精品(人教版)2016-2017学年九年级上册数学学案3.3(2)
- 格式:doc
- 大小:134.95 KB
- 文档页数:3
第二十一章一元二次方程22.1 一元二次方程(1)学习目标:了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;•应用一元二次方程概念解决一些简单题目.1.通过设置问题,建立数学模型,•模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.难点(关键):通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.学一学(阅读教材第30至31页,并完成预习内容。
)问题1 要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为多高?分析:设雕像下部高x m,则上部高________,得方程_____________________________整理得_____________________________ ①问题2如图,有一块长方形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒。
如果要制作的无盖方盒的底面积为3600c㎡,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为x cm,则盒底的长为________________,宽为_____________.得方程_____________________________整理得_____________________________ ②问题3 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。
根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为___________设应邀请x个队参赛,每个队要与其他_________个队各赛1场,所以全部比赛共_________________场。
“体验型课堂”学习方案数学(九年级上册)班级:姓名:§3.5 弧长及扇形的面积1【学习导言】当我们知道圆有面积和周长的时候,我们不禁会想,现在我们学的扇形也应该有周长和面积的,问题是扇形的周长和面积应该怎么来求呢?这就是本节的重点,学完这一节,我们就会掌握这些知识点.课前尝试:读一读、试一试、改一改【读一读】阅读教材P81~P82【试一试】1. 己知扇形的圆心角为1200,半径为6,则扇形的弧长是()A. 3πB. 4π C . 5π D . 6π2. 已知1000的圆心角所对弧长为5π cm,则这条弧所在圆的半径为()A. 7cm B 8cm C. 9cm D. 10cm3.一个滑轮起重装置如图所示,滑轮的半径是10cm,当重物上升10cm时,滑轮的一条半径OA绕轴心O按逆时针方向旋转的角度约为(假设绳索与滑轮之间没有滑动,л取3.14 ,结果精确到10 ) ( )A . 1150 B. 600 C. 570 D. 2904. ⊙O的周长是24π,则长为5π的弧所对的圆心角为,所对的圆周角为.5.已知半径为5cm的圆弧长5cm.求这条弧所对圆心角的度数(精确到0.1 ).课内对话:改一改、理一理、辨一辨、练一练、审一审【理一理】审视下面的知识点,思考提出的问题【辨一辨】例 1 如图, BM是⊙O的直径,四边形A B M N是矩形,D是⊙O上一点,DC AN⊥,与AN交于点C.已知15,AC mm=⊙O的半径30R mm=,求弧BD的长.例2 一段圆弧形的公路弯道,圆弧的半径是2km.一辆汽车以每时60km的速度通过弯道,需时20s,求弯道所对圆心角的度数(精确到0.1︒).【测一测】1.已知弧的长为3cm π,弧的半径为6cm .则圆弧的度数为 .2. 弦心距为 4 ,弦长为 8 的弦所对的劣弧长是( )A.8лB.4л D.3. 一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B 点从开始至结束所走过的路径长度为( )A .32πB .43πC .4 D. 322π+ 4. 一段铁路弯道成圆弧形,圆弧的半径是0.3km , 一列火车以每小时36km 的速度经10秒钟通过弯道,求弯道所对圆心角的度数(л取3.14,结果精确到0.10) .5. 如图,在△ABC 中,AB=4cm ,∠B=300 ,∠C=450,以A 为圆心,以AC 长为半径作弧与AB 相交于点E ,与BC 相交于点 F .( 1 )求弧CE 的长; ( 2 )求 CF 的长.【审一审】1.错误的题号: ,主要原因: 。
2.如图,已知△3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:)•画图略.(3)23.1图形的旋转1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角(3)指出,经过旋转,点A、B、C、D分别移到什么位置?3.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B•对应点的位置,以及旋转后的三角形.4.如图,四边形ABCD是边长为1的正方形,且DE=14,△ABF是△A DE的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少(4)如果连结EF,那么△AEF是怎样的三角形?5.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M•在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.参考答案1. 解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.2. (1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)•画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.(3)旋转前、后的图形全等.3.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,•又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.解:(1)连结CD(2)以CB为一边作∠BCE,使得∠BCE=∠ACD(3)在射线CE上截取CB′=CB则B′即为所求的B的对应点.(4)连结DB′则△DB′C就是△ABC绕C点旋转后的图形.4. 分析:由△ABF是△ADE的旋转图形,可直接得出旋转中心和旋转角,要求AF•的长度,根据旋转前后的对应线段相等,只要求AE的长度,由勾股定理很容易得到.•△ABF 与△ADE是完全重合的,所以它是直角三角形.解:(1)旋转中心是A点.(2)∵△ABF是由△ADE旋转而成的∴B是D的对应点∴∠DAB=90°就是旋转角(3)∵AD=1,DE=14∴=4∵对应点到旋转中心的距离相等且F 是E 的对应点 ∴AF=4(4)∵∠EAF=90°(与旋转角相等)且AF=AE ∴△EAF 是等腰直角三角形.5. 分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明. 解:∵四边形ABCD 、四边形AKLM 是正方形∴AB=A D ,AK=AM ,且∠BAD=∠KAM 为旋转角且为90°∴△ADM 是以A 为旋转中心,∠BAD 为旋转角由△ABK 旋转而成的∴BK=DM。
九年级上册数学绩优学案一、实数概念与实数的比较运算实数是数的一种分类,包括有理数和无理数。
在数轴上,实数可以用点表示,有理数对应有理点,无理数对应无理点。
实数之间可以进行比较运算,包括大小比较、相等比较等。
1. 实数的大小比较在实数集中,可以进行大小比较。
对于任意两个实数a和b,可以通过比较它们的大小来确定它们的顺序关系。
如果a>b,表示a大于b;如果a<b,表示a小于b;如果a=b,表示a等于b。
2. 实数的相等比较除了大小比较,实数还可以进行相等比较。
当两个实数a和b的数值相等时,可以表示为a=b。
相等比较是判断两个实数是否相等的一种方式。
二、有理数的性质与运算有理数是可以表示为两个整数的比值的数,包括整数、分数和小数。
有理数具有以下性质和运算法则。
1. 有理数的性质(1)有理数集是一个有序集,可以进行大小比较。
(2)有理数集中的任意两个数相加、相减、相乘、相除的结果仍为有理数。
2. 有理数的运算(1)有理数的加法:对于任意两个有理数a和b,可以进行加法运算,表示为a+b。
(2)有理数的减法:对于任意两个有理数a和b,可以进行减法运算,表示为a-b。
(3)有理数的乘法:对于任意两个有理数a和b,可以进行乘法运算,表示为a*b。
(4)有理数的除法:对于任意两个有理数a和b,可以进行除法运算,表示为a/b,其中b≠0。
三、无理数的性质与运算无理数是不能表示为两个整数的比值的数,包括无限不循环小数以及无法精确表示的根号值等。
无理数具有以下性质和运算法则。
1. 无理数的性质(1)无理数集是一个无序集,无法进行大小比较。
(2)无理数与有理数的加、减、乘、除的结果都是无理数。
2. 无理数的运算(1)无理数的加法:对于任意两个无理数a和b,可以进行加法运算,表示为a+b。
(2)无理数的减法:对于任意两个无理数a和b,可以进行减法运算,表示为a-b。
(3)无理数的乘法:对于任意两个无理数a和b,可以进行乘法运算,表示为a*b。
前言:转变观念,端正态度,思想是行动的指针,态度的端正是做好每一件事的前提。
由于学校、考试等因素的差异,在很多学校尤其是初中,政治学科是不被重视的,有些地方在中考中政治学科还实行开卷考试,于是在很多同学的眼中,政治是一门副科,可学可不学。
3但是进入高中以后,政治成了一门必修课,而且必须在规定的时间内学完相应内容,否则势必影响毕业和升学,因此,进入高中以后,同学们要做的第一件事就是要及时转变思想观念、端正学习态度,对政治学科要投入足够的时间和精力。
因为只有思想观念转变了、学习态度端正了,才有学好政治的可能,俗话说:“态度决定一切”,说的就是这个道理。
制定计划,明确任务,马克思主义哲学告诉我们:人区别于物的特点就在于人具有主观能动性,人的活动总是有目的、有计划的,因此,在学习过程中,能制定一个合理有效的学习计划是学好思想政治的基本保证。
5如对每一天、每一周、每一月的什么时间看政治、看几遍、要掌握哪些内容、要解决什么问题等一定要做到心中有数、目中有书,千万不能“三天打鱼两天晒网”、脚踩西瓜皮滑到哪里是哪里,尤其是要转变那种认为“政治学科只要考试之前突击看一看背一背就行了”的错误观念。
6养成习惯,掌握方法“细节决定成败”,良好的习惯往往会让人终身受益,能够促进人的成长和发展,学习更是如此。
7定期总结,查漏补缺,中国古代的教育思想家、儒家学派的创始人孔子曾经说过:“温故而知新。
”这句话告诉我们,没有反思就没有进步、没有总结就没有提高,随着时间的推移,学习的内容也就越来越多,而且有很多内容会容易产生混淆。
这时及时进行总结反思、查漏补缺就显得非常必要。
因此作者整理了政治学习的课件提供大家使用学习。
3.3美国的三权分立制教案一、教材分析本框共三目。
首先本框介绍了美国三权分立制度建立的历史原因和阶级原因,并介绍了三权分立的内容与核心。
在此基础上,本课考察了美国三大权力机关之间相互分立、相互制衡的特点。
最后,本课从积极、消极两方面指出了三权分立制的政治作用。
“体验型课堂”学习方案数学(九年级下册)班级:姓名:§2.2 估计概率【学习导言】1.借助实验,体会随机事件在每一次实验中发生与否具有不确定性;2.通过操作,体验重复实验的次数与事件发生的频率之间的关系;3.能从频率值角度估计事件发生的概率;4.懂得开展实验、设计实验,通过实验数据探索规律,并从中学会合作与交流。
课前学习:尝试体验(对话课本,记下问题,尝试练习)【对话课本】阅读教材P36~P39【记下问题】【尝试练习】1.完成课本P36~P37表格2.某运动员投篮5次,投中4次,能否说该运动员投一次篮,投中的概率为4/5?为什么?3.回答下列问题:(1) 抽检1000件衬衣,其中不合格的衬衣有2件,由此估计抽1件衬衣合格的概率是多少?(2) 1998年,在美国密歇根州汉诺城市的一个农场里出生了1头白色的小奶牛,据统计,平均出生1千万头牛才会有1头是白色的,由此估计出生一头奶牛为白色的概率为多少?课内学习:合作体验(检评预习,审视问题,独立练习,纠错反审)【检评预习】同桌交换学案,检查评价批语:【审视问题】审视下面的问题,发表自己的看法。
【尝试例题】例1 在同样条件下对某种小麦种子进行发芽实验,统计发芽种子数,获得如下频数分布表:(1)计算表中各个频数.(2)估计该麦种的发芽概率(3)如果播种该种小麦每公顷所需麦苗数为4181818棵,种子发芽后的成秧率为87%,该麦种的千粒质量为35g,那么播种3公顷该种小麦,估计约需麦种多少kg?【独立练习】A组1.如果某运动员投一次篮投中的概率为0.8,下列说法正确吗?为什么?(1)该运动员投5次篮,必有4次投中.(2)该运动员投100次篮,约有80次投中.2.对一批西装质量抽检情况如下:(1)填写表格中次品的概率.(2)从这批西装中任选一套是次品的概率是多少?(3)若要销售这批西装2000件,为了方便购买次品西装的顾客前来调换,至少应该进多少件西装?3.取5张扑克牌,其中2张“方块”,1张“梅花”,2张“红桃”。
2016-2017学年度 九年级上学期数学教学计划一、指导思想坚持贯彻党的教育方针,以《初中数学新课程标准》为准绳,继续深入开展新课程教学改革。
以提高学生中考数学成绩为出发点,注重培养学生的基础知识和基本技能,提高学生解题答题的能力。
同时通过本学期的课堂教学,完成九年级上册数学教学任务。
并根据实际情况,适当完成九年级下册新授教学内容。
二、教材分析第二十一章 一元二次方程:本章主要是掌握配方法、公式法和因式分解法解一元二次方程,并运用一元二次方程解决实际问题。
本章重点是解一元二次方程的思路及具体方法。
本章的难点是解一元二次方程。
第二十二章《二次函数》的重点是:理解二次函数的概念、性质,掌握二次函数的 解析式及求法,运用二次函数解决实际问题,学会运用数形结合思想解题,突出函数的应用。
、 第二十三章 旋转:本章主要是探索和理解旋转的性质,能够按要求作出简单平面图形旋转后的图形。
本章的重点是中心对称的概念、性质与作图。
本章的难点是辨认中心对称图形,按要求作出简单平面图形旋转后的图形。
第二十四章 圆:理解圆及有关概念,掌握弧、弦、圆心角的关系,探索点与圆、直线与圆、圆与圆之间的位置关系,探索圆周角与圆心角的关系,直径所对圆周角的特点,切线与过切点的半径之间的关系,正多边形与圆的关系……。
第二十五章 概率初步:理解概率的意义及其在生活中的广泛应用。
本章的重点是理解概率的意义和应用,掌握概率的计算方法。
本章的难点是会用列举法求随机事件的概率。
第二十六章 反比例函数:结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式。
能画出反比例函数的图像,根据图像和表达式y=x k(k ≠0)探索并理解k >0和k <0时,图像的变化情况。
能用反比例函数解决简单实际问题。
第二十七章 相似:了解比例的基本性质、线段的比、成比例线段,通过建筑、艺术上的实例了解黄金分割。
通过具体实例认识图形的相似。
了解相似多边形和相似比。
第二十一章一元二次方程21.1一元二次方程1.了解一元二次方程的概念,应用一元二次方程概念解决一些简单问题.2.掌握一元二次方程的一般形式ax2+bx+c=0(a≠0)及有关概念.3.会进行简单的一元二次方程的试解;理解方程解的概念.重点:一元二次方程的概念及其一般形式;一元二次方程解的探索.难点:由实际问题列出一元二次方程;准确认识一元二次方程的二次项和系数以及一次项和系数及常数项.一、自学指导.(10分钟)问题1:如图,有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为x cm,则盒底的长为__(100-2x)cm__,宽为__(50-2x)cm__.列方程__(100-2x)·(50-2x)=3600__,化简整理,得__x2-75x+350=0__.①问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为__4×7=28__.设应邀请x个队参赛,每个队要与其他__(x-1)__个队各赛1场,所以全部比赛共__场.列方程__=28__,化简整理,得__x2-x-56=0__.②探究:(1)方程①②中未知数的个数各是多少?__1个__.(2)它们最高次数分别是几次?__2次__.归纳:方程①②的共同特点是:这些方程的两边都是__整式__,只含有__一个__未知数(一元),并且未知数的最高次数是__2__的方程.1.一元二次方程的定义等号两边都是__整式__,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程.2.一元二次方程的一般形式一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.其中__ax2__是二次项,__a__是二次项系数,__bx__是一次项,__b__是一次项系数,__c__是常数项.点拨精讲:二次项系数、一次项系数、常数项都要包含它前面的符号.二次项系数a≠0是一个重要条件,不能漏掉.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)1.判断下列方程,哪些是一元二次方程?(1)x3-2x2+5=0;(2)x2=1;(3)5x2-2x-=x2-2x+;(4)2(x+1)2=3(x+1);(5)x2-2x=x2+1;(6)ax2+bx+c=0.解:(2)(3)(4).点拨精讲:有些含字母系数的方程,尽管分母中含有字母,但只要分母中不含有未知数,这样的方程仍然是整式方程.2.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.解:去括号,得3x2-3x=5x+10.移项,合并同类项,得3x2-8x-10=0.其中二次项系数是3,一次项系数是-8,常数项是-10.点拨精讲:将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,无论m取何值,该方程都是一元二次方程.证明:m2-8m+17=(m-4)2+1,∵(m-4)2≥0,∴(m-4)2+1>0,即(m-4)2+1≠0.∴无论m取何值,该方程都是一元二次方程.点拨精讲:要证明无论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可.2.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.解:将上面的这些数代入后,只有-2和-3满足等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根.点拨精讲:要判定一个数是否是方程的根,只要把这个数代入等式,看等式两边是否相等即可.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)1.判断下列方程是否为一元二次方程.(1)1-x2=0;(2)2(x2-1)=3y;(3)2x2-3x-1=0;(4)-=0;(5)(x+3)2=(x-3)2;(6)9x2=5-4x.解:(1)是;(2)不是;(3)是;(4)不是;(5)不是;(6)是.2.若x=2是方程ax2+4x-5=0的一个根,求a的值.解:∵x=2是方程ax2+4x-5=0的一个根,∴4a+8-5=0,解得a=-.3.根据下列问题,列出关于x的方程,并将其化成一元二次方程的一般形式:(1)4个完全相同的正方形的面积之和是25,求正方形的边长x;(2)一个长方形的长比宽多2,面积是100,求长方形的长x.解:(1)4x2=25,4x2-25=0;(2)x(x-2)=100,x2-2x-100=0.学生总结本堂课的收获与困惑.(2分钟) 1.一元二次方程的概念以及怎样利用概念判断一元二次方程.2.一元二次方程的一般形式ax2+bx+c=0(a≠0),特别强调a≠0.3.要会判断一个数是否是一元二次方程的根.学习至此,请使用本课时对应训练部分.(10分钟)21.2解一元二次方程21.2.1配方法(1)1.使学生会用直接开平方法解一元二次方程.2.渗透转化思想,掌握一些转化的技能.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次——转化的数学思想.难点:通过根据平方根的意义解形如x2=n(n≥0)的方程,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.一、自学指导.(10分钟)问题1:一桶某种油漆可刷的面积为1500dm2,小李用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?设正方体的棱长为x dm,则一个正方体的表面积为__6x2__dm2,根据一桶油漆可刷的面积列出方程:__10×6x2=1500__,由此可得__x2=25__,根据平方根的意义,得x=__±5__,即x1=__5__,x2=__-5__.可以验证__5__和-5都是方程的根,但棱长不能为负值,所以正方体的棱长为__5__dm.探究:对照问题1解方程的过程,你认为应该怎样解方程(2x -1)2=5及方程x2+6x+9=4?方程(2x-1)2=5左边是一个整式的平方,右边是一个非负数,根据平方根的意义,可将方程变形为__2x-1=±__,即将方程变为__2x-1=和__2x-1=-__两个一元一次方程,从而得到方程(2x-1)2=5的两个解为x1=__,x2=____.在解上述方程的过程中,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样问题就容易解决了.方程x2+6x+9=4的左边是完全平方式,这个方程可以化成(x+__3__)2=4,进行降次,得到__x+3=±2__,方程的根为x1=__-1__,x2=__-5__.归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程.如果方程能化成x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,那么可得x=±或mx+n=±.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)解下列方程:(1)2y2=8;(2)2(x-8)2=50;(3)(2x-1)2+4=0;(4)4x2-4x+1=0.解:(1)2y2=8,(2)2(x-8)2=50,y2=4,(x-8)2=25,y=±2,x-8=±5,∴y1=2,y2=-2;x-8=5或x-8=-5,∴x1=13,x2=3;(3)(2x-1)2+4=0,(4)4x2-4x+1=0,(2x-1)2=-4<0,(2x-1)2=0,∴原方程无解;2x-1=0,∴x1=x2=.点拨精讲:观察以上各个方程能否化成x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,若能,则可运用直接开平方法解.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.用直接开平方法解下列方程:(1)(3x+1)2=7;(2)y2+2y+1=24;(3)9n2-24n+16=11.解:(1);(2)-1±2;(3).点拨精讲:运用开平方法解形如(mx+n)2=p(p≥0)的方程时,最容易出错的是漏掉负根.2.已知关于x的方程x2+(a2+1)x-3=0的一个根是1,求a的值.解:±1.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)用直接开平方法解下列方程:(1)3(x-1)2-6=0;(2)x2-4x+4=5;(3)9x2+6x+1=4;(4)36x2-1=0;(5)4x2=81;(6)(x+5)2=25;(7)x2+2x+1=4.解:(1)x1=1+,x2=1-;(2)x1=2+,x2=2-;(3)x1=-1,x2=;(4)x1=,x2=-;(5)x1=,x2=-;(6)x1=0,x2=-10;(7)x1=1,x2=-3.学生总结本堂课的收获与困惑.(2分钟) 1.用直接开平方法解一元二次方程.2.理解“降次”思想.3.理解x2=p(p≥0)或(mx+n)2=p(p≥0)中,为什么p≥0?学习至此,请使用本课时对应训练部分.(10分钟)21.2.1配方法(2)1.会用配方法解数字系数的一元二次方程.2.掌握配方法和推导过程,能使用配方法解一元二次方程.重点:掌握配方法解一元二次方程.难点:把一元二次方程转化为形如(x-a)2=b的过程.(2分钟)1.填空:(1)x2-8x+__16__=(x-__4__)2;(2)9x2+12x+__4__=(3x+__2__)2;(3)x2+px+__()2__=(x+____)2.2.若4x2-mx+9是一个完全平方式,那么m的值是__±12__.一、自学指导.(10分钟)问题1:要使一块矩形场地的长比宽多6 m,并且面积为16m2,场地的长和宽分别是多少米?设场地的宽为x m,则长为__(x+6)__m,根据矩形面积为16 m2,得到方程__x(x+6)=16__,整理得到__x2+6x-16=0__.探究:怎样解方程x2+6x-16=0?对比这个方程与前面讨论过的方程x2+6x+9=4,可以发现方程x2+6x+9=4的左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程;而方程x2+6x-16=0不具有上述形式,直接降次有困难,能设法把这个方程化为具有上述形式的方程吗?解:移项,得x2+6x=16,两边都加上__9__即__()2__,使左边配成x2+bx+()2的形式,得__x2__+6__x__+9=16+__9__,左边写成平方形式,得__(x+3)2=25__,开平方,得__x+3=±5__,(降次)即__x+3=5__或__x+3=-5__,解一次方程,得x1=__2__,x2=__-8__.归纳:通过配成完全平方式的形式解一元二次方程的方法,叫做配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程.问题2:解下列方程:(1)3x2-1=5;(2)4(x-1)2-9=0;(3)4x2+16x+16=9.解:(1)x=±;(2)x1=-,x2=;(3)x1=-,x2=-.归纳:利用配方法解方程时应该遵循的步骤:(1)把方程化为一般形式ax2+bx+c=0;(2)把方程的常数项通过移项移到方程的右边;(3)方程两边同时除以二次项系数a;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)1.填空:(1)x2+6x+__9__=(x+__3__)2;(2)x2-x+____=(x-____)2;(3)4x2+4x+__1__=(2x+__1__)2.2.解下列方程:(1)x2+6x+5=0;(2)2x2+6x+2=0;(3)(1+x)2+2(1+x)-4=0.解:(1)移项,得x2+6x=-5,配方得x2+6x+32=-5+32,(x+3)2=4,由此可得x+3=±2,即x1=-1,x2=-5.(2)移项,得2x2+6x=-2,二次项系数化为1,得x2+3x=-1,配方得x2+3x+()2=(x+)2=,由此可得x+=±,即x1=-,x2=--.(3)去括号,整理得x2+4x-1=0,移项得x2+4x=1,配方得(x+2)2=5,x+2=±,即x1=-2,x2=--2.点拨精讲:解这些方程可以用配方法来完成,即配一个含有x的完全平方式.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)如图,在Rt△ABC中,∠C=90°,AC=8 m,CB=6 m,点P,Q同时由A,B两点出发分别沿AC,BC方向向点C匀速移动,它们的速度都是1 m/s,几秒后△PCQ的面积为Rt△ABC 面积的一半?解:设x秒后△PCQ的面积为Rt△ABC面积的一半.根据题意可列方程:(8-x)(6-x)=××8×6,即x2-14x+24=0,(x-7)2=25,x-7=±5,∴x1=12,x2=2,x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.答:2秒后△PCQ的面积为Rt△ABC面积的一半.点拨精讲:设x秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.根据已知条件列出等式.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.用配方法解下列关于x的方程:(1)2x2-4x-8=0;(2)x2-4x+2=0;(3)x2-x-1=0;(4)2x2+2=5.解:(1)x1=1+,x2=1-;(2)x1=2+,x2=2-;(3)x1=+,x2=-;(4)x1=,x2=-.2.如果x2-4x+y2+6y++13=0,求(xy)z的值.解:由已知方程得x2-4x+4+y2+6y+9+=0,即(x-2)2+(y+3)2+=0,∴x=2,y=-3,z=-2.∴(xy)z=[2×(-3)]-2=.学生总结本堂课的收获与困惑.(2分钟)1.用配方法解一元二次方程的步骤.2.用配方法解一元二次方程的注意事项.学习至此,请使用本课时对应训练部分.(10分钟)21.2.2公式法1.理解一元二次方程求根公式的推导过程,了解公式法的概念.2.会熟练应用公式法解一元二次方程.重点:求根公式的推导和公式法的应用.难点:一元二次方程求根公式的推导.(2分钟)用配方法解方程:(1)x2+3x+2=0;(2)2x2-3x+5=0.解:(1)x1=-2,x2=-1;(2)无解.一、自学指导.(8分钟)问题:如果这个一元二次方程是一般形式ax2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根?问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=,x2=.分析:因为前面具体数字已做得很多,现在不妨把a,b,c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.探究:一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx +c=0,当b2-4ac≥0时,将a,b,c代入式子x=就得到方程的根,当b2-4ac<0时,方程没有实数根.(2)x=叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.(3)利用求根公式解一元二次方程的方法叫做公式法.(4)由求根公式可知,一元二次方程最多有__2个实数根,也可能有__1__个实根或者__没有__实根.(5)一般地,式子b2-4ac叫做方程ax2+bx+c=0(a≠0)的根的判别式,通常用希腊字母Δ表示,即Δ=b2-4ac.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)用公式法解下列方程,根据方程根的情况你有什么结论?(1)2x2-3x=0;(2)3x2-2x+1=0;(3)4x2+x+1=0.解:(1)x1=0,x2=;有两个不相等的实数根;(2)x1=x2=;有两个相等的实数根;(3)无实数根.点拨精讲:Δ>0时,有两个不相等的实数根;Δ=0时,有两个相等的实数根;Δ<0时,没有实数根.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.方程x2-4x+4=0的根的情况是(B)B.有两个相等的实数根C.有一个实数根D.没有实数根2.当m为何值时,方程(m+1)x2-(2m-3)x+m+1=0,(1)有两个不相等的实数根?(2)有两个相等的实数根?(3)没有实数根?解:(1)m<;(2)m=;(3)m>.3.已知x2+2x=m-1没有实数根,求证:x2+mx=1-2m 必有两个不相等的实数根.证明:∵x2+2x-m+1=0没有实数根,∴4-4(1-m)<0,∴m<0.对于方程x2+mx=1-2m,即x2+mx+2m-1=0,Δ=m2-8m+4,∵m<0,∴Δ>0,∴x2+mx=1-2m必有两个不相等的实数根.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.利用判别式判定下列方程的根的情况:(1)2x2-3x-=0;(2)16x2-24x+9=0;(3)x2-4x+9=0;(4)3x2+10x=2x2+8x.解:(1)有两个不相等的实数根;(3)无实数根;(4)有两个不相等的实数根.2.用公式法解下列方程:(1)x2+x-12=0;(2)x2-x-=0;(3)x2+4x+8=2x+11;(4)x(x-4)=2-8x;(5)x2+2x=0;(6)x2+2x+10=0.解:(1)x1=3,x2=-4;(2)x1=,x2=;(3)x1=1,x2=-3;(4)x1=-2+,x2=-2-;(5)x1=0,x2=-2;(6)无实数根.点拨精讲:(1)一元二次方程ax2+bx+c=0(a≠0)的根是由一元二次方程的系数a,b,c确定的;(2)在解一元二次方程时,可先把方程化为一般形式,然后在b2-4ac≥0的前提下,把a,b,c的值代入x=(b2-4ac≥0)中,可求得方程的两个根;(3)由求根公式可以知道一元二次方程最多有两个实数根.学生总结本堂课的收获与困惑.(2分钟)1.求根公式的推导过程.2.用公式法解一元二次方程的一般步骤:先确定.a,b,c的值,再算.出b2-4ac的值、最后代.入求根公式求解.3.用判别式判定一元二次方程根的情况.学习至此,请使用本课时对应训练部分.(10分钟)21.2.3因式分解法1.会用因式分解法(提公因式法、公式法)解某些简单的数字系数的一元二次方程.2.能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.重点:用因式分解法解一元二次方程.难点:理解因式分解法解一元二次方程的基本思想.(2分钟)将下列各题因式分解:(1)am+bm+cm=(__a+b+c__)m;(2)a2-b2=__(a+b)(a-b)__;(3)a2±2ab+b2=__(a±b)2__.一、自学指导.(8分钟)问题:根据物理学规律,如果把一个物体从地面以10 m/s 的速度竖直上抛,那么经过x s物体离地的高度(单位:m)为10x -4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)设物体经过x s落回地面,这时它离地面的高度为0,即10x -4.9x2=0,①思考:除配方法或公式法以外,能否找到更简单的方法解方程①?分析:方程①的右边为0,左边可以因式分解得:x(10-4.9x)=0,于是得x=0或10-4.9x=0,②∴x1=__0__,x2≈2.04.上述解中,x2≈2.04表示物体约在2.04s时落回地面,而x1=0表示物体被上抛离开地面的时刻,即0s时物体被抛出,此刻物体的高度是0 m.点拨精讲:(1)对于一元二次方程,先将方程右边化为0,然后对方程左边进行因式分解,使方程化为两个一次式的乘积的形式,再使这两个一次因式分别等于零,从而实现降次,这种解法叫做因式分解法.(2)如果a·b=0,那么a=0或b=0,这是因式分解法的根据.如:如果(x+1)(x-1)=0,那么__x+1=0或__x-1=0__,即__x=-1__或__x=1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.说出下列方程的根:(1)x(x-8)=0;(2)(3x+1)(2x-5)=0.解:(1)x1=0,x2=8;(2)x1=-,x2=.2.用因式分解法解下列方程:(1)x2-4x=0;(2)4x2-49=0;(3)5x2-20x+20=0.解:(1)x1=0,x2=4;(2)x1=,x2=-;(3)x1=x2=2.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.用因式分解法解下列方程:(1)5x2-4x=0;(2)3x(2x+1)=4x+2;(3)(x+5)2=3x+15.解:(1)x1=0,x2=;(2)x1=,x2=-;(3)x1=-5,x2=-2.点拨精讲:用因式分解法解一元二次方程的要点是方程的一边是0,另一边可以分解因式.2.用因式分解法解下列方程:(1)4x2-144=0;(2)(2x-1)2=(3-x)2;(3)5x2-2x-=x2-2x+;(4)3x2-12x=-12.解:(1)x1=6,x2=-6;(2)x1=,x2=-2;(3)x1=,x2=-;(4)x1=x2=2.点拨精讲:注意本例中的方程可以试用多种方法.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.用因式分解法解下列方程:(1)x2+x=0;(2)x2-2x=0;(3)3x2-6x=-3;(4)4x2-121=0;(5)(x-4)2=(5-2x)2.解:(1)x1=0,x2=-1;(2)x1=0,x2=2;(3)x1=x2=1;(4)x1=,x2=-;(5)x1=3,x2=1.点拨精讲:因式分解法解一元二次方程的一般步骤:(1)将方程右边化为__0__;(2)将方程左边分解成两个一次式的__乘积__;(3)令每个因式分别为__0__,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.2.把小圆形场地的半径增加5 m得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.解:设小圆形场地的半径为x m.则可列方程2πx2=π(x+5)2.解得x1=5+5,x2=5-5(舍去).答:小圆形场地的半径为(5+5)m.学生总结本堂课的收获与困惑.(2分钟) 1.用因式分解法解方程的根据由ab=0得a=0或b=0,即“二次降为一次”.2.正确的因式分解是解题的关键.学习至此,请使用本课时对应训练部分.(10分钟)21.2.4一元二次方程的根与系数的关系1.理解并掌握根与系数的关系:x1+x2=-,x1x2=.2.会用根的判别式及根与系数的关系解题.重点:一元二次方程的根与系数的关系及运用.难点:一元二次方程的根与系数的关系及运用.一、自学指导.(10分钟)自学1:完成下表:问题:你发现什么规律?①用语言叙述你发现的规律;答:两根之和为一次项系数的相反数;两根之积为常数项.②x2+px+q=0的两根x1,x2用式子表示你发现的规律.答:x1+x2=-p,x1x2=q.自学2:完成下表:问题:上面发现的结论在这里成立吗?(不成立)请完善规律:①用语言叙述发现的规律;答:两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比.②ax2+bx+c=0的两根x1,x2用式子表示你发现的规律.答:x1+x2=-,x1x2=.自学3:利用求根公式推导根与系数的关系.(韦达定理)ax2+bx+c=0的两根x1=____,x2=____.x1+x2=-,x1x2=.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)根据一元二次方程的根与系数的关系,求下列方程的两根之和与两根之积.(1)x2-3x-1=0;(2)2x2+3x-5=0;(3)x2-2x=0.解:(1)x1+x2=3,x1x2=-1;(2)x1+x2=-,x1x2=-;(3)x1+x2=6,x1x2=0.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.不解方程,求下列方程的两根之和与两根之积.(1)x2-6x-15=0;(2)3x2+7x-9=0;(3)5x-1=4x2.解:(1)x1+x2=6,x1x2=-15;(2)x1+x2=-,x1x2=-3;(3)x1+x2=,x1x2=.点拨精讲:先将方程化为一般形式,找对a,b,c.2.已知方程2x2+kx-9=0的一个根是-3,求另一根及k 的值.解:另一根为,k=3.点拨精讲:本题有两种解法,一种是根据根的定义,将x=-3代入方程先求k,再求另一个根;一种是利用根与系数的关系解答.3.已知α,β是方程x2-3x-5=0的两根,不解方程,求下列代数式的值.(1)+;(2)α2+β2;(3)α-β.解:(1)-;(2)19;(3)或-.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.不解方程,求下列方程的两根和与两根积:(1)x2-3x=15;(2)5x2-1=4x2;(3)x2-3x+2=10;(4)4x2-144=0.解:(1)x1+x2=3,x1x2=-15;(2)x1+x2=0,x1x2=-1;(3)x1+x2=3,x1x2=-8;(4)x1+x2=0,x1x2=-36.2.两根均为负数的一元二次方程是(C)A.7x2-12x+5=0B.6x2-13x-5=0C.4x2+21x+5=0D.x2+15x-8=0点拨精讲:两根均为负数的一元二次方程根与系数的关系满足两根之和为负数,两根之积为正数.学生总结本堂课的收获与困惑.(2分钟) 不解方程,根据一元二次方程根与系数的关系和已知条件结合,可求得一些代数式的值;求得方程的另一根和方程中的待定系数的值.1.先化成一般形式,再确定a,b,c.2.当且仅当b2-4ac≥0时,才能应用根与系数的关系.3.要注意比的符号:x1+x2=-(比前面有负号),x1x2=(比前面没有负号).学习至此,请使用本课时对应训练部分.(10分钟)21.3实际问题与一元二次方程(1)1.会根据具体问题(按一定传播速度传播的问题、数字问题等)中的数量关系列一元二次方程并求解.2.能根据问题的实际意义,检验所得结果是否合理.3.进一步掌握列方程解应用题的步骤和关键.重点:列一元二次方程解决实际问题.难点:找出实际问题中的等量关系.一、自学指导.(12分钟)问题1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?分析:①设每轮传染中平均一个人传染了x个人,那么患流感的这一个人在第一轮中传染了__x__人,第一轮后共有__(x+1)__人患了流感;②第二轮传染中,这些人中的每个人又传染了__x__人,第二轮后共有__(x+1)(x+1)__人患了流感.则列方程:__(x+1)2=121__,解得__x=10或x=-12(舍)__,即平均一个人传染了__10__个人.再思考:如果按照这样的传染速度,三轮后有多少人患流感?问题2:一个两位数,它的两个数字之和为6,把这两个数字交换位置后所得的两位数与原两位数的积是1008,求原来的两位数.分析:设原来的两位数的个位数字为__x__,则十位数字为__(6-x)__,则原两位数为__10(6-x)+x,新两位数为__10x+(6-x)__.依题意可列方程:[10(6-x)+x][10x+(6-x)]=1008__,解得x1=__2__,x2=__4__,∴原来的两位数为24或42.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有x 名学生,根据题意,列出方程为()A.x(x+1)=2550B.x(x-1)=2550C.2x(x+1)=2550D.x(x-1)=2550×2分析:由题意,每一个同学都将向全班其他同学各送一张相片,则每人送出(x-1)张相片,全班共送出x(x-1)张相片,可列方程为x(x-1)=2550.故选B.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,求每个支干长出多少小分支?解:设每个支干长出x个小分支,则有1+x+x2=91,即x2+x-90=0,解得x1=9,x2=-10(舍去),故每个支干长出9个小分支.点拨精讲:本例与传染问题的区别.2.一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这个两位数小4,设个位数字为x,则列方程为:__x2+(x+4)2=10(x+4)+x-4__.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(7分钟)1.两个正数的差是2,它们的平方和是52,则这两个数是(C)A.2和4B.6和8C.4和6D.8和102.教材P21第2题、第3题学生总结本堂课的收获与困惑.(3分钟) 1.列一元二次方程解应用题的一般步骤:(1)“审”:即审题,读懂题意弄清题中的已知量和未知量;(2)“设”:即设__未知数__,设未知数的方法有直接设和间接设未知数两种;(3)“列”:即根据题中__等量__关系列方程;(4)“解”:即求出所列方程的__根__;(5)“检验”:即验证根是否符合题意;(6)“答”:即回答题目中要解决的问题.2.对于数字问题应注意数字的位置.学习至此,请使用本课时对应训练部分.(10分钟)21.3实际问题与一元二次方程(2)1.会根据具体问题(增长率、降低率问题和利润率问题)中的数量关系列一元二次方程并求解.2.能根据问题的实际意义,检验所得结果是否合理.3.进一步掌握列方程解应用题的步骤和关键.重点:如何解决增长率与降低率问题.难点:理解增长率与降低率问题的公式a(1±x)n=b,其中a 是原有量,x为增长(或降低)率,n为增长(或降低)的次数,b为增长(或降低)后的量.一、自学指导.(10分钟)自学:两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(精确到0.01) 绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000(元),乙种药品成本的年平均下降额为(6000-3600)÷2=1200(元),显然,乙种药品成本的年平均下降额较大.相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题.分析:①设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为__5000(1-x)__元,两年后甲种药品成本为__5000(1-x)2__元.依题意,得__5000(1-x)2=3000__.解得__x1≈0.23,x2≈1.77__.根据实际意义,甲种药品成本的年平均下降率约为__0.23__.②设乙种药品成本的年平均下降率为y.则,列方程:__6000(1-y)2=3600__.解得__y1≈0.23,y2≈1.77(舍)__.答:两种药品成本的年平均下降率__相同__.点拨精讲:经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)某商店10月份的营业额为5000元,12月份上升到7200元,平均每月增长百分率是多少?【分析】如果设平均每月增长的百分率为x,则11月份的营业额为__5000(1+x)__元,12月份的营业额为__5000(1+x)(1+x)__元,即__5000(1+x)2__元.由此就可列方程:__5000(1+x)2=7200__.点拨精讲:此例是增长率问题,如题目无特别说明,一般都指平均增长率,增长率是增长数与基准数的比.增长率=增长数∶基准数设基准数为a,增长率为x,则一月(或一年)后产量为a(1+x);二月(或二年)后产量为a(1+x)2;n月(或n年)后产量为a(1+x)n;如果已知n月(n年)后产量为M,则有下面等式:M=a(1+x)n.解这类问题一般多采用上面的等量关系列方程.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.(利息税20%)分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其他依此类推.解:设这种存款方式的年利率为x,则1000+2000x·80%+(1000+2000x·80%)x·80%=1320,整理,得1280x2+800x+1600x=320,即8x2+15x-2=0,解得x1=-2(不符,舍去),x2=0.125=12.5%.答:所求的年利率是12.5%.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(6分钟)青山村种的水稻2011年平均每公顷产7200 kg,2013年平均每公顷产8460 kg,求水稻每公顷产量的年平均增长率.解:设年平均增长率为x,则有7200(1+x)2=8460,解得x1=0.08,x2=-2.08(舍).即年平均增长率为8%.答:水稻每公顷产量的年平均增长率为8%.点拨精讲:传播或传染以及增长率问题的方程适合用直接开平方法来解.学生总结本堂课的收获与困惑.(3分钟)。
第2课时条件结构学习目标 1.掌握条件结构的程序框图的画法;2.能用条件结构框图描述分类讨论问题的算法;3.进一步熟悉程序框图的画法.知识点一条件结构思考1我们经常需要处理分类讨论的问题,顺序结构能否完成这一任务?为什么?思考2有些问题需要按给定的条件进行分析、比较和判断,在程序框图结构中还能只用顺序结构吗?梳理在一个算法中,经常会遇到一些条件的判断,算法的流程根据________是否成立有不同的流向.处理这种过程的结构叫条件结构.知识点二条件结构的两种形式知识点三 条件结构的嵌套思考 条件结构中的判断框有两个出口,由此说明条件结构执行的结果不唯一,对吗?梳理 条件结构的嵌套实际上就是将一个条件结构置于另一个条件结构的分支中,这个分支结束后,要与另一个分支交汇.类型一 条件结构的概念例1 (1)下列算法中,含有条件结构的是( ) A .求两个数的积 B .求点到直线的距离 C .解一元二次方程D .已知梯形两底和高求面积(2)条件结构不同于顺序结构的特征是( ) A .处理框 B .判断框 C .输入、输出框 D .起止框(3)给出以下四个问题:①输入一个数x ,输出它的绝对值; ②求面积为6的正方形的周长; ③求a ,b ,c 三个数中的最大值;④求函数f (x )=⎩⎪⎨⎪⎧3x -1,x ≤0,x 2+1,x >0的函数值.其中需要用条件结构来描述算法的有( ) A .1个B .2个C .3个D .4个反思与感悟 条件结构中含有判断框,且判断框内相应的判定条件是依据所给具体问题设定的.跟踪训练1 下列关于条件结构的描述,不正确的是( ) A .条件结构的出口有两个,但在执行时,只有一个出口是有效的 B .条件结构的判断条件要写在判断框内C .双选择条件结构有两个出口,单选择条件结构只有一个出口D .条件结构根据条件是否成立,选择不同的分支执行 类型二 条件结构的应用例2 如图所示的程序框图,若输出y 的值为3,求输入的x 值.引申探究本例中,若输入x 的值为-1,则输出y 的值为多少?反思与感悟 先由条件作出判断,然后再决定选择哪一个步骤,在画框图时,必须用到条件结构.跟踪训练2 对任意非零实数a ,b ,若a ⊗b 的运算原理如图所示,则log 24⊗⎝⎛⎭⎫13-1的值为( )A.13B .1C.43D .2类型三 条件语句的嵌套例3 解关于x 的方程ax +b =0的算法的程序框图如何表示?反思与感悟 我们现在使用的条件结构只提供2个出口,故当要分三类以上讨论时,往往需要在条件结构中再嵌套一个条件结构.跟踪训练3 设计一个求解一元二次方程ax 2+bx +c =0的算法,并画出程序框图.1.在如图所示的程序框图中,输入x =2,则输出的结果是( )A .1B .2C .3D .42.若输入x =-5,按图中所示程序框图运行后,输出的结果是( )A .-5B .0C .-1D .13.某程序框图如图所示,现输入如下四个函数,则可以输出的函数为________.①f (x )=x 3+x ; ②f (x )=1x ;③f (x )=e x +2x -6;④f (x )=cos ⎝⎛⎭⎫π2+x .4.已知函数y =|x -3|,如图表示的是给定x 的值,求其相应函数的值的算法.请将该程序框图补充完整,其中①处应填________,②处应填________.5.已知函数y =⎩⎪⎨⎪⎧2x -1,x <0,x +1,0≤x <1,x +2,x ≥1,写出给定x 的值求该函数的函数值的算法,并画出程序框图.1.条件结构是程序框图的重要组成部分.其特点是先判断后执行.2.在利用条件结构画程序框图时要注意两点:一是需要判断条件是什么,二是条件判断后分别对应着什么样的结果.3.设计程序框图时,首先设计算法步骤,再转化为程序框图,待熟练后可以省略算法步骤直接画出程序框图.对于算法中分类讨论的步骤,通常设计成条件结构来解决.答案精析问题导学 知识点一思考1 分类讨论是带有分支的逻辑结构,而顺序结构是一通到底的“直肠子”,所以不能表达分支结构,这就需要条件结构出场.思考2 不能,顺序结构不能按给定的条件进行分析、比较和判断. 梳理 条件 知识点二 条件 知识点三思考 不对,判断框虽然有两个出口,但根据条件是否成立,选择的出口是确定的,故执行结果也是唯一的. 题型探究例1 (1)C (2)B (3)C 跟踪训练1 C例2 解 由程序框图可得y =⎩⎪⎨⎪⎧2x +1,x ≤0,2x +1,x >0.当x ≤0时,y ∈(1,2log 24=2<3=⎝⎛⎭⎫13-1,由题意知所求值为3-12=1第四步,y =x +2. 第五步,输出y . 程序框图如图所示.。
初中数学九年级上册教案学案精编新人教版本教材主要包括以下内容:第一单元:有理数本单元主要介绍有理数的基本概念、有理数的四则运算和有理数的比较。
通过研究本单元,学生将能够正确理解有理数,掌握有理数的运算方法并能够灵活运用。
第二单元:代数式与基本初等函数本单元主要介绍代数式的概念和基本初等函数的概念与性质。
通过研究本单元,学生将能够理解代数式的基本概念,掌握代数式的运算方法和基本初等函数的性质。
第三单元:一元一次方程与不等式本单元主要介绍一元一次方程和不等式的概念、解法和应用。
通过研究本单元,学生将能够正确理解一元一次方程和不等式,掌握解一元一次方程和不等式的方法,以及应用它们解决实际问题。
第四单元:二次根式和二次方程本单元主要介绍二次根式和二次方程的概念、性质和解法。
通过研究本单元,学生将能够正确理解二次根式和二次方程,掌握二次根式和二次方程的运算方法和解法。
第五单元:函数与图像本单元主要介绍函数的概念、函数关系与图像,以及一些常见函数的性质。
通过研究本单元,学生将能够理解函数的基本概念,掌握函数关系与图像的表示方法,以及分析和应用函数的性质。
第六单元:平面直角坐标系和二次函数本单元主要介绍平面直角坐标系的概念和二次函数的概念、性质与应用。
通过研究本单元,学生将能够理解平面直角坐标系的基本概念,掌握二次函数的性质和解法,并能够应用它们解决实际问题。
以上是《初中数学九年级上册教案学案精编新人教版》教材的主要内容概述。
该教材的编写结构合理,内容丰富,旨在帮助学生全面掌握九年级上学期的数学知识。
对于教师和学生来说,该教材是一份有价值的教学资料,可以作为教学参考和研究辅助材料使用。
请注意,本文档仅对教材的内容做了简要概述,并未涉及具体的教案和学案内容。
对于更详细的教案和学案,建议您参考原教材或教师提供的教学资源。
以上为文档概述,希望对您有所帮助!。
“体验型课堂”学习方案
数学(九年级上册) 班级: 姓名:
§3.3 圆心角2
【学习导言】
这一章节中,我们将做一个总结,总结前几节的知识点,把前几节我们学到的各种知识点有系统的联系起来,通过这节的学习,我们将认识到,原来前面学的看似凌乱的知识点都是统一的.
课前尝试:读一读、试一试、改一改 【读一读】阅读教材P71~P74
【试一试】
1. 如图,如果AOB COD ∠=∠,猜想一下,你可以得出什么结论来?
2. 下列命题中,真命题是( )
A .相等的圆心角所对的弧相等
B .相等的弦所对的弧相等
C .度数相等的弧是等弧
D .在同心圆中,同一圆心角所对的两条弧的度数相等
3. 如图, AB 是⊙O 的直径, OC AB ⊥,交⊙O 于点C ,判断
⊿ABC 是哪一种特殊的三角形,并说明理由.
4.已知,如图,在⊙O 中,弦AB CD =.求证: AD BC =.
F
E
O
D
C
B
A
课内对话:改一改、理一理、辨一辨、练一练、审一审 【理一理】审视下面的知识点,思考提出的问题
【辨一辨】
例 1 如图,等边三角形ABC 内接于⊙O ,连接,,OA OB OC ,延长,AO 分别交BC 于点P ,弧BC 于点D .连接,.BD CD
(1)
判断四边形BDCO 是哪一种特殊四边形,并说明理由 (2) 若⊙O 的半径为r ,求等边三角形
ABC 的边长.
例2如图,顺次连接⊙O 的两条直径AC 与BD 的端点,所得的四边形是说明特殊的四边形?如果把直径为30cm 的圆柱形原木锯成一根横街面为正方形的木材,并使得截面尽可能地大,应怎样锯?如果这个原木长为15m ,问锯出的木材的体积为多少3m (树皮等损耗略去不计).
【测一测】
1.如图, ,AC BD 是⊙O 的直径, AC BD ⊥, 则四边形ABCD 是 形.
2. 已知:如图, ,AB DE 是⊙O 的直径, C 是⊙O 上一点,且弧AD =弧CE .求证: .BE CE =
3. 已知:如图, ,AB AC 是⊙O 的两条弦, OA 平分BAC ∠. 求证: 弧AB =弧AC .
【审一审】
1.错误的题号: ,主要原因: 。
2
.
本
节
课
的
主
要
数
学
思
想
方
法
:
_____________________________________________。
课后反审:完成作业 1.完成老师布置的作业。
2.对存在的问题与同伴进行交流。
D
C
B
A
E
D
C
B
A。