专题:小船过河问题
- 格式:ppt
- 大小:191.00 KB
- 文档页数:14
小船过河问题-高考物理知识点
小船过河问题1.一般情况的过河小船过河问题,可以把小船的渡河运动分解为它同时参与的两个运动,一是小船运动,一是水流的运动,船的实际运动为合运动。
2.以最短时间过河
过河时间最短,就是所有的船速都用来过河,这时候船头应该垂直河岸。
因为这时候船参与两个运动,一个是沿水流方向,一个是垂直河岸方向,而且这两个运动具有独立性,互不干扰。
3.以最短航程过河
“沿最短行程过河”就是和速度方向垂直河岸,那么要求在水流方向上没有速度,就是说在船速沿水流方向分解一个速度来抵消水速,而且船头应该偏向上游。
小船过河问题三种情况及其公式
小船渡河三种情况公式推导是:
1、小船过江时的水流速度与船过江的时间无关,只与船的速度有关。
从船的速度都是用来过河的,而不是作为分速度来说,可以推导出沿河岸垂直过河是最短的过河方式,公式为t=s/v船。
2、当船速大于水速时,当前速度和船速的组合速度可以垂直于河岸。
当船速与流速的夹角为时,即当船向(-90)度方向向上游倾斜时,船可以垂直过河,此时的渡河时间可以表示为T=S/cos(-90)V 船。
3、如果满足流速大于船速的前提,流速和船速的组合速度不能垂直于河岸。
但不要忘了船的位移最短,就是画一个以船速的长度为半径,以速度的箭头末端为圆心的圆。
这时圆上有无数条切线,所以要求出速度初始位置的切线,也就是这条切线与最短位移重合,所以此时的公式是s=河宽*v水/v船。
小船过河问题轮船渡河问题:(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。
21.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间 ,显然,当时,即船头的指向与河岸垂直,渡河时间最θυυsin 1船ddt ==︒=90θ小为,合运动沿v 的方向进行。
vd2.位移最小若水船υυ>结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水υυθ=cos 若,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短水船v v <呢?如图所示,设船头v 船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 与圆相切时,α角最大,根据船头与河岸的夹角应为水船v v =θcos,船沿河漂下的最短距离为:水船v v arccos=θθθsin )cos (min 船船水v d v v x ⋅-=此时渡河的最短位移:船水v dv ds ==θcos 【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少?(2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间s s dt 2030602===υ(2)渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽;②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v 方向越接近垂直河岸方向,航程越短。
小船过河问题问题本质小船渡河是典型的运动的合成问题。
需要理解运动的独立性原理,掌握合速度与分速度之间的关系。
小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动v 水(水冲船的运动),和船相对水的运动v 船(即在静水中的船的运动),船的实际运动v 是合运动。
基本模型 1、v 水<v 船时间最少在河宽、船速一定时,在一般情况下,渡河时间θυυsin 1船ddt == ,显然,当︒=90θ时,即船头的指向与河岸垂直,渡河时间最小为船v d,合运动沿v 的方向进行。
位移最小结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水υυθ=cosv2、v 水>v 船时间最少同前位移最小不论船的航向如何,总是被水冲向下游,即无论向哪个方向划船都不能使船头垂直于河,只能尽量使船头不那么斜。
那么怎样才能使漂下的距离最短呢?如图所示,设船头v 船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 与圆相切时,α角最大,根据水船v v =θcos 船头与河岸的夹角应为水船v v arccos=θ,船沿河漂下的最短距离为:θθsin )cos (min 船船水v dv v x ⋅-=此时渡河的最短位移:船水v dv ds ==θcos 典型例题★某人以不变的速度垂直对岸游去,游到中间,水流速度加大,则此人渡河时间比预定时间A .增加B .减少C .不变D .无法确定 答案:C★某人以一定速度始终垂直河岸向对岸游去,当河水匀速流动时,他所游过的路程,过河所用的时间与水速的关系是( )A .水速大时,路程长,时间长B .水速大时,路程长,时间短C .水速大时,路程长,时间不变D .路程、时间与水速无关 答案: C★如图所示,A 、B 为两游泳运动员隔着水流湍急的河流站在两岸边,A 在较下游的位置,且A 的游泳成绩比B 好,现让两人同时下水游泳,要求两人尽快在河中相遇,试问应采用下列哪种方法才能实现?( )A. A 、B 均向对方游(即沿虚线方向)而不考虑水流作用B. B 沿虚线向A 游且A 沿虚线偏向上游方向游C. A 沿虚线向B 游且B 沿虚线偏向上游方向游D. 都应沿虚线偏向下游方向,且B 比A 更偏向下游 答案:A★★一条自西向东的河流,南北两岸分别有两个码头A 、B ,如图所示.已知河宽为80 m ,河水流速为5 m/s ,两个码头A 、B 沿水流的方向相距100 m .现有一只船,它在静水中的行驶速度为4 m/s ,若使用这只船渡河,且沿直线运动,则( )A .它可以正常来往于A 、B 两个码头 B .它只能从A 驶向B ,无法返回C .它只能从B 驶向A ,无法返回D .无法判断 答案:B★在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v 1,摩托艇在静水中的航速为v 2,战士救人的地点A 离岸边最近处O 的距离为d ,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为( ) A .21222υυυ-d B .0 C .21υυd D .12υυd答案:C★某人横渡一河流,船划行速度和水流动速度一定,此人过河最短时间为了T 1;若此船用最短的位移过河,则需时间为T 2,若船速大于水速,则船速1v 与水速2v 之比为( ) (A)21222T T T - (B)12T T (C) 22211T T T - (D)21T T 答案:A★小船在s=200 m 宽的河中横渡,水流速度是2 m/s,船在静水中的航行速度为4 m/s.求: (1)小船渡河的最短时间.(2)要使小船航程最短,应该如何航行? 答案 (1)50 s 2)船速与上游河岸成60°★★一条河宽100米,船在静水中的速度为4m/s ,水流速度是5m/s ,则( )A .该船可能垂直河岸横渡到对岸B .当船头垂直河岸横渡时,过河所用的时间最短C .当船头垂直河岸横渡时,船的位移最小,是100米D .当船横渡时到对岸时,船对岸的最小位移是100米 答案: B★★河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问: (1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?答案:(1)20s (2)小船的船头与上游河岸成600角时,最短航程为120m★★小河宽为d ,河水中各点水流速度大小与各点到较近河岸边的距离成正比,dv k kx v 04==,水,x 是各点到近岸的距离,小船船头垂直河岸渡河,小船划水速度为0v ,则下列说法中正确的是( )A 、小船渡河的轨迹为曲线B 、小船到达离河岸2d处,船渡河的速度为02v C 、小船渡河时的轨迹为直线 D 、小船到达离河岸4/3d 处,船的渡河速度为010v 答案:A★如图所示,小船从A 码头出发,沿垂直河岸的方向划船,若已知河宽为d ,划船的速度v 船恒定. 河水的流速与到河岸的最短距离x 成正比,即)其中k 为常量。
小船渡河问题小船渡河的问题,可以分解为它同时参与的两个分运动,一是小船相对水的运动(设水不流时船的运动,即在静水中的运动),一是随水流的运动(即水冲船的运动,等于水流的运动),船的实际运动为合运动.两种情况:①船速大于水速;②船速小于水速。
两种极值:①渡河最小位移;②渡河最短时间。
【例1】一条宽度为L 的河,水流速度为水v ,已知船在静水中速度为船v ,那么:(1)怎样渡河时间最短? (2)若水船v v >,怎样渡河位移最小?(3)若水船v v <,怎样渡河位移最小,船漂下的距离最短?解析:(1)小船过河问题,可以把小船的渡河运动分解为它同时参与的两个运动,一是小船运动,一是水流的运动,船的实际运动为合运动。
如右图所示,船头与河岸垂直渡河,渡河时间最短:船v L t =min 。
此时,实际速度(合速度)22水船合v v v +=实际位移(合位移)船水船v v v L L 22sin s +=∂= (2)如右图所示,渡河的最小位移即河的宽度。
为使渡河位移等于L ,必须使船的合速度v 合的方向与河岸垂直,即使沿河岸方向的速度分量等于0。
这时船头应指向河的上游,并与河岸成一定的角度θ,所以有水船v v =θcos ,即船水v varccos =θ。
因为θ为锐角,1cos 0<<θ,所以只有在水船v v >时,船头与河岸上游的夹角船水v v arccos =θ,船才有可能垂直河岸渡河,此时最短位移为河宽,即L s =min 。
实际速度(合速度)θsin 船合v v =,运动时间θsin 船合v L v L t ==(3)若水船v v <,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?V 船V 水V 合如右图所示,设船头v 船与河岸成θ角。
合速度v 合与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 合与圆相切时,α角最大,根据水船v v =θcos ,船头与河岸的夹角应为水船v v arccos=θ,此时渡河的最短位移:船水v Lv Ls ==θcos 渡河时间:θsin 船v Lt =,船沿河漂下的最短距离为:θθsin )cos (min 船船水v Lv v x ⋅-=误区:不分条件,认为船位移最小一定是垂直到达对岸;将渡河时间最短与渡河位移最小对应。
小船过河问题轮船渡河问题:(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。
1.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间sin1船d dt,显然,当90时,即船头的指向与河岸垂直,渡河时间最小为vd ,合运动沿v 的方向进行。
2.位移最小若水船结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水cos若水船v v ,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?如图所示,设船头v 船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v与圆相切时,α角最大,根据水船v v cos船头与河岸的夹角应为v水θv αABEv船v 水v船θvV水v 船θv 2v 1水船v v arccos,船沿河漂下的最短距离为:sin)cos (min 船船水v dv v x 此时渡河的最短位移:船水v dv d scos【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间ss dt2030602(2)渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽;②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v方向越接近垂直河岸方向,航程越短。
微专题18小船过河问题【核心要点提示】小船渡河问题分析(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v 1(船在静水中的速度)、v 2(水流速度)、v (船的实际速度).(3)三种情景①过河时间最短:船头正对河岸时,渡河时间最短,t 短=d v 1(d 为河宽).②过河路径最短(v 2<v 1时):合速度垂直于河岸时,航程最短,s 短=d .船头指向上游与河岸夹角为α,cos α=v 2v 1.③过河路径最短(v 2>v 1时):合速度不可能垂直于河岸,无法垂直渡河.确定方法如下:如图所示,以v 2矢量末端为圆心,以v 1矢量的大小为半径画弧,从v 2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短.由图可知:cos α=v 1v 2,最短航程:s 短=d cos α=v 2v 1d .【微专题训练】如图所示,甲、乙两同学从河中O 点出发,分别沿直线游到A 点和B 点后,立即沿原路线返回到O 点,OA 、OB 分别与水流方向平行和垂直,且OA =OB 。
若水流速度不变,两人在静水中游速相等,则他们所用时间t 甲、t 乙的大小关系为()A .t 甲<t 乙B .t 甲=t 乙C .t 甲>t 乙D .无法确定解析:选C 设水速为v 0,人在静水中的速度为v ,OA =OB =x 。
对甲,O →A 阶段人对地的速度为(v +v 0),所用时间t 1=x v +v 0;A →O 阶段人对地的速度为(v -v 0),所用时间t 2=x v -v 0。
所以甲所用时间t 甲=t 1+t 2=x v +v 0+x v -v 0=2vx v 2-v 02。
对乙,O →B 阶段和B →O 阶段的实际速度v ′为v 和v 0的合成,如图所示。
由几何关系得,实际速度v ′=v 2-v 02,故乙所用时间t 乙=2x v ′=2x v 2-v 02。
t 甲t 乙=v v 2-v 02>1,即t 甲>t 乙,故C 正确。
第四章 曲线运动16 小船过河问题【核心要点提示】小船渡河问题分析(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v 1(船在静水中的速度)、v 2(水流速度)、v (船的实际速度).(3)三种情景①过河时间最短:船头正对河岸时,渡河时间最短,t 短=d v 1(d 为河宽). ②过河路径最短(v 2<v 1时):合速度垂直于河岸时,航程最短,s 短=d .船头指向上游与河岸夹角为α,cos α=v 2v 1. ③过河路径最短(v 2>v 1时):合速度不可能垂直于河岸,无法垂直渡河.确定方法如下:如图所示,以v 2矢量末端为圆心,以v 1矢量的大小为半径画弧,从v 2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短.由图可知:cos α=v 1v 2,最短航程:s 短=d cos α=v 2v 1d .【训练】(2014·四川·4)有一条两岸平直、河水均匀流动、流速恒为v 的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k ,船在静水中的速度大小相同,则小船在静水中的速度大小为( ) A.kv k 2-1 B.v 1-k 2 C.kv 1-k 2 D.v k 2-1【解析】设大河宽度为d ,小船在静水中的速度为v 0,则去程渡河所用时间t 1=d v 0,回程渡河所用时间t 2=d v 20-v 2.由题知t 1t 2=k ,联立以上各式得v 0=v 1-k 2,选项B 正确,选项A 、C 、D 错误.【答案】B一艘船在一条河流中渡河,当河水不流动时,船垂直渡河用时t 1.当发生山洪后,在流动的河水中,船在同一位置垂直河岸渡河用时为(设船相对于静水的速度一定,水速是船相对于静水的速度大小的一半)( ) A.2t 1 B .2t 1 C.3t 1 D.233t 1【解析】设河宽为L ,船相对于静水的速度为v ,则河水不流动时,船垂直渡河时间:t 1=L v.当河水速度为v 2时,要垂直河岸渡河,则有:v ′= v 2-v 22=32v ,船垂直渡河时间:t 2=L v ′=L 32v =23·L v =233t 1,选项D 正确. 【答案】D一小船渡河,已知河水的流速与距河岸的距离的变化关系如图甲所示,船在静水中的速度与时间的关系如图乙所示,则( )A .船渡河的最短时间75 sB .要使船以最短时间渡河,船在河水中航行的轨迹是一条直线C .要使船以最短路程渡河,船在行驶过程中,船头必须始终与河岸垂直D .要使船以最短时间渡河,船在河水中的速度是5 m/s【解析】当船的速度与河岸垂直时,渡河时间最短,t =d v 船=3004s =75 s ,故A 正确;船在沿河岸方向上做变速运动,在垂直于河岸方向上做匀速直线运动,两运动的合运动是曲线运动,故B 错误;要使船以最短时间渡河,船在行驶过程中,船头必须始终与河岸垂直,故C 错误;要使船以最短时间渡河,船在航行中与河岸垂直,根据速度的合成可知,船在河水中的最大速度是5 m/s ,故D 错误.【答案】A(2016·辽宁辽阳市高三质检)小河宽为d ,河水中各点水流速度与各点到较近河岸边的距离成正比,v 水=kx ,k =4v 0d,x 是各点到近岸的距离,小船船头垂直河岸渡河,小船划水速度为v 0,则下列说法中正确的是( )A .小船渡河时的轨迹为直线B .小船渡河时的轨迹为曲线C .小船到达距河对岸d 4处,船的渡河速度为2v 0D .小船到达距河对岸3d 4处,船的渡河速度为10v 0 【解析】小船在沿河岸方向上做变速直线运动,在垂直于河岸方向上做匀速运动,合加速度的方向与合速度方向不在同一条直线上,做曲线运动,故B 正确,A 错误;小船到达距河对岸d 4处,水流速为v 水=k d 4=v 0,则v =v 20+v 20=2v 0。
小船过河问题分析与题解【问题概说】(1)船的实际运动是水流的运动和船相对静水的运动的合运动。
(2)三种速度:船相对水的速度为v 船(即船在静水中的速度),水的流速为v 水(即水对地的速度),船的合速度为v (即船对地的速度,船的实际速度,其方向就是船的航向)。
(3)三种情景:①过河时间最短:当船头垂直河岸,渡河时间最短,且渡河时间与水的流速无关。
②过河路径最短:在v 船>v 水的条件下,当船的合速度垂直于河岸时,渡河位移(航程或路径)最小并等于河宽。
在v 船<v 水的条件下,当船头与船的合速度垂直时,渡河位移(航程或路径)最小。
此种情况下,合速度不可能垂直于河岸,无法垂直渡河。
最短航程确定如下:如图所示,以v 水矢量末端为圆心,以v 船矢量的大小为半径画弧,从v 水矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短。
(下图中v 1表船速,v 2表水速)③最小渡河速度:水速和航向一定,船速垂直航向有最小船速。
【典型题例】两河岸平行,河宽d=100m ,水流速度v 1=3m/s ,求:(1)船在静水中的速度是4m/s 时,欲使船渡河时间最短,船应怎样渡河?最短时间是多少?船的位移是多大?(2)船在静水中的速度是6m/s 时,欲使船航行距离最短,船应怎样渡河?渡河时间多长?(3)船在静水中的速度为1.5m/s 时,欲使船渡河距离最短,船应怎样渡河?船的最小航程是多少?[思路分析](1)当船头垂直于河岸时,渡河时间最短:t min =d/v 2=100/4=25s 合速度v=s m v v /543222221=+=+ 船的位移大小s=v t min =125m(2)欲使船航行距离最短,需船头向上游转过一定角度使合速度方向垂直于河岸,设船的开行速度v 2与岸成θ角,则cosθ=216321==v v , 所以θ=600,合速度v=v 2sin600=3s m /3 t=s v d 93100=(3)船在静水中速度小于水流的速度,船头垂直于合速度v 时,渡河位移最小, 设船头与河岸夹角为β,如图所示: cosβ=2135.112==v v 所以β=600 最小位移s min =m d 20060cos 100cos 0==β [答案](1) 船头垂直于河岸时,渡河时间最短:t min =25s ,s =125m ;(2) 船头向上游转过一定角度, 与岸成600角航程最短,t=s 93100; (3) 船头垂直于合速度,船头与河岸夹角600时航程最短,s min =m 200。
15-小船渡河问题D则的前提下,处理合运动和分运动关系时要灵活采用合适的方法,或用作图法,或用【解析】法,依情况而定。
可以借鉴力的合成和分解的知识,具体问题具体分析。
3. 小船过河:三种过河情况(1)过河时间最短:小船沿着上述不同的方向运动,走到对岸的时间是不相等的,由于运动的等时性知,在垂直于河岸上的速度越大则过河时间越短,所以此时应该调整小船沿着d 的方向运动,则求得最短时间为船v d t=m in(2)过河路径最短:第一种情况:当船速大于水速时从上图可以看出,当我们适当调整船头的方向,使得船在水流方向上的分速度等于水速,即21cos v v =θ此时水流方向上小船是不动的,小船的合速度即为V 向对岸运动,此时小船的最短位移为S d =第二种情况:船速小于水速,那么在水流方向上,船的分速度12cos v v θ<此时无论我们怎么调整船头的方向都没有办法保证水流方向的合速度为零,所以小船一定要向下游漂移,如图当合速度的方向与船相对水的速度的方向垂直时,合速度的方向与河岸的夹角最短,渡河航程最小;根据几何关系,则有:d s =12v v ,因此最短的航程是:21v s d v = 【典例精讲】1. 求最短位移典例1如图,小船在静水中航行速度为10 m/s ,水流速度为5 m/s ,为了在最短距离内渡河,则小船船头应该保持的方向为(图中任意两个相邻方向间的夹角均为30°)( )A . a 方向B . b 方向C . c 方向D . d 方向典例2船在静水中的航速为v 1,水流的速度为v 2,为使船行驶到河正对岸的码头,则v 1相对v 2的方向应为( )A .B .C .D .2. 求最短时间典例3小河宽为d ,河水中各点水流速度大小与各点到较近河岸边的距离成正比,即kx v =水,d v k o4=,x 是各点到近岸的距离.小船划水速度大小恒为v 0,船头始终垂直河岸渡河.则下列说法正确的是( )A .小船的运动轨迹为直线B .水流速度越大,小船渡河所用的时间越长C .小船渡河时的实际速度是先变小后变大D .小船到达离河对岸43d 处,船的渡河速度为02v3. 船速大于水速典例4(多选) 如图所示,某人由A 点划船渡河,船头指向始终与河岸垂直,则( )A .船头垂直河岸渡河所用时间最短B .小船到达对岸的位置为正对岸的B 点C .保持其他条件不变,小船行至河中心后,若水流速度突然增大,则渡河时间变长D .保持其他条件不变,小船行至河中心后,若水流速度突然增大,则渡河位移变大典例5(多选) 在宽度为d 的河中,水流速度为v 2,船在静水中速度为v 1(且v 1>v 2),方向可以选择,现让该船开始渡河,则该船( )A .可能的最短渡河时间为2v dB .可能的最短渡河位移为dC .只有当船头垂直河岸渡河时,渡河时间才和水速无关D .不管船头与河岸夹角是多少,渡河时间和水速均无关4. 水速大于船速典例6 (多选)一船在静水中的速度是6m/s,要渡过宽为180m、水流速度为8 m/s的河流,则下列说法中正确的是( )A.船相对于地的速度可能是15m/sB.此船过河的最短时间是30sC.此船可以在对岸的任意位置靠岸D.此船不可能垂直到达对岸5. 综合题典例7 已知某船在静水中的速度为v1=4 m/s,现让船渡过某条河。
小船过河问题分析与题解【问题概说】(1)船的实际运动是水流的运动和船相对静水的运动的合运动. (2)三种速度:船相对水的速度为v 船(即船在静水中的速度),水的流速为v 水(即水对地的速度),船的合速度为v (即船对地的速度,船的实际速度,其方向就是船的航向)。
(3)三种情景:①过河时间最短:当船头垂直河岸,渡河时间最短,且渡河时间与水的流速无关。
②过河路径最短:在v 船>v 水的条件下,当船的合速度垂直于河岸时,渡河位移(航程或路径)最小并等于河宽。
在v 船<v 水的条件下,当船头与船的合速度垂直时,渡河位移(航程或路径)最小。
此种情况下,合速度不可能垂直于河岸,无法垂直渡河。
最短航程确定如下:如图所示,以v 水矢量末端为圆心,以v 船矢量的大小为半径画弧,从v 水矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短。
(下图中v 1表船速,v 2表水速)③最小渡河速度:水速和航向一定,船速垂直航向有最小船速。
【典型题例】两河岸平行,河宽d=100m ,水流速度v 1=3m/s ,求:(1)船在静水中的速度是4m/s 时,欲使船渡河时间最短,船应怎样渡河?最短时间是多少?船的位移是多大?(2)船在静水中的速度是6m/s 时,欲使船航行距离最短,船应怎样渡河?渡河时间多长?(3)船在静水中的速度为1。
5m/s 时,欲使船渡河距离最短,船应怎样渡河?船的最小航程是多少?[思路分析](1)当船头垂直于河岸时,渡河时间最短: t min =d/v 2=100/4=25s 合速度v=s m v v /543222221=+=+船的位移大小s=v t min =125m(2)欲使船航行距离最短,需船头向上游转过一定角度使合速度方向垂直于河岸,设船的开行速度v 2与岸成θ角,则cosθ=216321==v v , 所以θ=600,合速度v=v 2sin600=3s m /3 t=s v d 93100= (3)船在静水中速度小于水流的速度,船头垂直于合速度v 时,渡河位移最小, 设船头与河岸夹角为β,如图所示:v 1 dvv 2v 1θvv 2cosβ=2135.112==v v 所以β=600 最小位移s min =m d 20060cos 100cos 0==β [答案](1) 船头垂直于河岸时,渡河时间最短:t min =25s ,s =125m; (2) 船头向上游转过一定角度, 与岸成600角航程最短,t=s 93100; (3) 船头垂直于合速度,船头与河岸夹角600时航程最短,s min =m 200。
小船过河问题分析与题解【问题概说】(1)船的实际运动是水流的运动和船相对静水的运动的合运动。
(2)三种速度:船相对水的速度为v 船(即船在静水中的速度),水的流速为v 水(即水对地的速度),船的合速度为v (即船对地的速度,船的实际速度,其方向就是船的航向)。
(3)三种情景:①过河时间最短:当船头垂直河岸,渡河时间最短,且渡河时间与水的流速无关。
②过河路径最短:在v 船>v 水的条件下,当船的合速度垂直于河岸时,渡河位移(航程或路径)最小并等于河宽。
在v 船<v 水的条件下,当船头与船的合速度垂直时,渡河位移(航程或路径)最小。
此种情况下,合速度不可能垂直于河岸,无法垂直渡河。
最短航程确定如下:如图所示,以v 水矢量末端为圆心,以v 船矢量的大小为半径画弧,从v 水矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短。
(下图中v 1表船速,v 2表水速)③最小渡河速度:水速和航向一定,船速垂直航向有最小船速。
【典型题例】两河岸平行,河宽d=100m ,水流速度v 1=3m/s ,求:(1)船在静水中的速度是4m/s 时,欲使船渡河时间最短,船应怎样渡河最短时间是多少船的位移是多大(2)船在静水中的速度是6m/s 时,欲使船航行距离最短,船应怎样渡河渡河时间多长(3)船在静水中的速度为1.5m/s 时,欲使船渡河距离最短,船应怎样渡河船的最小航程是多少[思路分析](1)当船头垂直于河岸时,渡河时间最短:t min =d/v 2=100/4=25s合速度v=s m v v /543222221=+=+ 船的位移大小s=v t min =125m(2)欲使船航行距离最短,需船头向上游转过一定角度使合速度方向垂直于河岸,设船的开行速度v 2与岸成θ角,则cosθ=216321==v v , 所以θ=600,合速度v=v 2sin600=3s m /3 t=s v d 93100= (3)船在静水中速度小于水流的速度,船头垂直于合速度v 时,渡河位移最小,设船头与河岸夹角为β,如图所示: cosβ=2135.112==v v 所以β=600最小位移s min =m d 20060cos 100cos 0==β [答案](1) 船头垂直于河岸时,渡河时间最短:t min =25s ,s =125m ;(2) 船头向上游转过一定角度, 与岸成600角航程最短,t=s 93100; (3) 船头垂直于合速度,船头与河岸夹角600时航程最短,s min =m 200。
小船渡河问题1. 垂直渡河要使小船垂直渡河,小船在静水中的航行速度必须大于水流速度,且船头应指向河流的上游,使船的合速度v 与河岸垂直,如图1所示。
设船头指向与河岸上游之间的夹角为,河宽为d ,则垂直渡河时间2. 以最短时间渡河当小船在静水中的航速大小确定时,由知,当时,t 最小,即当船头指向与河岸垂直时,小船有最短渡河时间。
可见最短渡河时间与水流速度无关.例1. 如图2,一只小船从河岸A 点出发,船头垂直于河岸行驶,经10min 到达正对岸下游120m 的C 点。
若小船速度不变,保持船身轴线与河岸成角行驶,经过12.5min 到达正对岸B 点,则此河的宽度d 为多少? 分析:设小船在静水中的速度为,水流速度为,船以最短时间到达C 点,有船垂直到达B 点,有由以上各式得3. 以最小位移渡河(1)当船在静水中的速度 > 水流速度时,小船可以垂直渡河,显然渡河的最小位移s 等于河宽d 。
(2)当船在静水中的速度< 水流速度 时,不论船头指向如何,船总要被水冲向下游。
如图,设船头船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 与圆相切时,α角最大,根据水船v v =θcos 船头与河岸的夹角应为水船v v arccos =θ,船沿河漂下的最短距离为:θθsin )cos (min船船水v dv v x ⋅-= 此时渡河的最短位移:船水v dv ds ==θcos 4. 以最小速度渡河例2. 如图4,一小船从河岸A 处出发渡河,河宽,河水流速,在出发点下游的B 处有瀑布,A 、B 两处距离为,为使小船靠岸时不至被冲进瀑布,船对水的最小速度是多少? 解法1:以的顶点为圆心,以的大小为半径作圆,由图可知,小船以最小速度安全到达对岸时,小船航线恰在AC 连线上,且船的最小速度与AC 垂直,如图5所示。
小船渡河的问题在高中物理教学中,往往遇到小船在水有一定流速的河中渡河的问题。
这类问题一般有小船渡河的时间最小,位移最小,速度最小三种情况:问题一:小船如何渡河时间最小,最小时间为多少?分析及解答:设河宽为d ,小船在静水中的速度为V 船,水流速度为V 水,如图1中的甲。
将船对水的速度沿平行河岸方向和垂直河岸方向正交分解。
沿平行河岸方向的速度不影响渡河的快慢,小船渡过河时时间与垂直河岸方向的速度有关,当小船垂直河岸渡过河时时间最小,即最小时间为t min =d/V 船。
[例题1]:河宽60m,小船在静水中的速度为4m/s,水流速度为3m/s 。
求小船渡河的最小时间是多少,小船实际渡河的位移为多大?分析及解答:如图1中的乙,当小船垂直河岸渡过河时时间最小,即最小时间为t min =d/V 船。
∴t min =d/V 船=60/4=15(s)。
小船实际渡河的位移S AB =V 合t min =5*15=75(m).问题二:小船如何渡河到达对岸的位移最小,最小位移是多少?分析及解答:在小船渡河过程中,将船对水的速度沿平行河岸方向和垂直河岸方向正交分解,如图2中的甲。
当小船沿平行河岸方向的分速度与水速大小相等,方向相反时,即V 1=V 水,小船的合速度(V 2)就沿垂直河岸方向, 这时渡河到达对岸的位移最小,S min =d 。
而渡河时间t=d/V 2=d/Vsin θ。
[例题2]:河宽60m,小船在静水中的速度为5m/s,水流速度为3m/s 。
求小船渡河的最小位移是多少,小船实际渡河的时间为多大?分析及解答:如图2 中的乙,当小船沿平行河岸方向的分速度V 1=V 水,小船要垂直河岸方向渡河,这时渡河到达对岸的位移最小,Smin=d=60(m)。
而V船与河岸的夹角θ=arc cos(V 船/V 水)=530。
这时小船实际渡河的时间t=d/V 2=d/V 船sin θ=60/4=15(s).问题三:小船如何渡河速度最小,最小速度为多少?分析及解答:将小船渡河运动看作水流的运动(水冲船的运动)和小船相对静水的运动(设水流不流动时船的运动)的合运动。