径画圆,①如下图,当M与点O重合时,即x=0时,除了P1,当MN=MP,即为P3;当NP=MN时,即为P2;只有3个点P;②当0<x<4时,如下图,圆N与OB相切时,NP2=MN=4,且NP2⊥OB,此时MP3=4,则OM=ON-MN NP2-4=4.③因为MN=4,所以当x>0时,MN<ON,则MN=NP不存在,除了P1外,当MP=MN=4时,过点M作MD ⊥OB于D,当OM=MP=4时,圆M与OB刚好交OB两点P2和P3;当MD=MN=4时,圆M与OB只有一个交点,此时OM MD=4≤x<与OB有两个交点P2和P3,故答案为:x=0或x=4或4≤x<.考点:1.相交两圆的性质;2.分类讨论;3.综合题.4.(2017湖北省襄阳市)在半径为1的⊙O中,弦AB、AC的长分别为1,则∠BAC的度数为.【答案】15°或105°.【解析】考点:1.垂径定理;2.解直角三角形;3.分类讨论. 三、解答题5.(2017四川省南充市)如图1,已知二次函数2y ax bx c =++(a 、b 、c 为常数,a ≠0)的图象过点O (0,0)和点A (4,0),函数图象最低点M 的纵坐标为38-,直线l 的解析式为y =x .(1)求二次函数的解析式;(2)直线l 沿x 轴向右平移,得直线l ′,l ′与线段OA 相交于点B ,与x 轴下方的抛物线相交于点C ,过点C 作CE ⊥x 轴于点E ,把△BCE 沿直线l ′折叠,当点E 恰好落在抛物线上点E ′时(图2),求直线l ′的解析式;(3)在(2)的条件下,l ′与y 轴交于点N ,把△BON 绕点O 逆时针旋转135°得到△B ′ON ′,P 为l ′上的动点,当△PB ′N ′为等腰三角形时,求符合条件的点P 的坐标.【答案】(1)22833y x x =-;(2)y =x ﹣3;(3)P 坐标为(0,﹣3)或).【解析】试题分析:(1)由题意抛物线的顶点坐标为(2,38-),设抛物线的解析式为2(2)3y a x 8=--,把(0,0)代入得到a =23,即可解决问题;(3)分两种情形求解即可①当P 1与N 重合时,△P 1B ′N ′是等腰三角形,此时P 1(0,﹣3).②当N ′=N ′B ′时,设P (m ,m ﹣3),列出方程解方程即可;试题解析:(1)由题意抛物线的顶点坐标为(2,38-),设抛物线的解析式为2(2)3y a x 8=--,把(0,0)代入得到a =23,∴抛物线的解析式为22(2)33y x 8=--,即22833y x x =-.(2)如图1中,设E (m ,0),则C (m ,22833m m -),B (221133m m -+,0),∵E ′在抛物线上,∴E 、B 关于对称轴对称,∴2211()332m m m +-+ =2,解得m =1或6(舍弃),∴B (3,0),C (1,﹣2),∴直线l ′的解析式为y =x ﹣3.(3)如图2中,①当P 1与N 重合时,△P 1B ′N ′是等腰三角形,此时P 1(0,﹣3). ②当N ′=N ′B ′时,设P (m ,m ﹣3),则有222((322m m -+--=,解得m ∴P 2),P 332-+).综上所述,满足条件的点P 坐标为(0,﹣3)或或,).考点:1.二次函数综合题;2.几何变换综合题;3.分类讨论;4.压轴题.6.(2017四川省广安市)某班级45名同学自发筹集到1700元资金,用于初中毕业时各项活动的经费.通过商议,决定拿出不少于544元但不超过560元的资金用于请专业人士拍照,其余资金用于给每名同学购买一件文化衫或一本制作精美的相册作为纪念品.已知每件文化衫28元,每本相册20元.(1)适用于购买文化衫和相册的总费用为W 元,求总费用W (元)与购买的文化衫件数t (件)的函数关系式.(2)购买文化衫和相册有哪几种方案?为了使拍照的资金更充足,应选择哪种方案,并说明理由. 【答案】(1)W =8t +900;(2)有三种购买方案.为了使拍照的资金更充足,应选择方案:购买30件文化衫、15本相册. 【解析】试题分析:(1)设购买的文化衫t 件,则购买相册(45﹣t )件,根据总价=单价×数量,即可得出W 关于t 的函数关系式;(2)由购买纪念品的总价范围,即可得出关于t 的一元一次不等式组,解之即可得出t 值,从而得出各购买方案,再根据一次函数的性质即可得出W 的最小值,选取该方案即可.试题解析:(1)设购买的文化衫t 件,则购买相册(45﹣t )件,根据题意得:W =28t +20×(45﹣t )=8t +900.考点:1.一次函数的应用;2.一元一次不等式组的应用;3.最值问题;4.方案型.7.(2017四川省广安市)如图,已知抛物线2y x bx c =-++与y 轴相交于点A (0,3),与x 正半轴相交于点B ,对称轴是直线x =1. (1)求此抛物线的解析式以及点B 的坐标.(2)动点M 从点O 出发,以每秒2个单位长度的速度沿x 轴正方向运动,同时动点N 从点O 出发,以每秒3个单位长度的速度沿y 轴正方向运动,当N 点到达A 点时,M 、N 同时停止运动.过动点M 作x 轴的垂线交线段AB 于点Q ,交抛物线于点P ,设运动的时间为t 秒. ①当t 为何值时,四边形OMPN 为矩形.②当t >0时,△BOQ 能否为等腰三角形?若能,求出t 的值;若不能,请说明理由.【答案】(1)223y x x =-++,B 点坐标为(3,0);(2)①;②. 【解析】试题分析:(1)由对称轴公式可求得b ,由A 点坐标可求得c ,则可求得抛物线解析式;再令y =0可求得B 点坐标;(2)①用t 可表示出ON 和OM ,则可表示出P 点坐标,即可表示出PM 的长,由矩形的性质可得ON =PM ,可得到关于t 的方程,可求得t 的值;②由题意可知OB =OA ,故当△BOQ 为等腰三角形时,只能有OB =BQ 或OQ =BQ ,用t 可表示出Q 点的坐标,则可表示出OQ 和BQ 的长,分别得到关于t 的方程,可求得t 的值. 试题解析:(1)∵抛物线2y x bx c =-++对称轴是直线x =1,∴﹣2(1)b⨯- =1,解得b =2,∵抛物线过A (0,3),∴c =3,∴抛物线解析式为223y x x =-++,令y =0可得2230x x -++=,解得x =﹣1或x =3,∴B 点坐标为(3,0);考点:1.二次函数综合题;2.动点型;3.分类讨论;4.压轴题.8.(2017四川省眉山市)如图,抛物线22y ax bx =+-与x 轴交于A 、B 两点,与y 轴交于C 点,已知A (3,0),且M (1,83-)是抛物线上另一点. (1)求a 、b 的值;(2)连结AC ,设点P 是y 轴上任一点,若以P 、A 、C 三点为顶点的三角形是等腰三角形,求P 点的坐标;(3)若点N 是x 轴正半轴上且在抛物线内的一动点(不与O 、A 重合),过点N 作NH ∥AC 交抛物线的对称轴于H 点.设ON =t ,△ONH 的面积为S ,求S 与t 之间的函数关系式.【答案】(1)2343a b ⎧=⎪⎪⎨⎪=-⎪⎩ ;(2)P 点的坐标1(0,2)或(02)或(0,54)或(0,2);(3)2211(01)3311(13)33t t t S t t t ⎧-<<⎪⎪=⎨⎪-≤<⎪⎩.【解析】试题分析:(1)根据题意列方程组即可得到结论;(2)在22y ax bx =+-中,当x =0时.y =﹣2,得到OC =2,如图,设P (0,m ),则PC =m +2,OA =3,根据勾股定理得到AC①当PA =CA 时,则OP 1=OC =2,②当PC =CA③当PC =PA 时,点P 在AC 的垂直平分线上,根据相似三角形的性质得到P 3(0,54),④当PC =CA是得到结论;(3)过H 作HG ⊥OA 于G ,设HN 交Y 轴于M ,根据平行线分线段成比例定理得到OM =23t,求得抛物线的对称轴为直线x =15523-⨯ =1310,得到OG =1310,求得GN =t ﹣1310,根据相似三角形的性质得到HG =213315t -,于是得到结论.试题解析:(1)把A (3,0),且M (1,83-)代入22y ax bx =+-得:9320823a b a b +-=⎧⎪⎨+-=-⎪⎩,解得:2343a b ⎧=⎪⎪⎨⎪=-⎪⎩; (2)在22y ax bx =+-中,当x =0时.y =﹣2,∴C (0,﹣2),∴OC =2,如图,设P (0,m ),则PC =m +2,OA =3,AC①当PA =CA 时,则OP 1=OC =2,∴P 1(0,2);②当PC =CAmm2,∴P 2(02);③当PC =PA 时,点P 在AC 的垂直平分线上,则△AOC ∽△P 3EC ,3=,∴P 3C =134,∴m =54,∴P 3(0,54),④当PC =CAm =﹣2P 4(0,﹣2,综上所述,P 点的坐标1(0,2)或(02)或(0,54)或(0,2);(3)设直线AC 的解析式为y =kx +b (k ≠0)由题意得:302k b b +=⎧⎨=-⎩,解得:23k =,b =-2,∴223AC y x =-. 由(1)得抛物线对应的函数表达式为224233y x x =--=228(1)33x --,设AC 与抛物线y =228(1)33x --的对称轴x =1交于点F ,直线x =1与x 轴交于E 点,则F (1,43-),E (1,0). ①当0<t <1时,EN =1-t ,由EN EH AE EF =得,1324t EH -=,∴EH =2(1)3t - ,∴ONH S ∆=12ON •EH =1(1)3t t -,即21133S t t =-;②当1≤t ≤3时,EN =t -1,由EN EH AE EF =得,1324t EH -=,∴EH =2(1)3t - ,∴ONH S ∆=12ON •EH =1(1)3t t -,即21133S t t =-;∴2211(01)3311(13)33t t t S t t t ⎧-<<⎪⎪=⎨⎪-≤<⎪⎩ .考点:二次函数综合题.9.(2017四川省绵阳市)江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷. (1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.【答案】(1)每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷;(2)有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元. 【解析】试题分析:(1)设每台大型收割机1小时收割小麦x 公顷,每台小型收割机1小时收割小麦y 公顷,根据“1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论; (2)设大型收割机有m 台,总费用为w 元,则小型收割机有(10﹣m )台,根据总费用=大型收割机的费用+小型收割机的费用,即可得出w 与m 之间的函数关系式,由“要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元”,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,依此可找出各方案,再结合一次函数的性质即可解决最值问题.试题解析:(1)设每台大型收割机1小时收割小麦x 公顷,每台小型收割机1小时收割小麦y 公顷,根据题意得:3 1.425 2.5x y x y +=⎧⎨+=⎩,解得:0.50.3x y =⎧⎨=⎩.答:每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷.考点:1.一元一次不等式组的应用;2.二元一次方程组的应用;3.方案型;4.最值问题. 10.(2017四川省绵阳市)如图,已知抛物线2y ax bx c =++(a ≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线121+=x y 与抛物线交于B ,D 两点,以BD 为直径作圆,圆心为点C ,圆C 与直线m 交于对称轴右侧的点M (t ,1),直线m 上每一点的纵坐标都等于1.(1)求抛物线的解析式; (2)证明:圆C 与x 轴相切;(3)过点B 作BE ⊥m ,垂足为E ,再过点D 作DF ⊥m ,垂足为F ,求MF 的值.【答案】(1)2124y x x =-+ ;(2)证明见解析;(3)12 .【解析】试题分析:(1)可设抛物线的顶点式,再结合抛物线过点(4,2),可求得抛物线的解析式; (2)联立直线和抛物线解析式可求得B 、D 两点的坐标,则可求得C 点坐标和线段BD 的长,可求得圆的半径,可证得结论;(3)过点C 作CH ⊥m 于点H ,连接CM ,可求得MH ,利用(2)中所求B 、D 的坐标可求得FH ,则可求得MF 和BE 的长,可求得其比值. 试题解析:(1)∵已知抛物线2y ax bx c =++(a ≠0)的图象的顶点坐标是(2,1),∴可设抛物线解析式为2(2)1y a x =-+ ,∵抛物线经过点(4,2),∴22(42)1a =-+,解得a =14,∴抛物线解析式为21(2)14y x =-+,即2124y x x =-+;(2)联立直线和抛物线解析式可得2124112y x x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩,解得:352x y ⎧=⎪⎨=⎪⎩或352x y ⎧=+⎪⎨=+⎪⎩,∴B(3,52,D(3,52),∵C 为BD 的中点,∴点C的纵坐标为5522222+=52,∵BD,∴圆的半径为52,∴点C 到x 轴的距离等于圆的半径,∴圆C 与x 轴相切;考点:1.二次函数综合题;2.压轴题.11.(2017四川省绵阳市)如图,已知△ABC中,∠C=90°,点M从点C出发沿CB方向以1c m/s的速度匀速运动,到达点B停止运动,在点M的运动过程中,过点M作直线MN交AC于点N,且保持∠NMC=45°,再过点N作AC的垂线交AB于点F,连接MF,将△MNF关于直线NF对称后得到△ENF,已知AC=8cm,BC=4cm,设点M运动时间为t(s),△ENF与△ANF重叠部分的面积为y(cm2).(1)在点M的运动过程中,能否使得四边形MNEF为正方形?如果能,求出相应的t值;如果不能,说明理由;(2)求y关于t的函数解析式及相应t的取值范围;(3)当y取最大值时,求sin∠NEF的值.【答案】(1)85;(2)2212 (02)41416(24)1233t t tyt t t⎧-+<<⎪⎪=⎨⎪-+≤≤⎪⎩;(3.【解析】试题分析:(1)由已知得出CN=CM=t,FN∥BC,得出AN=8﹣t,由平行线证出△ANF∽△ACB,得出对应边成比例求出NF =12AN =12(8﹣t ),由对称的性质得出∠ENF =∠MNF =∠NMC =45°,MN =NE ,OE =OM =CN =t ,由正方形的性质得出OE =ON =FN ,得出方程,解方程即可;(2)分两种情况:①当0<t ≤2时,由三角形面积得出2124y t t =-+ ; ②当2<t ≤4时,作GH ⊥NF 于H ,由(1)得:NF =12(8﹣t ),GH =NH ,GH =2FH ,得出GH =23NF =13(8﹣t ),由三角形面积得出21(8)12y t =-(2<t ≤4); (3)当点E 在AB 边上时,y 取最大值,连接EM ,则EF =BF ,EM =2CN =2CM =2t ,EM =2BM ,得出方程,解方程求出CN =CM =2,AN =6,得出BM =2,NF =12AN =3,因此EM =2BM =4,作FD ⊥NE 于D ,由勾股定理求出EB EF =12EB ,由等腰直角三角形的性质和勾股定理得出DF =2HF =2,在Rt △DEF 中,由三角函数定义即可求出sin ∠NEF 的值.试题解析:(1)能使得四边形MNEF 为正方形;理由如下: 连接ME 交NF 于O ,如图1所示:∵∠C =90°,∠NMC =45°,NF ⊥AC ,∴CN =CM =t ,FN ∥BC ,∴AN =8﹣t ,△ANF ∽△ACB ,∴84AN AC NF BC == =2,∴NF =12AN =12(8﹣t ),由对称的性质得:∠ENF =∠MNF =∠NMC =45°,MN =NE ,OE =OM =CN =t ,∵四边形MNEF 是正方形,∴OE =ON =FN ,∴t =12×12(8﹣t ),解得:t =85;即在点M 的运动过程中,能使得四边形MNEF 为正方形,t 的值为85;(3)当点E 在AB 边上时,y 取最大值,连接EM ,如图3所示:则EF =BF ,EM =2CN =2CM =2t ,EM =2BM ,∵BM =4﹣t ,∴2t =2(4﹣t ),解得:t =2,∴CN =CM =2,AN =6,∴BM=4﹣2=2,NF=12AN=3,∴EM=2BM=4,作FD⊥NE于D,则EB△DNF是等腰直角三角形,∴EF=12EBDF=2HF=2,在Rt△DEF中,sin∠NEF=DFEF10.考点:1.四边形综合题;2.最值问题;3.动点型;4.存在型;5.分类讨论;6.压轴题.12.(2017四川省达州市)如图,△ABC内接于⊙O,CD平分∠ACB交⊙O于D,过点D作PQ∥AB分别交CA、CB延长线于P、Q,连接BD.(1)求证:PQ是⊙O的切线;(2)求证:BD2=AC•BQ;(3)若AC、BQ的长是关于x的方程4x mx+=的两实根,且tan∠PCD=13,求⊙O的半径.【答案】(1)证明见解析;(2)证明见解析;(3)【解析】试题分析:(1)根据平行线的性质和圆周角定理得到∠ABD=∠BDQ=∠ACD,连接OB,OD,交AB于E,根据圆周角定理得到∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,根据三角形的内角和得到2∠ODB+2∠O =180°,于是得到∠ODB +∠O =90°,根据切线的判定定理即可得到结论;(2)证明:连接AD ,根据等腰三角形的判定得到AD =BD ,根据相似三角形的性质即可得到结论; (3)根据题意得到AC •BQ =4,得到BD =2,由(1)知PQ 是⊙O 的切线,由切线的性质得到OD ⊥PQ ,根据平行线的性质得到OD ⊥AB ,根据三角函数的定义得到BE =3DE ,根据勾股定理得到BE 的长,设OB =OD =R ,根据勾股定理即可得到结论.试题解析:(1)证明:∵PQ ∥AB ,∴∠ABD =∠BDQ =∠ACD ,∵∠ACD =∠BCD ,∴∠BDQ =∠ACD ,如图1,连接OB ,OD ,交AB 于E ,则∠OBD =∠ODB ,∠O =2∠DCB =2∠BDQ ,在△OBD 中,∠OBD +∠ODB +∠O =180°,∴2∠ODB +2∠O =180°,∴∠ODB +∠O =90°,∴PQ 是⊙O 的切线;(2)证明:如图2,连接AD ,由(1)知PQ 是⊙O 的切线,∴∠BDQ =∠DCB =∠ACD =∠BCD =∠BAD ,∴AD =BD ,∵∠DBQ =∠ACD ,∴△BDQ ∽△ACD ,∴AD AC BQ BD=,∴BD 2=AC •BQ ; (3)解:方程4x m x +=可化为x 2﹣mx +4=0,∵AC 、BQ 的长是关于x 的方程4x m x+=的两实根,∴AC •BQ =4,由(2)得BD 2=AC •BQ ,∴BD 2=4,∴BD =2,由(1)知PQ 是⊙O 的切线,∴OD ⊥PQ ,∵PQ∥AB ,∴OD ⊥AB ,由(1)得∠PCD =∠ABD ,∵tan ∠PCD =13,∴tan ∠ABD =13,∴BE =3DE ,∴DE 2+(3DE )2=BD 2=4,∴DE ,∴BE 设OB =OD =R ,∴OE =R ,∵OB 2=OE 2+BE 2,∴R 2=(R )2+(5)2,解得:R =,∴⊙O 的半径为考点:1.相似三角形的判定与性质;2.分式方程的解;3.圆周角定理;4.切线的判定与性质;5.解直角三角形;6.压轴题.13.(2017四川省达州市)探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P 1(x 1,y 1),P 2(x 2,y 2),可通过构造直角三角形利用图1得到结论:12PP 他还利用图2证明了线段P 1P 2的中点P (x ,y )P 的坐标公式:122x x x +=,122y y y +=.(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)①已知点M (2,﹣1),N (﹣3,5),则线段MN 长度为 ;②直接写出以点A (2,2),B (﹣2,0),C (3,﹣1),D 为顶点的平行四边形顶点D 的坐标: ; 拓展:(3)如图3,点P (2,n )在函数43y x =(x ≥0)的图象OL 与x 轴正半轴夹角的平分线上,请在OL 、x 轴上分别找出点E 、F ,使△PEF 的周长最小,简要叙述作图方法,并求出周长的最小值.【答案】(1)答案见解析;(2;②(﹣3,3)或(7,1)或(﹣1,﹣3);(3)5. 【解析】试题分析:(1)用P 1、P 2的坐标分别表示出OQ 和PQ 的长即可证得结论;(3)设P 关于直线OL 的对称点为M ,关于x 轴的对称点为N ,连接PM 交直线OL 于点R ,连接PN 交x 轴于点S ,则可知OR =OS =2,利用两点间距离公式可求得R 的坐标,再由PR =PS =n ,可求得n 的值,可求得P 点坐标,利用中点坐标公式可求得M 点坐标,由对称性可求得N 点坐标,连接MN 交直线OL 于点E ,交x 轴于点S ,此时EP =EM ,FP =FN ,此时满足△PEF 的周长最小,利用两点间距离公式可求得其周长的最小值. 试题解析:(1)∵P 1(x 1,y 1),P 2(x 2,y 2),∴Q 1Q 2=OQ 2﹣OQ 1=x 2﹣x 1,∴Q 1Q =212x x -,∴OQ =OQ 1+Q 1Q =x 1+212x x -=122x x + ,∵PQ 为梯形P 1Q 1Q 2P 2的中位线,∴PQ =11222PQ P Q + =122y y +,即线段P 1P 2的中点P (x ,y )P 的坐标公式为x =122x x +,y =122y y +;(2)①∵M(2,﹣1),N(﹣3,5),∴MN;②∵A(2,2),B(﹣2,0),C(3,﹣1),∴当AB为平行四边形的对角线时,其对称中心坐标为(0,1),设D(x,y),则x+3=0,y+(﹣1)=2,解得x=﹣3,y=3,∴此时D点坐标为(﹣3,3),当AC 为对角线时,同理可求得D点坐标为(7,1),当BC为对角线时,同理可求得D点坐标为(﹣1,﹣3),综上可知D点坐标为(﹣3,3)或(7,1)或(﹣1,﹣3),故答案为:(﹣3,3)或(7,1)或(﹣1,﹣3);(3)如图,设P关于直线OL的对称点为M,关于x轴的对称点为N,连接PM交直线OL于点R,连接PN交x轴于点S,连接MN交直线OL于点E,交x轴于点F,又对称性可知EP=EM,FP=FN,∴PE+PF+EF=ME+EF+NF=MN,∴此时△PEF的周长即为MN的长,为最小,设R(x,43x),由题意可知OR=OS=2,PR=PS=n,解得x=﹣65(舍去)或x=65,∴R(65,85),∴n=,解得n=1,∴P(2,1),∴N(2,﹣1),设M(x,y),则22x+=65,12y+=85,解得x=25,y=115,∴M(25,115),∴MN,即△PEF的周长的最小值为.考点:1.一次函数综合题;2.阅读型;3.分类讨论;4.最值问题;5.探究型;6.压轴题.14.(2017四川省达州市)如图1,点A坐标为(2,0),以OA为边在第一象限内作等边△OAB,点C为x轴上一动点,且在点A右侧,连接BC,以BC为边在第一象限内作等边△BCD,连接AD交BC 于E.(1)①直接回答:△OBC与△ABD全等吗?②试说明:无论点C如何移动,AD始终与OB平行;(2)当点C运动到使AC2=AE•AD时,如图2,经过O、B、C三点的抛物线为y1.试问:y1上是否存在动点P,使△BEP为直角三角形且BE为直角边?若存在,求出点P坐标;若不存在,说明理由;(3)在(2)的条件下,将y1沿x轴翻折得y2,设y1与y2组成的图形为M,函数y=的图象l与M有公共点.试写出:l与M的公共点为3个时,m的取值.【答案】(1)①△OBC与△ABD全等;②证明见解析;(2)P(3或(﹣2,-);(3)﹣49 12≤m<0.【解析】试题分析:(1)①利用等边三角形的性质证明△OBC≌△ABD;②证明∠OBA=∠BAD=60°,可得OB∥AD;(3)先画出如图3,根据图形画出直线与图形M有个公共点时,两个边界的直线,上方到y=,将y=向下平移即可满足l与图形M有3个公共点,一直到直线l与y2相切为止,主要计算相切时,列方程组,确定△≥0时,m的值即可.试题解析:(1)①△OBC与△ABD全等,理由是:如图1,∵△OAB和△BCD是等边三角形,∴∠OBA=∠CBD=60°,OB=AB,BC=BD,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD,∴△OBC≌△ABD(SAS);②∵△OBC≌△ABD,∴∠BAD=∠BOC=60°,∴∠OBA=∠BAD,∴OB∥AD,∴无论点C如何移动,AD 始终与OB平行;(2)如图2,∵AC2=AE•AD,∴AC AEAD AC=,∵∠EAC=∠DAC,∴△AEC∽△ACD,∴∠ECA=∠ADC,∵∠BAD=∠BAO=60°,∴∠DAC=60°,∵∠BED=∠AEC,∴∠ACB=∠ADB,∴∠ADB=∠ADC,∵BD=CD,∴DE⊥BC,Rt△ABE中,∠BAE=60°,∴∠ABE=30°,∴AE=12AB=12×2=1,Rt△AEC中,∠EAC=60°,∴∠ECA=30°,∴AC=2AE=2,∴C(4,0),等边△OAB中,过B作BH⊥x轴于H,∴BH∴B(1,设y1的解析式为:y=ax(x﹣4),把B(1a(1﹣4),a=﹣3,∴设y1的解析式为:y1=x(x﹣4)=2x x+,过E作EG⊥x轴于G,Rt△AGE中,AE=1,∴AG=12AE=12,EGE(52,设直线AE的解析式为:y=kx+b,把A(2,0)和E(52,)代入得:2052k bk b+=⎧⎪⎨+=⎪⎩,解得:kb⎧=⎪⎨=-⎪⎩,∴直线AE的解析式为:y=-,则233yy x x⎧=-⎪⎨=-+⎪⎩,解得:113xy=⎧⎪⎨=⎪⎩112xy=-⎧⎪⎨=-⎪⎩P(3)或(﹣2,-;(3)如图3,y1=233x x-+=2(2)33x--+,顶点(2,3),∴抛物线y2的顶点为(2),∴y222)x--m=0时,y=与图形M两公共点,当y2与l相切时,即有一个公共点,l与图形M有3个公共点,则:22)y xy⎧=--⎪⎨⎪=+⎩,22)x+=--,x2﹣7x﹣3m=0,△=(﹣7)2﹣4×1×(﹣3m)≥0,m≥﹣4912,∴当l与M的公共点为3个时,m的取值是:﹣4912≤m<0.考点:1.二次函数综合题;2.翻折变换(折叠问题);3.动点型;4.存在型;5.分类讨论;6.压轴题.15.(2017山东省枣庄市)如图,抛物线212y x bx c =-++ 与x 轴交于点A 和点B ,与y 轴交于点C ,点B 坐标为(6,0),点C 坐标为(0,6),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E ,连接BD .(1)求抛物线的解析式及点D 的坐标;(2)点F 是抛物线上的动点,当∠FBA =∠BDE 时,求点F 的坐标;(3)若点M 是抛物线上的动点,过点M 作MN ∥x 轴与抛物线交于点N ,点P 在x 轴上,点Q 在坐标平面内,以线段MN 为对角线作正方形MPNQ ,请写出点Q 的坐标.【答案】(1)21262y x x =-++,D (2,8);(2)(﹣1,72)或(﹣3,﹣92);(3)(2,2-+或(2,2--. 【解析】试题分析:(1)由B 、C 的坐标,利用待定系数法可求得抛物线解析式,再求其顶点D 即可;(3)由于M 、N 两点关于对称轴对称,可知点P 为对称轴与x 轴的交点,点Q 在对称轴上,可设出Q 点的坐标,则可表示出M 的坐标,代入抛物线解析式可求得Q 点的坐标.试题解析:(1)把B 、C 两点坐标代入抛物线解析式可得:18606b c c -++=⎧⎨=⎩,解得:26b c =⎧⎨=⎩,∴抛物线解析式为21262y x x =-++ ,∵21262y x x =-++=21(2)82x --+,∴D (2,8); (2)如图1,过F 作FG ⊥x 轴于点G ,设F (x ,21262x x -++),则FG =|21262x x -++|,∵∠FBA =∠BDE ,∠FGB =∠BED =90°,∴△FBG ∽△BDE ,∴FG BFBG DE =,∵B (6,0),D (2,8),∴E (2,0),BE =4,DE =8,OB =6,∴BG =6﹣x ,∴21264268x x x -++=-,当点F 在x 轴上方时,有21261262x x x -++=-,解得x =﹣1或x =6(舍去),此时F 点的坐标为(﹣1,72);当点F 在x 轴下方时,有21261262x x x -++=--,解得x =﹣3或x =6(舍去),此时F 点的坐标为(﹣3,﹣92);综上可知F 点的坐标为(﹣1,72)或(﹣3,﹣92);考点:1.二次函数综合题;2.分类讨论;3.动点型;4.压轴题.16.(2017山东省济宁市)已知函数2(25)2y mx m x m =--+-的图象与x 轴有两个公共点. (1)求m 的取值范围,并写出当m 取范围内最大整数时函数的解析式; (2)题(1)中求得的函数记为C 1.①当n ≤x ≤﹣1时,y 的取值范围是1≤y ≤﹣3n ,求n 的值;②函数22()y x h k =-+的图象由函数C 1的图象平移得到,其顶点P 落在以原点为圆心,的圆内或圆上,设函数C 1的图象顶点为M ,求点P 与点M 距离最大时函数C 2的解析式. 【答案】(1)m <2512且m ≠0,22y x x =+;(2)①﹣2;②22(2)1y x =-+. 【解析】试题分析:(1)函数图形与x 轴有两个公共点,则该函数为二次函数且△>0,故此可得到关于m 的不等式组,从而可求得m 的取值范围;(2)先求得抛物线的对称轴,当n ≤x ≤﹣1时,函数图象位于对称轴的左侧,y 随x 的增大而减小,当当x =n 时,y 有最大值﹣3n ,然后将x =n ,y =﹣3n 代入求解即可;试题解析:(1)∵函数图象与x 轴有两个交点,∴m ≠0且[﹣(2m ﹣5)]2﹣4m (m ﹣2)>0,解得:m <2512且m ≠0.∵m 为符合条件的最大整数,∴m =2,∴函数的解析式为22y x x =+. (2)抛物线的对称轴为x =2b a - =14-. ∵n ≤x ≤﹣1<14-,a =2>0,∴当n ≤x ≤﹣1时,y 随x 的增大而减小,∴当x =n 时,y =﹣3n ,∴2n 2+n =﹣3n ,解得n =﹣2或n =0(舍去),∴n 的值为﹣2.(3)∵22y x x =+=2112()48x +-,∴M (14-,18-). 如图所示:当点P 在OM 与⊙O 的交点处时,PM 有最大值. 设直线OM 的解析式为y =kx ,将点M 的坐标代入得:1148k -=-,解得:k =12,∴OM 的解析式为y =12x . 设点P 的坐标为(x ,12x ).由两点间的距离公式可知:OP =5,解得:x =2或x =﹣2(舍去),∴点P 的坐标为(2,1),∴当点P 与点M 距离最大时函数C 2的解析式为22(2)1y x =-+ . 考点:1.二次函数综合题;2.最值问题.17.(2017山东省济宁市)定义:点P 是△ABC 内部或边上的点(顶点除外),在△PAB ,△PBC ,△PCA 中,若至少有一个三角形与△ABC 相似,则称点P 是△ABC 的自相似点.例如:如图1,点P 在△ABC 的内部,∠PBC =∠A ,∠PCB =∠ABC ,则△BCP ∽△ABC ,故点P 是△ABC 的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M 是曲线y x >0)上的任意一点,点N 是x 轴正半轴上的任意一点.(1)如图2,点P 是OM 上一点,∠ONP =∠M ,试说明点P 是△MON 的自相似点;当点M 的坐标是,3),点N ,0)时,求点P 的坐标;(2)如图3,当点M 的坐标是(3),点N 的坐标是(2,0)时,求△MON 的自相似点的坐标; (3)是否存在点M 和点N ,使△MON 无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.【答案】(1)P 34);(2)(1)或(2);(3)存在, M 3),N (0). 【解析】试题分析:(1)由∠ONP =∠M ,∠NOP =∠MON ,得出△NOP ∽△MON ,证出点P 是△MON 的自相似点;过P 作PD ⊥x 轴于D ,则tan ∠POD =MNON,求出∠AON =60°,由点M 和N 的坐标得出∠MNO =90°,由相似三角形的性质得出∠NPO =∠MNO =90°,在Rt △OPN 中,由三角函数求出OP =2,OD =4,PD =34,即可得出答案;(3)证出OM =ON ,∠MON =60°,得出△MON 是等边三角形,由点P 在△ABC 的内部,得出∠PBC ≠∠A ,∠PCB ≠∠ABC ,即可得出结论.试题解析:(1)∵∠ONP =∠M ,∠NOP =∠MON ,∴△NOP ∽△MON ,∴点P 是△MON 的自相似点;过P 作PD ⊥x 轴于D ,则tan ∠POD =MNONAON =60°,∵当点M 3),点N 0),∴∠MNO =90°,∵△NOP ∽△MON ,∴∠NPO =∠MNO =90°,在Rt △OPN 中,OP =ON ,∴OD =OP 12,PD =OP 34,∴P ,34); (2)作ME ⊥x 轴于H ,如图3所示:∵点M 的坐标是(3,点N 的坐标是(2,0),∴OM OM 的解析式为y =3x ,ON =2,∠MOH =30°,分两种情况: ①如图3所示:∵P 是△MON 的相似点,∴△PON ∽△NOM ,作PQ ⊥x 轴于Q ,∴PO =PN ,OQ =12ON =1,∵P 的横坐标为1,∴y P (1); ②如图4所示:由勾股定理得:MN ,∵P 是△MON 的相似点,∴△PNM ∽△NOM ,∴PN MNON MO=,即2PN =,解得:PN =3,即P 的纵坐标为3,代入y =3x 得:3 =3x ,解得:x =2,∴P (2,3);综上所述:△MON 的自相似点的坐标为(12);考点:1.反比例函数综合题;2.阅读型;3.新定义;4.存在型;5.分类讨论;6.压轴题.18.(2017山西省)综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形.例如:三边长分别为9,12,15或3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明.(3)请在图4中证明△AEN是(3,4,5)型三角形.探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.【答案】(1)证明见解析;(2)NF =ND ′,证明见解析;(3)证明见解析;(4)△MFN ,△MD ′H ,△MDA .【解析】试题分析:(1)根据题中所给(3,4,5)型三角形的定义证明即可; (2)NF =ND ′,证明Rt △HNF ≌Rt △HND ′即可;(3)根据题中所给(3,4,5)型三角形的定义证明即可;(4)由△AEN 是(3,4,5)型三角形,凡是与△AEN 相似的△都是(3,4,5)型三角形. 试题解析:(1)∵四边形ABCD 是矩形,∴∠D =∠DAE =90°.由折叠知:AE =AD ,∠AEF =∠D =90°,∴∠D =∠DAE =∠AEF =90°,∴四边形AEFD 是矩形.∵AE =AD ,∴矩形AEFD 是正方形. (2)NF =ND ′.证明如下:连结HN .由折叠知:∠AD ′H =∠D =90°,HF =HD =HD ′.∵四边形AEFD 是正方形,∴∠EFD =90°. ∵∠AD ′H =90°,∴∠HD ′N =90°.在Rt △HNF 和Rt △HND ′中,∵HN =HN ,HF =HD ′,∴Rt △HNF ≌Rt △HND ′,∴NF =ND ′.(3)∵四边形AEFD 是正方形,∴AE =EF =AD =8cm ,由折叠知:AD ′=AD =8cm ,EN =EF -NF =(8-x )㎝.在Rt △AEN 中,由勾股定理得:222AN AE EN =+ ,即222(8)8(8)x x +=+-,解得:x =2,∴AN =8+x =10(㎝),EN =6(㎝),∴AN =6:8:10=3:4:5,∴△AEN 是(3,4,5)型三角形.考点:1.勾股定理的应用;2.新定义;3.阅读型;4.探究型;5.压轴题.19.(2017广东省)如图,在平面直角坐标系中,O 为原点,四边形ABCO 是矩形,点A ,C 的坐标分别是A (0,2)和C (0),点D 是对角线AC 上一动点(不与A ,C 重合),连结BD ,作DE ⊥DB ,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1)填空:点B 的坐标为 ;。
中考数学压轴题及解析分类汇编中考数学压轴:相似三角形问题中考数学压轴:等腰三角形问题中考数学压轴:直角三角形问题中考数学压轴:平行四边形问题中考数学压轴:梯形问题中考数学压轴:面积问题2016中考数学压轴题:函数相似三角形问题(一)例1、直线113y x =-+分别交x 轴、y 轴于A 、B 两点,△AOB 绕点O 按逆时针方向旋转90°后得到△COD ,抛物线y =ax 2+bx +c 经过A 、C 、D 三点.(1) 写出点A 、B 、C 、D 的坐标;(2) 求经过A 、C 、D 三点的抛物线表达式,并求抛物线顶点G 的坐标;(3) 在直线BG 上是否存在点Q ,使得以点A 、B 、Q 为顶点的三角形与△COD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.图1思路点拨1.图形在旋转过程中,对应线段相等,对应角相等,对应线段的夹角等于旋转角.2.用待定系数法求抛物线的解析式,用配方法求顶点坐标.3.第(3)题判断∠ABQ =90°是解题的前提.4.△ABQ 与△COD 相似,按照直角边的比分两种情况,每种情况又按照点Q 与点B 的位置关系分上下两种情形,点Q 共有4个.满分解答(1)A (3,0),B (0,1),C (0,3),D (-1,0).(2)因为抛物线y =ax 2+bx +c 经过A (3,0)、C (0,3)、D (-1,0) 三点,所以930,3,0.a b c c a b c ++=⎧⎪=⎨⎪-+=⎩ 解得1,2,3.a b c =-⎧⎪=⎨⎪=⎩所以抛物线的解析式为y =-x 2+2x +3=-(x -1)2+4,顶点G 的坐标为(1,4).(3)如图2,直线BG 的解析式为y =3x +1,直线CD 的解析式为y =3x +3,因此CD //BG .因为图形在旋转过程中,对应线段的夹角等于旋转角,所以AB ⊥CD .因此AB ⊥BG ,即∠ABQ =90°.因为点Q 在直线BG 上,设点Q 的坐标为(x ,3x +1),那么BQ ==. Rt △COD 的两条直角边的比为1∶3,如果Rt △ABQ 与Rt △COD 相似,存在两种情况: ①当3BQ BA =3=.解得3x =±.所以1(3,10)Q ,2(3,8)Q --. ②当13BQ BA =13=.解得13x =±.所以31(,2)3Q ,41(,0)3Q -.图2 图3考点伸展第(3)题在解答过程中运用了两个高难度动作:一是用旋转的性质说明AB ⊥BG ;二是BQ =.我们换个思路解答第(3)题:如图3,作GH ⊥y 轴,QN ⊥y 轴,垂足分别为H 、N .通过证明△AOB ≌△BHG ,根据全等三角形的对应角相等,可以证明∠ABG =90°. 在Rt △BGH 中,sin 1∠=,cos 1∠=. ①当3BQ BA=时,BQ = 在Rt △BQN 中,sin 13QN BQ =⋅∠=,cos 19BN BQ =⋅∠=.当Q 在B 上方时,1(3,10)Q ;当Q 在B 下方时,2(3,8)Q --. ②当13BQ BA =时,BQ =31(,2)3Q ,41(,0)3Q -. 例2、 Rt △ABC 在直角坐标系内的位置如图1所示,反比例函数(0)k y k x=≠在第一象限内的图像与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),△BDE 的面积为2.(1)求m 与n 的数量关系;(2)当tan ∠A =12时,求反比例函数的解析式和直线AB 的表达式; (3)设直线AB 与y 轴交于点F ,点P 在射线FD 上,在(2)的条件下,如果△AEO 与△EFP 相似,求点P 的坐标.图1思路点拨1.探求m 与n 的数量关系,用m 表示点B 、D 、E 的坐标,是解题的突破口.2.第(2)题留给第(3)题的隐含条件是FD //x 轴.3.如果△AEO 与△EFP 相似,因为夹角相等,根据对应边成比例,分两种情况. 满分解答(1)如图1,因为点D (4,m )、E (2,n )在反比例函数k y x =的图像上,所以4,2.m k n k =⎧⎨=⎩ 整理,得n =2m .(2)如图2,过点E 作EH ⊥BC ,垂足为H .在Rt △BEH 中,tan ∠BEH =tan ∠A =12,EH =2,所以BH =1.因此D (4,m ),E (2,2m ),B (4,2m +1). 已知△BDE 的面积为2,所以11(1)2222BD EH m ⋅=+⨯=.解得m =1.因此D (4,1),E (2,2),B (4,3).因为点D (4,1)在反比例函数k y x =的图像上,所以k =4.因此反比例函数的解析式为4y x=. 设直线AB 的解析式为y =kx +b ,代入B (4,3)、E (2,2),得34,22.k b k b=+⎧⎨=+⎩ 解得12k =,1b =.因此直线AB 的函数解析式为112y x =+.图2 图3 图4(3)如图3,因为直线112y x =+与y 轴交于点F (0,1),点D 的坐标为(4,1),所以FD // x 轴,∠EFP =∠EAO .因此△AEO 与△EFP 相似存在两种情况:①如图3,当EA EF AO FP=时,2FP =.解得FP =1.此时点P 的坐标为(1,1).②如图4,当EA FPAO EF ==.解得FP =5.此时点P 的坐标为(5,1).考点伸展 本题的题设部分有条件“Rt △ABC 在直角坐标系内的位置如图1所示”,如果没有这个条件限制,保持其他条件不变,那么还有如图5的情况:第(1)题的结论m 与n 的数量关系不变.第(2)题反比例函数的解析式为12y x =-,直线AB 为172y x =-.第(3)题FD 不再与x 轴平行,△AEO 与△EFP 也不可能相似.图52016中考数学压轴题函数相似三角形问题(二)例3、如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1 图2思路点拨1.第(2)题用含S的代数式表示x2-x1,我们反其道而行之,用x1,x2表示S.再注意平移过程中梯形的高保持不变,即y2-y1=3.通过代数变形就可以了.2.第(3)题最大的障碍在于画示意图,在没有计算结果的情况下,无法画出准确的位置关系,因此本题的策略是先假设,再说理计算,后验证.3.第(3)题的示意图,不变的关系是:直线AB 与x 轴的夹角不变,直线AB 与抛物线的对称轴的夹角不变.变化的直线PQ 的斜率,因此假设直线PQ 与AB 的交点G 在x 轴的下方,或者假设交点G 在x 轴的上方.满分解答(1)抛物线的对称轴为直线1x =,解析式为21184y x x =-,顶点为M (1,18-). (2) 梯形O 1A 1B 1C 1的面积12122(11)3()62x x S x x -+-⨯3==+-,由此得到1223s x x +=+.由于213y y -=,所以22212211111138484y y x x x x -=--+=.整理,得212111()()384x x x x ⎡⎤-+-=⎢⎥⎣⎦.因此得到2172x x S -=. 当S =36时,212114,2.x x x x +=⎧⎨-=⎩ 解得126,8.x x =⎧⎨=⎩ 此时点A 1的坐标为(6,3). (3)设直线AB 与PQ 交于点G ,直线AB 与抛物线的对称轴交于点E ,直线PQ 与x 轴交于点F ,那么要探求相似的△GAF 与△GQE ,有一个公共角∠G .在△GEQ 中,∠GEQ 是直线AB 与抛物线对称轴的夹角,为定值.在△GAF 中,∠GAF 是直线AB 与x 轴的夹角,也为定值,而且∠GEQ ≠∠GAF . 因此只存在∠GQE =∠GAF 的可能,△GQE ∽△GAF .这时∠GAF =∠GQE =∠PQD . 由于3tan 4GAF ∠=,tan 5DQ t PQD QP t ∠==-,所以345t t =-.解得207t =.图3 图4例4、如图1,已知点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n=++上.(1)求m、n;(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形A A′B′B为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB′的交点为C,试在x轴上找一个点D,使得以点B′、C、D为顶点的三角形与△ABC相似.图1思路点拨1.点A与点B的坐标在3个题目中处处用到,各具特色.第(1)题用在待定系数法中;第(2)题用来计算平移的距离;第(3)题用来求点B′的坐标、AC和B′C的长.2.抛物线左右平移,变化的是对称轴,开口和形状都不变.3.探求△ABC 与△B ′CD 相似,根据菱形的性质,∠BAC =∠CB ′D ,因此按照夹角的两边对应成比例,分两种情况讨论.满分解答(1) 因为点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n =++上,所以444,20.m m n m m n -+=⎧⎨++=⎩ 解得43m =-,4n =. (2)如图2,由点A (-2,4) 和点B (1,0),可得AB =5.因为四边形A A ′B ′B 为菱形,所以A A ′=B ′B = AB =5.因为438342+--=x x y ()2416133x =-++,所以原抛物线的对称轴x =-1向右平移5个单位后,对应的直线为x =4. 因此平移后的抛物线的解析式为()3164342,+--=x y .图2(3) 由点A (-2,4) 和点B ′ (6,0),可得A B ′=如图2,由AM //CN ,可得''''B N B C B M B A=,即28=.解得'B C =AC =ABC 与△B ′CD 中,∠BAC =∠CB ′D .①如图3,当''AB B C AC B D ==,解得'3B D =.此时OD =3,点D 的坐标为(3,0).②如图4,当''AB B D AC B C ==,解得5'3B D =.此时OD =133,点D 的坐标为(133,0).图3 图4考点伸展在本题情境下,我们还可以探求△B ′CD 与△AB B ′相似,其实这是有公共底角的两个等腰三角形,容易想象,存在两种情况.我们也可以讨论△B ′CD 与△C B B ′相似,这两个三角形有一组公共角∠B ,根据对应边成比例,分两种情况计算.2016中考数学压轴题函数相似三角形问题(三)例5 、 如图1,抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点. (1)求此抛物线的解析式;(2)P 是抛物线上的一个动点,过P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的 点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线是有一点D ,使得△DCA 的面积最大,求出点D 的坐标.,图1思路点拨1.已知抛物线与x 轴的两个交点,用待定系数法求解析式时,设交点式比较简便. 2.数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长. 3.按照两条直角边对应成比例,分两种情况列方程.4.把△DCA 可以分割为共底的两个三角形,高的和等于OA . 满分解答(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y .(2)设点P 的坐标为))4)(1(21,(---x x x . ①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM ,x AM -=4.如果2==CO AOPM AM ,那么24)4)(1(21=----x x x .解得5=x 不合题意. 如果21==CO AO PM AM ,那么214)4)(1(21=----x x x .解得2=x .此时点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM ,4-=x AM . 解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-.解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4. 解方程24)4)(1(21=---x x x ,得3-=x .此时点P 的坐标为)14,3(--.解方程214)4)(1(21=---x x x ,得0=x .此时点P 与点O 重合,不合题意.综上所述,符合条件的 点P 的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4 (3)如图5,过点D 作x 轴的垂线交AC 于E .直线AC 的解析式为221-=x y . 设点D 的横坐标为m )41(<<m ,那么点D 的坐标为)22521,(2-+-m m m ,点E 的坐标为)221,(-m m .所以)221()22521(2---+-=m m m DE m m 2212+-=.因此4)221(212⨯+-=∆m m S DAC m m 42+-=4)2(2+--=m . 当2=m 时,△DCA 的面积最大,此时点D 的坐标为(2,1).图5 图6考点伸展第(3)题也可以这样解:如图6,过D 点构造矩形OAMN ,那么△DCA 的面积等于直角梯形CAMN 的面积减去△CDN 和△ADM 的面积.设点D 的横坐标为(m ,n ))41(<<m ,那么42)4(21)2(214)22(21++-=--+-⨯+=n m m n n m n S . 由于225212-+-=m m n ,所以m m S 42+-=. 例6 、 如图1,△ABC 中,AB =5,AC =3,cos A =310.D 为射线BA 上的点(点D 不与点B 重合),作DE //BC 交射线CA 于点E ..(1) 若CE =x ,BD =y ,求y 与x 的函数关系式,并写出函数的定义域; (2) 当分别以线段BD ,CE 为直径的两圆相切时,求DE 的长度;(3) 当点D 在AB 边上时,BC 边上是否存在点F ,使△ABC 与△DEF 相似?若存在,请求出线段BF 的长;若不存在,请说明理由.图1 备用图备用图思路点拨1.先解读背景图,△ABC是等腰三角形,那么第(3)题中符合条件的△DEF也是等腰三角形.2.用含有x的式子表示BD、DE、MN是解答第(2)题的先决条件,注意点E的位置不同,DE、MN表示的形式分两种情况.3.求两圆相切的问题时,先罗列三要素,再列方程,最后检验方程的解的位置是否符合题意.4.第(3)题按照DE为腰和底边两种情况分类讨论,运用典型题目的结论可以帮助我们轻松解题.满分解答(1)如图2,作BH⊥AC,垂足为点H.在Rt△ABH中,AB=5,cosA=310AHAB=,所以AH=32=12AC.所以BH垂直平分AC,△ABC 为等腰三角形,AB=CB=5.因为DE//BC,所以AB ACDB EC=,即53y x=.于是得到53y x=,(0x>).(2)如图3,图4,因为DE//BC,所以DE AEBC AC=,MN ANBC AC=,即|3|53DE x-=,1|3|253xMN-=.因此5|3|3xDE-=,圆心距5|6|6xMN-=.图2 图3 图4在⊙M 中,115226M r BD y x ===,在⊙N 中,1122N r CE x ==. ①当两圆外切时,5162x x +5|6|6x -=.解得3013x =或者10x =-. 如图5,符合题意的解为3013x =,此时5(3)15313x DE -==. ②当两圆内切时,5162x x -5|6|6x -=. 当x <6时,解得307x =,如图6,此时E 在CA 的延长线上,5(3)1537x DE -==; 当x >6时,解得10x =,如图7,此时E 在CA 的延长线上,5(3)3533x DE -==.图5 图6 图7(3)因为△ABC 是等腰三角形,因此当△ABC 与△DEF 相似时,△DEF 也是等腰三角形.如图8,当D 、E 、F 为△ABC 的三边的中点时,DE 为等腰三角形DEF 的腰,符合题意,此时BF =2.5.根据对称性,当F 在BC 边上的高的垂足时,也符合题意,此时BF =4.1.如图9,当DE 为等腰三角形DEF 的底边时,四边形DECF 是平行四边形,此时12534BF =.图8 图9 图10 图11考点伸展:第(3)题的情景是一道典型题,如图10,如图11,AH 是△ABC 的高,D 、E 、F 为△ABC 的三边的中点,那么四边形DEHF 是等腰梯形.例 7 如图1,在直角坐标系xOy 中,设点A (0,t ),点Q (t ,b ).平移二次函数2tx y -=的图象,得到的抛物线F 满足两个条件:①顶点为Q ;②与x 轴相交于B 、C 两点(∣OB ∣<∣OC ∣),连结A ,B .(1)是否存在这样的抛物线F ,使得OC OB OA ⋅=2?请你作出判断,并说明理由; (2)如果AQ ∥BC ,且tan ∠ABO =23,求抛物线F 对应的二次函数的解析式.思路点拨1.数形结合思想,把OC OB OA ⋅=2转化为212t x x =⋅.2.如果AQ ∥BC ,那么以OA 、AQ 为邻边的矩形是正方形,数形结合得到t =b . 3.分类讨论tan ∠ABO =23,按照A 、B 、C 的位置关系分为四种情况.A 在y 轴正半轴时,分为B 、C 在y 轴同侧和两侧两种情况;A 在y 轴负半轴时,分为B 、C 在y 轴同侧和两侧两种情况. 满分解答(1)因为平移2tx y -=的图象得到的抛物线F 的顶点为Q (t ,b ),所以抛物线F 对应的解析式为b t x t y +--=2)(.因为抛物线与x 轴有两个交点,因此0>b t .令0=y ,得-=t OB t b,+=t OC tb . 所以-=⋅t OC OB (|||||tb)( +t t b )|-=2|t 22|OA t tb ==.即22bt t t-=±.所以当32t b =时,存在抛物线F 使得||||||2OC OB OA ⋅=. (2)因为AQ //BC ,所以t =b ,于是抛物线F 为t t x t y +--=2)(.解得1,121+=-=t x t x .①当0>t 时,由||||OC OB <,得)0,1(-t B .如图2,当01>-t 时,由=∠ABO tan 23=||||OB OA =1-t t ,解得3=t .此时二次函数的解析式为241832-+-=x x y .如图3,当01<-t 时,由=∠ABO tan 23=||||OB OA =1+-t t ,解得=t 53.此时二次函数的解析式为-=y 532x +2518x +12548.图2 图3②如图4,如图5,当0<t 时,由||||OC OB <,将t -代t ,可得=t 53-,3-=t .此时二次函数的解析式为=y 532x +2518x -12548或241832++=x x y .图4 图5考点伸展第(2)题还可以这样分类讨论:因为AQ //BC ,所以t =b ,于是抛物线F 为2()y t x t t =--+.由3ta n 2OA ABO OB ∠==,得23OB OA =. ①把2(,0)3B t 代入2()y t x t t =--+,得3t =±(如图2,图5).②把2(,0)3B t -代入2()y t x t t =--+,得35t =±(如图3,图4).2016中考数学压轴题函数等腰三角形问题(一)例1、如图1,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点.P (0,m )是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D .(1)求点D 的坐标(用含m 的代数式表示); (2)当△APD 是等腰三角形时,求m 的值;(3)设过P 、M 、B 三点的抛物线与x 轴正半轴交于点E ,过点O 作直线ME 的垂线,垂足为H (如图2).当点P 从O 向C 运动时,点H 也随之运动.请直接写出点H 所经过的路长(不必写解答过程).图1 图2思路点拨1.用含m 的代数式表示表示△APD 的三边长,为解等腰三角形做好准备. 2.探求△APD 是等腰三角形,分三种情况列方程求解.3.猜想点H 的运动轨迹是一个难题.不变的是直角,会不会找到不变的线段长呢?Rt △OHM 的斜边长OM 是定值,以OM 为直径的圆过点H 、C . 满分解答(1)因为PC //DB ,所以1CP PM MCBD DM MB===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ).(2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-. ①当AP =AD 时,2(4)m -24m =+.解得32m =(如图3). ②当PA =PD 时,24m +244(2)m =+-.解得43m =(如图4)或4m =(不合题意,舍去).③当DA =DP 时,2(4)m -244(2)m =+-.解得23m =(如图5)或2m =(不合题意,舍去).综上所述,当△APD 为等腰三角形时,m 的值为32,43或23.图3 图4 图5(3)点H .考点伸展第(2)题解等腰三角形的问题,其中①、②用几何说理的方法,计算更简单:①如图3,当AP =AD 时,AM 垂直平分PD ,那么△PCM ∽△MBA .所以12PC MB CM BA ==.因此12PC =,32m =. ②如图4,当PA =PD 时,P 在AD 的垂直平分线上.所以DA =2PO .因此42m m -=.解得43m =. 第(2)题的思路是这样的:如图6,在Rt △OHM 中,斜边OM 为定值,因此以OM 为直径的⊙G 经过点H ,也就是说点H 在圆弧上运动.运动过的圆心角怎么确定呢?如图7,P 与O 重合时,是点H 运动的起点,∠COH =45°,∠CGH =90°.图6 图7例2 如图1,已知一次函数y =-x +7与正比例函数43y x =的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O—C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8? ②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.图1思路点拨1.把图1复制若干个,在每一个图形中解决一个问题.2.求△APR 的面积等于8,按照点P 的位置分两种情况讨论.事实上,P 在CA 上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能.3.讨论等腰三角形APQ ,按照点P 的位置分两种情况讨论,点P 的每一种位置又要讨论三种情况.满分解答(1)解方程组7,4,3y x y x =-+⎧⎪⎨=⎪⎩得3,4.x y =⎧⎨=⎩ 所以点A 的坐标是(3,4). 令70y x =-+=,得7x =.所以点B 的坐标是(7,0).(2)①如图2,当P 在OC 上运动时,0≤t <4.由8A P R A C PP O R C O R A S S S S =--=△△△梯形,得1113+7)44(4)(7)8222t t t t -⨯-⨯⨯--⨯-=(.整理,得28120t t -+=.解得t =2或t =6(舍去).如图3,当P 在CA 上运动时,△APR 的最大面积为6.因此,当t =2时,以A 、P 、R 为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P 在OC 上运动时的情形,0≤t <4.如图1,在△AOB 中,∠B =45°,∠AOB >45°,OB =7,AB =OB >AB .因此∠OAB >∠AOB >∠B .如图4,点P 由O 向C 运动的过程中,OP =BR =RQ ,所以PQ //x 轴.因此∠AQP =45°保持不变,∠PAQ 越来越大,所以只存在∠APQ =∠AQP 的情况. 此时点A 在PQ 的垂直平分线上,OR =2CA =6.所以BR =1,t =1.我们再来讨论P 在CA 上运动时的情形,4≤t <7.在△APQ 中, 3cos 5A ∠=为定值,7AP t =-,5520333AQ OA OQ OA OR t =-=-=-. 如图5,当AP =AQ 时,解方程520733t t -=-,得418t =. 如图6,当QP =QA 时,点Q 在PA 的垂直平分线上,AP =2(OR -OP ).解方程72[(7)(4)]t t t -=---,得5t =.如7,当PA =PQ 时,那么12cos AQ A AP∠=.因此2cos AQ AP A =⋅∠.解方程52032(7)335t t -=-⨯,得22643t =. 综上所述,t =1或418或5或22643时,△APQ 是等腰三角形.图5 图6 图7考点伸展当P在CA上,QP=QA时,也可以用2cosAP AQ A=⋅∠来求解.2016中考数学压轴题函数等腰三角形问题(二)例3 如图1,在直角坐标平面内有点A(6, 0),B(0, 8),C(-4, 0),点M、N分别为线段AC和射线AB上的动点,点M以2个单位长度/秒的速度自C向A方向作匀速运动,点N以5个单位长度/秒的速度自A向B方向作匀速运动,MN交OB于点P.(1)求证:MN∶NP为定值;(2)若△BNP与△MNA相似,求CM的长;(3)若△BNP是等腰三角形,求CM的长.图1思路点拨1.第(1)题求证MN ∶NP 的值要根据点N 的位置分两种情况.这个结论为后面的计算提供了方便.2.第(2)题探求相似的两个三角形有一组邻补角,通过说理知道这两个三角形是直角三角形时才可能相似.3.第(3)题探求等腰三角形,要两级(两层)分类,先按照点N 的位置分类,再按照顶角的顶点分类.注意当N 在AB 的延长线上时,钝角等腰三角形只有一种情况.4.探求等腰三角形BNP ,N 在AB 上时,∠B 是确定的,把夹∠B 的两边的长先表示出来,再分类计算.满分解答(1)如图2,图3,作NQ ⊥x 轴,垂足为Q .设点M 、N 的运动时间为t 秒.在Rt △ANQ 中,AN =5t ,NQ =4t ,AQ =3t .在图2中,QO =6-3t ,MQ =10-5t ,所以MN ∶NP =MQ ∶QO =5∶3.在图3中,QO =3t -6,MQ =5t -10,所以MN ∶NP =MQ ∶QO =5∶3.(2)因为△BNP 与△MNA 有一组邻补角,因此这两个三角形要么是一个锐角三角形和一个钝角三角形,要么是两个直角三角形.只有当这两个三角形都是直角三角形时才可能相似.如图4,△BNP ∽△MNA ,在Rt △AMN 中,35AN AM =,所以531025t t =-.解得3031t =.此时CM 6031=.图2 图3 图4(3)如图5,图6,图7中,OP MP QN MN =,即245OP t =.所以85OP t =. ①当N 在AB 上时,在△BNP 中,∠B 是确定的,885BP t =-,105BN t =-. (Ⅰ)如图5,当BP =BN 时,解方程881055t t -=-,得1017t =.此时CM 2017=. (Ⅱ)如图6,当NB =NP 时,45BE BN =.解方程()1848105255t t ⎛⎫-=- ⎪⎝⎭,得54t =.此时CM 52=. (Ⅲ)当PB =PN 时,1425BN BP =.解方程()1481058255t t ⎛⎫-=- ⎪⎝⎭,得t 的值为负数,因此不存在PB =PN 的情况.②如图7,当点N 在线段AB 的延长线上时,∠B 是钝角,只存在BP =BN 的可能,此时510BN t =-.解方程885105t t -=-,得3011t =.此时CM 6011=.图5 图6 图7考点伸展如图6,当NB =NP 时,△NMA 是等腰三角形,1425BN BP =,这样计算简便一些.例4、如图1,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若12y m=,要使△DEF 为等腰三角形,m 的值应为多少?图1思路点拨1.证明△DCE ∽△EBF ,根据相似三角形的对应边成比例可以得到y 关于x 的函数关系式.2.第(2)题的本质是先代入,再配方求二次函数的最值.3.第(3)题头绪复杂,计算简单,分三段表达.一段是说理,如果△DEF 为等腰三角形,那么得到x =y ;一段是计算,化简消去m ,得到关于x 的一元二次方程,解出x 的值;第三段是把前两段结合,代入求出对应的m 的值.满分解答(1)因为∠EDC 与∠FEB 都是∠DEC 的余角,所以∠EDC =∠FEB .又因为∠C =∠B =90°,所以△DCE ∽△EBF .因此DC EB CE BF=,即8m x x y -=.整理,得y 关于x 的函数关系为218y x x m m=-+. (2)如图2,当m =8时,2211(4)288y x x x =-+=--+.因此当x =4时,y 取得最大值为2.(3) 若12y m =,那么21218x x m m m=-+.整理,得28120x x -+=.解得x =2或x =6.要使△DEF 为等腰三角形,只存在ED =EF 的情况.因为△DCE ∽△EBF ,所以CE =BF ,即x =y .将x =y =2代入12y m =,得m =6(如图3);将x =y =6代入12y m=,得m =2(如图4).图2 图3 图4考点伸展本题中蕴涵着一般性与特殊性的辩证关系,例如:由第(1)题得到218y x x m m =-+221116(8)(4)x x x m m m=--=--+, 那么不论m 为何值,当x =4时,y 都取得最大值.对应的几何意义是,不论AB 边为多长,当E 是BC 的中点时,BF 都取得最大值.第(2)题m =8是第(1)题一般性结论的一个特殊性.再如,不论m 为小于8的任何值,△DEF 都可以成为等腰三角形,这是因为方程218x x x m m=-+总有一个根8x m =-的.第(3)题是这个一般性结论的一个特殊性. 2016中考数学压轴题函数相似三角形问题(三)例5 已知:如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3,过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在成立,请说明理由.图1思路点拨1.用待定系数法求抛物线的解析式,这个解析式在第(2)、(3)题的计算中要用到.2.过点M 作MN ⊥AB ,根据对应线段成比例可以求FA 的长.3.将∠EDC 绕点D 旋转的过程中,△DCG 与△DEF 保持全等.4.第(3)题反客为主,分三种情况讨论△PCG 为等腰三角形,根据点P 的位置确定点Q 的位置,再计算点Q 的坐标.满分解答(1)由于OD 平分∠AOC ,所以点D 的坐标为(2,2),因此BC =AD =1. 由于△BCD ≌△ADE ,所以BD =AE =1,因此点E 的坐标为(0,1).设过E 、D 、C 三点的抛物线的解析式为c bx ax y ++=2,那么⎪⎩⎪⎨⎧=++=++=.039,224,1c b a c b a c 解得65-=a ,613=b 1=c .因此过E 、D 、C 三点的抛物线的解析式为1613652++-=x x y .(2)把56=x 代入1613652++-=x x y ,求得512=y .所以点M 的坐标为⎪⎭⎫ ⎝⎛512,56. 如图2,过点M 作MN ⊥AB ,垂足为N ,那么DADN FA MN =,即25622512-=-FA .解得1=FA . 因为∠EDC 绕点D 旋转的过程中,△DCG ≌△DEF ,所以CG =EF =2.因此GO =1,EF =2GO .(3)在第(2)中,GC =2.设点Q 的坐标为⎪⎭⎫ ⎝⎛++-161365,2x x x . ①如图3,当CP =CG =2时,点P 与点B (3,2)重合,△PCG 是等腰直角三角形.此时G Q Q x x y -=,因此11613652-=++-x x x 。
专题16:压轴题
一、选择题
1.(2017天津第12题)已知抛物线与轴相交于点(点在点左侧),顶点为.342+-=x x y x B A ,A B M 平移该抛物线,使点平移后的对应点落在轴上,点平移后的对应点落在轴上,则平移后M 'M x B 'B y 的抛物线解析式为(
)A .
B .
C .
D .122++=x x y 122-+=x x y 122+-=x x y 122
--=x x y 【答案】A .
2.(2017福建第10题)如图,网格纸上正方形小格的边长为1.图中线段和点绕着同一个点做相同AB P 的旋转,分别得到线段和点,则点所在的单位正方形区域是( )
A B ''P 'P '
A .1区
B .2区
C .3区
D .4区
【答案】D 【解析】如图,根据题意可得旋转中心O ,旋转角是90°,旋转方向为逆时针,因此可知点P 的对应点落在了4区,故选D .
O 2π
10.(2017山东日照第12题)已知抛物线
(4,0),其部分图象如图所示,下列结论:
①抛物线过原点;
②4a+b+c=0;
③a b+c<0;
④抛物线的顶点坐标为(2,b);
⑤当x<2时,y随x增大而增大.
【答案】C.
L K H
.C.
【
14
【答案】
.51-
=(为,
=(
【答案】
.52
【解析】试题分析:(1)在B 点处是以点B 为圆心,10为半径的
(-10
(2)∵y=-x+1与轴、轴的交点分别为
如图2,当圆与小圆相切时,切点为
又∵直线AB所在的函数解析式为
∴C点的横坐标的取值范围为2≤x
1
【答案】(1)m=(2)点
4
【解析】
试题分析:(1)待定系数法即可得到结论;
(2)连接AC ,作BF ⊥AC 交AC 的延长线于F ,根据已知条件得到AF ∥x 轴,得到F ( 1, 3),设D (0,m ),则OD =|m |即可得到结论;
(3)设M (a ,a 2 2a 3),N (1,n ),①以AB 为边,则AB ∥MN ,AB =MN ,如图2,过M 作ME ⊥对称轴y 于E ,AF ⊥x 轴于F ,于是得到△ABF ≌△NME ,证得NE =AF =3,ME =BF =3,得到M (4,5)或( 2,5);②以AB 为对角线,BN =AM ,BN ∥AM ,如图3,则N 在x 轴上,M 与C 重合,于是得到结论.
试题解析:(1)由y =ax 2+bx 3得C (0. 3),
∴OC =3,
∵OC =3OB ,
∴OB =1,
∴B ( 1,0),
把A (2, 3),B ( 1,0)代入y =ax 2+bx 3得,304233a b a b --=⎧⎨+-=-⎩
∴,12
a b =⎧⎨=-⎩∴抛物线的解析式为y =x 2 2x 3;
(2)设连接AC ,作BF ⊥AC 交AC 的延长线于F ,
∵A (2, 3),C (0, 3),
∴AF ∥x 轴,
∴F ( 1, 3),
∴BF =3,AF =3,
∴∠BAC =45°,
设D (0,m ),则OD =|m |,
∵∠BDO =∠BAC ,
∴∠BDO =45°,
∴OD =OB =1,
∴|m |=1,
∴D1(0,1),D2(0, 1);
(3)设M(a,a2 2a 3),N(1,n),
①以AB为边,则AB∥MN,AB=MN,如图2,过M作ME⊥对称轴y于E,AF⊥x轴于F,
则△ABF≌△NME,
∴NE=AF=3,ME=BF=3,
∴|a 1|=3,
∴a=4或a= 2,
∴M(4,5)或( 2,5);
②以AB为对角线,BN=AM,BN∥AM,如图3,
则N在x轴上,M与C重合,
∴M(0, 3),
综上所述,存在以点A,B,M,N为顶点的四边形是平行四边形,M(4,5)或( 2,5)或(0, 3).
1
3。