PCB电磁屏蔽详解
- 格式:docx
- 大小:250.26 KB
- 文档页数:12
给的大家介绍一下屏蔽屏蔽就是对两个空间区域之间进行金属的隔离,以控制电场、磁场和电磁波由一个区域对另一个区域的感应和辐射。
具体讲,就是用屏蔽体将元部件、电路、组合件、电缆或整个系统的干扰源包围起来,防止干扰电磁场向外扩散;用屏蔽体将接收电路、设备或系统包围起来,防止它们受到外界电磁场的影响。
因为屏蔽体对来自导线、电缆、元部件、电路或系统等外部的干扰电磁波和内部电磁波均起着吸收能量(涡流损耗)、反射能量(电磁波在屏蔽体上的界面反射)和抵消能量(电磁感应在屏蔽层上产生反向电磁场,可抵消部分干扰电磁波)的作用,所以屏蔽体具有减弱干扰的功能。
(1)当干扰电磁场的频率较高时,利用低电阻率的金属材料中产生的涡流,形成对外来电磁波的抵消作用,从而达到屏蔽的效果。
(2)当干扰电磁波的频率较低时,要采用高导磁率的材料,从而使磁力线限制在屏蔽体内部,防止扩散到屏蔽的空间去。
(3)在某些场合下,如果要求对高频和低频电磁场都具有良好的屏蔽效果时,往往采用不同的金属材料组成多层屏蔽体。
许多人不了解电磁屏蔽的原理,认为只要用金属做一个箱子,然后将箱子接地,就能够起到电磁屏蔽的作用。
在这种概念指导下结果是失败。
因为,电磁屏蔽与屏蔽体接地与否并没有关系。
真正影响屏蔽体屏蔽效能的只有两个因素:一个是整个屏蔽体表面必须是导电连续的,另一个是不能有直接穿透屏蔽体的导体。
屏蔽体上有很多导电不连续点,最主要的一类是屏蔽体不同部分结合处形成的不导电缝隙。
这些不导电的缝隙就产生了电磁泄漏,如同流体会从容器上的缝隙上泄漏一样。
解决这种泄漏的一个方法是在缝隙处填充导电弹性材料,消除不导电点。
这就像在流体容器的缝隙处填充橡胶的道理一样。
这种弹性导电填充材料就是电磁密封衬垫。
在许多文献中将电磁屏蔽体比喻成液体密封容器,似乎只有当用导电弹性材料将缝隙密封到滴水不漏的程度才能够防止电磁波泄漏。
实际上这是不确切的。
因为缝隙或孔洞是否会泄漏电磁波,取决于缝隙或孔洞相对于电磁波波长的尺寸。
印刷电路板(PCB)的EMI抑制知识日常生活中,我们常常可以看到这样的现象,当把手机放置在音箱旁,接电话的时候,音箱里面会发出吱吱的声音,或者当我们在测试一块电路板上的波形时,忽然接到同事的电话,会发现接电话瞬间我们示波器上的波形出现变形,这些都是电磁干扰的特征。
电磁干扰不但会影响系统的正常工作,还可能给电子电器造成损坏,甚至对人体也有害处,因此尽可能降低电磁干扰已经成为大家关注的一个焦点,诸如FCC、CISPR、VCCI等电磁兼容标准的出台开始给电子产品的设计提出了更高的要求。
虽然人们对电磁兼容性的研究要远远早于信号完整性理论的提出,但作为高速设计一部分,我们习惯地将EMI问题也列入信号完整性分析的一部分。
本章将全面分析电磁干扰和电磁兼容的概念、产生及抑制,重点针对高速PCB的设计。
4.1 EMI/EMC的基本概念电磁干扰即EMI(Electromagnetic Interference),指系统通过传导或者辐射,发射电磁波并影响其他系统或本系统内其他子系统的正常工作。
因为所有的电子产品都会不可避免地产生一定的电磁干扰,为了量度设备系统在电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁干扰的能力,人们提出了电磁兼容这个概念。
美国联邦通讯委员会在1990年和欧盟在1992都提出了对商业数码产品的有关规章,这些规章要求各个公司确保它们的产品符合严格的磁化系数和发射准则。
符合这些规章的产品称为具有电磁兼容性EMC(Electromagnetic Compatibility)。
对于电磁兼容性,必须满足三个要素:• 1. 电磁兼容需要存在某一个特定的空间。
比如,大的,一个房间甚至宇宙;小的,可以是一块集成电路板。
• 2. 电磁兼容必须同时存在骚扰的发射体和感受体。
• 3. 必须存在一定的媒体(耦合途径)将发射体与感受体结合到一起。
这个媒体可以是空间,也可以是公共电网或者公共阻抗。
对于EMI,可以按照电磁干扰的途径(详细的分类参见附录一)来分为辐射干扰、传导干扰和感应耦合干扰三种形式。
柔性PCB电磁干扰屏蔽要求及方法 许多使用柔性印刷电路板的电子组件对吸收或发射电磁干扰(EMI)都很敏感。
如果电磁干扰不受控制,可能会对设计性能产生负面影响,并且在极端情况下会完全阻止其运行。
解决这种干扰的方法是“屏蔽”电路,以防止EMI被吸收或辐射。
对于许多应用,存在适用于从FCC,IEC,EU等建立的设计来调节EMI辐射的行业标准。
普通应用中的EMI屏蔽要求以下是医疗,通信和军事行业中常常需要EMI屏蔽的一些常见应用。
医疗系统:核磁共振成像输液泵患者监护系统通信系统:手机射频通信军事系统:雷达系统通信系统高速数据传输设计PCB屏蔽方法屏蔽设计要求在其两侧封装一层材料,作为EMI吸收或辐射屏障。
这些层连接到地面,以便任何EMI无害地消散。
在选择屏蔽方法和材料时,必须考虑其他因素。
弯曲要求每种屏蔽方法都增加了不同数量的柔性电路的总厚度。
由于 弯曲能力是厚度的函数,因此会降低或限制设计的弯曲能力。
屏蔽设计的 弯曲半径和弯曲要求类型需要作为设计和材料选择过程的一部分进行 定义和审查。
弯曲要求的类型,无论是静态(弯曲 适合)还是动态(重复弯曲),都有其他限制。
动态弯曲柔性PCB应用比静态弯曲设计具有更大的 弯曲能力。
受控阻抗受控阻抗信号要求对可使用的屏蔽方法有进一步的限制。
屏蔽层需要满足EMI要求的电气特性以及作为参考平面来实现所需的控制阻抗值。
不是所有的屏蔽方法都可以同时满屏蔽材料该行业主要使用三种屏蔽材料。
在屏蔽性能,对机械弯曲能力的影响以及对受控阻抗设计的适用性方面,每个都有正面和负面的影响。
银色油墨盾牌银色油墨屏蔽由添加的银导电油墨层组成,这些油墨被选择性地施加到封装电路图案的覆盖层表面。
覆盖层具有选择性开口,这些开口沿着暴露设计的接地电路的部分长度的外边缘被缝合。
墨水流入选择性开口,粘附并电连接到地面。
银墨水通常使用丝网印刷方法施用。
这种方法会限制屏蔽的 和位置。
然后将额外的覆盖层层压到银墨水层上以封装并电隔离它们。
PCB电磁屏蔽详解电磁兼容中的屏蔽技术屏蔽是利用屏蔽体来阻挡或减少电磁能传输的一种重要的防护手段。
屏蔽技术用来抑制电磁噪声沿着空间的传播,即切断辐射电磁噪声的传播途径,通常用金属材料或磁性材料把所需屏蔽的区域包围起来,使屏蔽体内外的“场”相互隔离。
屏蔽作为电磁兼容控制的重要手段,可以有效的抑制电磁干扰。
电磁干扰能量通过传导性耦合和辐射性耦合来进行传输。
为满足电磁兼容性要求,对传导性耦合需采用滤波技术,即采用EMI滤波器件加以抑制;对辐射性耦合则需采用屏蔽技术加以抑制。
目前的各种电子设备,尤其是军用电子设备,通常都采用屏蔽技术解决电磁兼容中的问题。
屏蔽按其机理可分为电场屏蔽,磁场屏蔽和电磁屏蔽。
电场屏蔽电场的屏蔽是为了抑制寄生电容耦合(电场耦合),隔离静电或电场干扰。
寄生电容耦合:由于产品内的各种元件和导线都具有一定电位,高电位导线相对的低电位导线有电场存在,也即两导线之间形成了寄生电容耦合。
通常把造成影响的高电位叫感应源,而被影响的低电位叫受感器。
实际上凡是能幅射电磁能量并影响其它电路工作的都称为感应源(或干扰源),而受到外界电磁干扰的电路都称为受感器。
静电防护的方法:建立完善的屏蔽结构,带有接地的金属屏蔽壳体可将放电电流释放到地;内部电路如果要与金属外壳相连时,要用单点接地,防止放电电流流过内部电路;在电缆入口处增加保护器件;在印制板入口处增加保护环(环与接地端相连)。
磁场屏蔽磁场屏蔽是抑制噪声源和敏感设备之间由于磁场耦合所产生的干扰。
磁场屏蔽主要是依赖高导磁材料所具有的低磁阻对磁通起到分路的作用,使得屏蔽体内部的磁场大大减弱。
如图8-14所示射频磁屏蔽是利用良导体在入射高频磁场作用下产生涡流,并由涡流的反磁通抑制入射磁场。
常用屏蔽材料有铝、铜及铜镀银等。
电磁屏蔽电磁屏蔽是解决电磁兼容问题的重要手段之一,大部分电磁兼容问题都可以通过电磁屏蔽来解决。
用电磁屏蔽的方法来解决电磁干扰问题的最大好处是不会影响电路的正常工作,因此不需对电路做任何修改。
PCB屏蔽屏蔽就是对两个空间区域之间举行金属的隔离,以控制电场、磁场和电磁波由一个区域对另一个区域的感应和辐射。
详细讲,就是用屏蔽体将元部件、、组合件、电缆或囫囵系统的干扰源包围起来,防止干扰电磁场向外蔓延;用屏蔽体将接收电路、设备或系统包围起来,防止它们受到外界电磁场的影响。
由于屏蔽体对来自导线、电缆、元部件、电路或系统等外部的干扰电磁波和内部电磁波均起着汲取能量(涡流损耗)、反射能量(电磁波在屏蔽体上的界面反射)和抵消能量(电磁感应在屏蔽层上产生反向电磁场,可抵消部分干扰电磁波)的作用,所以屏蔽体具有削弱干扰的功能。
(1)当干扰电磁场的频率较高时,利用低率的金属材料中产生的涡流,形成对外来电磁波的抵消作用,从而达到屏蔽的效果。
(2)当干扰电磁波的频率较低时,要采纳高导磁率的材料,从而使磁力线限制在屏蔽体内部,防止蔓延到屏蔽的空间去。
(3)在某些场合下,假如要求对高频和低频电磁场都具有良好的屏蔽效果时,往往采纳不同的金属材料组成屏蔽多层体。
许多人不了解电磁屏蔽的原理,认为只要用金属做一个箱子,然后将箱子接地,就能够起到电磁屏蔽的作用。
在这种概念指导下结果是失败。
由于,电磁屏蔽与屏蔽体接地与否并没有关系。
真正影响屏蔽体屏蔽效能的惟独两个因素:一个是囫囵屏蔽体表面必需是导电延续的,另一个是不能有挺直穿透屏蔽体的导体。
屏蔽体上有无数导电不延续点,最主要的一类是屏蔽体不同部分结合处形成的不导电缝隙。
这些不导电的缝隙就产生了电磁泄漏,犹如流体味从容器上的缝隙上泄漏一样。
解决这种泄漏的一个办法是在缝隙处填充导电弹性材料,消退不导电点。
这就像在流体容器的缝隙处填充橡胶的道理一样。
这种弹性导电填充材料就是电磁密封衬垫。
在许多文献中将电磁屏蔽体比方成液体密封容器,似乎惟独当用导电弹性材料将缝隙密封到滴水不漏的程度才干够防止电磁波泄漏。
事实上这是不确切的。
由于缝隙或孔第1页共2页。
电磁屏蔽基本原理介绍电磁屏蔽是指通过采取一定的措施,将电磁辐射或电磁波的干扰降至可接受的水平的过程。
在现代社会中,电磁辐射已经成为无处不在的存在,如电视、手机、电脑等电子设备都会产生电磁辐射。
然而,过高的电磁辐射会对人体和其他电子设备造成不良影响,因此电磁屏蔽就显得尤为重要。
电磁屏蔽的基本原理可以归纳为两个方面:屏蔽材料和屏蔽结构。
1. 屏蔽材料:屏蔽材料是指用于隔离电磁辐射的材料,常见的屏蔽材料包括金属、导电涂料、导电纤维等。
这些材料具有良好的导电性能,能够吸收或反射电磁波,从而降低电磁辐射的强度。
金属是一种常用的屏蔽材料,如铜、铝等。
金属具有良好的导电性和反射性,能够有效地吸收和反射电磁波。
常见的金属屏蔽材料有金属屏蔽罩、金属屏蔽板等。
导电涂料是一种将导电材料加入到涂料中形成的涂层,具有良好的导电性能。
通过在电子设备的外壳或电路板上涂覆导电涂料,可以形成一层导电膜,起到屏蔽电磁辐射的作用。
导电纤维是一种将导电材料织入纤维中形成的材料,具有良好的导电性能和柔软性。
导电纤维可以用于制作电磁屏蔽布料,可以用于制作电子设备的屏蔽罩或服装等。
2. 屏蔽结构:屏蔽结构是指通过设计合理的结构来实现电磁屏蔽的效果。
常见的屏蔽结构包括屏蔽罩、屏蔽壳、屏蔽膜等。
屏蔽罩是一种金属或导电塑料制成的外壳,可以将电子设备完全包裹在内,从而阻挡电磁波的传播。
屏蔽罩通常具有开口和连接器,以便电子设备与外界进行通信。
屏蔽壳是一种金属或导电塑料制成的外壳,可以将电子设备的关键部件包裹在内,从而阻挡电磁波的干扰。
屏蔽壳通常具有开口和密封装置,以便维修和保养。
屏蔽膜是一种将导电材料涂覆在基材上形成的薄膜,可以用于电子设备的屏蔽。
屏蔽膜具有柔软性和可塑性,可以根据需要进行剪裁和粘贴,方便实现电磁屏蔽。
总结:电磁屏蔽是通过屏蔽材料和屏蔽结构来降低电磁辐射的干扰。
屏蔽材料具有良好的导电性能,能够吸收或反射电磁波;屏蔽结构通过设计合理的结构来实现电磁屏蔽的效果。
PCB电磁干扰1. 引言PCB(Printed Circuit Board,印刷电路板)是电子设备中一个重要的组成部分,它承载着各种电子元器件,起着连接和传导电子信号的作用。
然而,PCB在工作过程中可能会遇到电磁干扰的问题。
本文将介绍什么是PCB电磁干扰,以及如何识别和减少这种干扰。
2. PCB电磁干扰的定义PCB电磁干扰是指在PCB上发生的电磁辐射或电磁感应的现象,导致电子设备的正常运行受到影响。
这种干扰可能会导致信号失真、噪音增加或甚至设备故障。
3. PCB电磁干扰的来源PCB电磁干扰主要来自以下几个方面:3.1 电源线干扰电源线上的高频电流可能会产生较强的电磁辐射,进而影响PCB上其他电子元件的正常工作。
3.2 时钟信号干扰在PCB上,各个元件的时钟信号可能会相互干扰,导致信号的时序出现问题,从而影响整个设备的工作。
3.3 高速信号线干扰高速信号线上的信号传输速率较高,容易产生较强的电磁辐射,从而干扰周围的信号线或元件。
3.4 地线干扰地线不良连接或电流过大时,会产生较强的电磁辐射,对PCB上其他电子元件产生干扰。
4. 识别PCB电磁干扰的方法为了减少PCB电磁干扰,首先需要能够及时识别干扰存在的问题。
以下是几种常用的识别方法:4.1 电磁干扰测试仪器使用专业的电磁干扰测试仪器,可以测量PCB上的电磁辐射和敏感度,从而判断是否存在电磁干扰问题。
4.2 高频信号观测通过示波器等设备观察高频信号的波形和稳定性,可以发现可能存在的干扰问题。
4.3 故障分析对于出现异常的电子设备,可以通过故障分析的方法,判断是否是由于电磁干扰导致的问题。
5. PCB电磁干扰的减少方法一旦确定存在PCB电磁干扰问题,就需要采取一些措施来减少干扰。
以下是几种常见的减少方法:5.1 路线规划优化合理设计PCB布线,避免产生过长或过密的线路,减少干扰的可能性。
5.2 屏蔽设计对于特别敏感的电子元件,可以采用金属屏蔽罩或屏蔽板进行屏蔽,阻挡外界的干扰信号。
PCB电磁干扰摘要:PCB电磁干扰是指在印刷电路板(PCB)设计和制造过程中,电子元器件之间的相互影响所产生的不良结果。
本文将深入探讨PCB电磁干扰的原因、影响及其解决方法,旨在提供有关PCB电磁干扰的详细信息。
第一部分:简介1.1 PCB电磁干扰的概念PCB电磁干扰是指在PCB设计、制造和使用过程中,由于电子元器件之间的相互作用而产生的电磁干扰。
这种干扰可能会导致电路的不正常运行、信号的失真以及系统性能的降低。
1.2 PCB电磁干扰的分类根据发生的位置,PCB电磁干扰可分为三种类型:传导干扰、辐射干扰和地线引起的干扰。
传导干扰是指通过导体和线缆相互作用而传递的干扰。
辐射干扰是指电磁波通过空气传播,干扰附近的电子设备。
地线引起的干扰是指由于接地不良而产生的干扰。
第二部分:PCB电磁干扰的原因2.1 PCB设计不合理在PCB设计过程中,存在一些设计不合理的因素会导致电磁干扰的发生。
例如,布线不合理、接地不良、信号线和电源线之间的交叉干扰等。
2.2 电子元器件选用不当电子元器件的选用也会导致PCB电磁干扰的发生。
比如选择工作频率相近的元器件、选择功率较大的元器件等,都可能会增加电磁干扰的风险。
2.3 PCB制造过程中的失误在PCB制造过程中,如果出现制造过程中的失误,例如不正确的焊接、不良的黏贴工艺等,都可能会导致电磁干扰的发生。
第三部分:PCB电磁干扰的影响3.1 电路的不正常运行电磁干扰可能会导致电路的不正常运行,例如信号失真、电路崩溃等。
3.2 系统性能的降低当电磁干扰发生时,系统的性能可能会受到影响。
例如,通信系统中的干扰可能会导致信号质量下降,电源供应系统中的干扰可能会导致电源波动。
3.3 对周围设备的影响PCB电磁干扰可能会对周围的其他电子设备造成影响,例如无线通信设备、医疗设备等。
第四部分:PCB电磁干扰的解决方法4.1 PCB设计上的解决方法在PCB设计过程中,可以采取一些解决方法来减少电磁干扰的发生。
电磁屏蔽基本原理在电子设备及电子产品中,电磁干扰(Electromagnetic Interference)能量通过传导性耦合和辐射性耦合来进行传输。
为满足电磁兼容性要求,对传导性耦合需采用滤波技术,即采用EMI滤波器件加以抑制;对辐射性耦合则需采用屏蔽技术加以抑制。
在当前电磁频谱日趋密集、单位体积内电磁功率密度急剧增加、高低电平器件或设备大量混合使用等因素而导致设备及系统电磁环境日益恶化的情况下,其重要性就显得更为突出。
屏蔽是通过由金属制成的壳、盒、板等屏蔽体,将电磁波局限于某一区域内的一种方法。
由于辐射源分为近区的电场源、磁场源和远区的平面波,因此屏蔽体的屏蔽性能依据辐射源的不同,在材料选择、结构形状和对孔缝泄漏控制等方面都有所不同。
在设计中要达到所需的屏蔽性能,则需首先确定辐射源,明确频率范围,再根据各个频段的典型泄漏结构,确定控制要素,进而选择恰当的屏蔽材料,设计屏蔽壳体。
屏蔽原理电屏蔽的实质是减小两个设备(或两个电路、组件、元件)间电场感应的影响。
电屏蔽的原理是在保证良好接地的条件下,将干扰源所产生的干扰终止于由良导体制成的屏蔽体。
因此,接地良好及选择良导体做为屏蔽体是电屏蔽能否起作用的两个关键因素。
磁屏蔽的原理是由屏蔽体对干扰磁场提供低磁阻的磁通路,从而对干扰磁场进行分流,因而选择钢、铁、坡莫合金等高磁导率的材料和设计盒、壳等封闭壳体成为磁屏蔽的两个关键因素。
电磁屏蔽的原理是由金属屏蔽体通过对电磁波的反射和吸收来屏蔽辐射干扰源的远区场,即同时屏蔽场源所产生的电场和磁场分量。
由于随着频率的增高,波长变得与屏蔽体上孔缝的尺寸相当,从而导致屏蔽体的孔缝泄漏成为电磁屏蔽最关键的控制要素。
屏蔽效能屏蔽体对辐射干扰的抑制能力用屏蔽效能SE(Shielding Effectiveness)来衡量,屏蔽效能的定义:没有屏蔽体时,从辐射干扰源传输到空间某一点(P)的场强 1( 1)和加入屏蔽体后,辐射干扰源传输到空间同一点(P)的场强 2( 2)之比,用dB(分贝)表示。
之阳早格格创做正在电子设备及电子产品中,电磁搞扰(Electromagnetic Interference)能量通过传导性耦合战辐射性耦合去举止传输.为谦脚电磁兼容性央供,对付传导性耦合需采与滤波技能,即采与EMI滤波器件加以压制;对付辐射性耦合则需采与屏蔽技能加以压制.正在目前电磁频谱日趋聚集、单位体积内电磁功率稀度慢遽减少、下矮电仄器件大概设备洪量混同使用等果素而引导设备及系统电磁环境日益逆转的情况下,其要害性便隐得更为超过.屏蔽是通过由金属制成的壳、盒、板等屏蔽体,将电磁波限制于某一天区内的一种要领.由于辐射源分为近区的电场源、磁场源战近区的仄里波,果此屏蔽体的屏蔽本能依据辐射源的分歧,正在资料采用、结构形状战对付孔缝揭收统制等圆里皆有所分歧.正在安排中要达到所需的屏蔽本能,则需最先决定辐射源,精确频次范畴,再根据各个频段的典型揭收结构,决定统制果素,从而采用妥当的屏蔽资料,安排屏蔽壳体.屏蔽体对付辐射搞扰的压制本领用屏蔽效能SE(Shielding Effectiveness)去衡量,屏蔽效能的定义:不屏蔽体时,从辐射搞扰源传输到空间某一面(P)的场强1(1)战加进屏蔽体后,辐射搞扰源传输到空间共一面(P)的场强2(2)之比,用dB(分贝)表示.图1 屏蔽效能定义示企图屏蔽效能表白式为 (dB) 大概(dB)工程中,本量的辐射搞扰源大概分为二类:类似于对付称振子天线的非关合载流导线辐射源战类似于变压器绕组的关合载流导线辐射源.由于电奇极子战磁奇极子是上述二类源的最基础形式,本量的辐射源正在空间某面爆收的场,均可由若搞个基基础的场叠加而成(图2).果此通过对付电奇极子战磁奇极子所爆收的场举止分解,便可得出本量辐射源的近近场及波阻抗战近、近场的场个性,从而为屏蔽分类提供劣良的表里依据.图2 二类基基础正在空间所爆收的叠加场近近场的区分是根据二类基基础的场随1/r(场面至源面的距离)的变更而决定的,为近近场的分界面,二类源正在近近场的场个性及传播个性均有所分歧.表1 二类源的场与传播个性场源典型近场()近场( )场个性传播个性场个性传播个性电奇极子非仄里波以衰减仄里波以衰减磁奇极子非仄里波以衰减仄里波以衰减波阻抗为空间某面电场强度与磁场强度之比,场源分歧、近近场分歧,则波阻抗也有所分歧,表2与图3分别用图表给出了的波阻抗个性.表2 二类源的波阻抗波阻抗(Ω)场源典型近场()近场()电奇极子120π120π磁奇极子120π120π能量稀度包罗电场分量能量稀度战磁场分量能量稀度,通过对付由共一场源所爆收的电场、磁场分量的能量稀度举止比较,不妨决定场源正在分歧天区内何种分量占主要成份,以便决定简曲的屏蔽分类.能量稀度的表白式由下列公式给出:电场分量能量稀度磁场分量能量稀度场源总能量稀度表3 二类源的能量稀度能量稀度比较场源典型近场()近场()电奇极子磁奇极子表3给出了二种场源正在近、近场的能量稀度.从表中不妨瞅出,二类源的近场有很大的辨别,电奇极子的近场能量主要为电场分量,可忽略磁场分量;磁奇极子的近场能量主要为磁场分量,可忽略电场分量;二类源正在近场时,电场、磁场分量均必须共时思量.屏蔽典型依据上述分解不妨举止以下分类:表4 屏蔽分类场源典型近场()近场()电奇极子(非关合载流导线)电屏蔽(包罗静电屏蔽)电磁屏蔽磁奇极子(关合载流导线)磁屏蔽(包罗恒定磁场屏蔽)电磁屏蔽电屏蔽的真量是减小二个设备(大概二个电路、组件、元件)间电场感触的效用.电屏蔽的本理是正在包管劣良交天的条件下,将搞扰源所爆收的搞扰末止于由良导机制成的屏蔽体.果此,交天劣良及采用良导体搞为屏蔽体是电屏蔽是可起效用的二个关键果素.磁屏蔽的本理是由屏蔽体对付搞扰磁场提供矮磁阻的磁通路,从而对付搞扰磁场举止分流,果而采用钢、铁、坡莫合金等下磁导率的资料战安排盒、壳等启关壳体成为磁屏蔽的二个关键果素.电磁屏蔽的本理是由金属屏蔽体通过对付电磁波的反射战吸支去屏蔽辐射搞扰源的近区场,即共时屏蔽场源所爆收的电场战磁场分量.由于随着频次的删下,波少变得与屏蔽体上孔缝的尺寸相称,从而引导屏蔽体的孔缝揭收成为电磁屏蔽最关键的统制果素.屏蔽体的揭收耦合结构与所需压制的电磁波频次稀切相关,三类屏蔽所波及的频次范畴及统制果素如表5所示:表5 揭收耦合结构与统制果素本量屏蔽体上共时存留多个揭收耦合结构(n个),设机箱交缝、透气孔、屏蔽体壁板等各揭收耦合结构的单独屏蔽效能(如只思量交缝)为SEi(i=1,2,…,n),则屏蔽体总的屏蔽效能由上式不妨瞅出,屏蔽体的屏蔽效能是由各个揭收耦合结构中爆收最大揭收耦合的结构所决断的,即由屏蔽最单薄的关节所决断的.果此举止屏蔽安排时,精确分歧频段的揭收耦合结构,决定最大揭收耦合果素是其主要的安排准则.正在三类屏蔽中,磁屏蔽战电磁屏蔽的易度较大.更加是电磁屏蔽安排中的孔缝揭收压制最为关键,成为屏蔽安排中应沉面思量的主要果素.图4 典型机柜结构示企图根据孔耦合表里,决断孔缝揭收量的果素主要有二个:孔缝里积战孔缝最大线度尺寸.二者皆大,则揭收最为宽沉;里积小而最大线度尺寸大则电磁揭收仍旧较大.图4所示为一典型机柜示企图,上头的孔缝主要分为四类:●机箱(机柜)交缝该类缝虽然里积不大,然而其最大线度尺寸即缝少却非常大,由于维建、开开等节制,以致该类缝成为电子设备中屏蔽易度最大的一类孔缝,采与导电衬垫等特殊屏蔽资料不妨灵验天压制电磁揭收.该类孔缝屏蔽安排的关键正在于:合理天采用导电衬垫资料并举止适合的变形统制.●透气孔该类孔里积战最大线度尺寸较大,透气孔安排的关键正在于透气部件的采用与拆置结构的安排.正在谦脚透气本能的条件下,应尽大概采用屏效较下的屏蔽透气部件.●瞅察孔与隐现孔该典型孔里积战最大线度尺寸较大,其安排的关键正在于屏蔽透光资料的采用与拆置结构的安排.●连交器与机箱交缝那类缝的里积与最大线度尺寸均不大,然而由于正在下频时引导连交器与机箱的交触阻抗慢遽删大,从而使得屏蔽电缆的共模传导收射变大,往往引导所有设备的辐射收射出现超标,为此应采与导电橡胶等连交器导电衬垫.综上所述,孔缝压制的安排重心归纳为:●合理采用屏蔽资料;●合理安排拆置互连结构.电磁屏蔽电磁屏蔽是办理电磁兼容问题的要害脚法之一.大部分电磁兼容问题皆不妨通过电磁屏蔽去办理.用电磁屏蔽的要领去办理电磁搞扰问题的最大用处是不会效用电路的仄常处事,果此不需要对付电路搞所有建改.1 采用屏蔽资料屏蔽体的灵验性用屏蔽效能去度量.屏蔽效能是不屏蔽时空间某个位子的场强E1与有屏蔽时该位子的场强E2的比值,它表征了屏蔽体对付电磁波的衰减程度.用于电磁兼容脚法的屏蔽体常常能将电磁波的强度衰减到本去的百分之一至百万分之一,果此通时常使用分贝去表述屏蔽效能,那时屏蔽效能的定义公式为:SE = 20 lg ( E1/ E2 ) (dB) 用那个定义式只可尝试屏蔽资料的屏蔽效能,而无法决定该当使用什么资料搞屏蔽体.要决定使用什么资料制制屏蔽体,需要相识资料的屏蔽效能与资料的什么个性参数有关.工程中真用的表征资料屏蔽效能的公式为:SE = A + R (dB) 式中的A称为屏蔽资料的吸支耗费,是电磁波正在屏蔽资料中传播时爆收的,估计公式为:A=3.34t(fμrσr)(dB) t = 资料的薄度,μr = 资料的磁导率,σr = 资料的电导率,对付于特定的资料,那些皆是已知的.f = 被屏蔽电磁波的频次.式中的R称为屏蔽资料的反射耗费,是当电磁波进射到分歧媒量的分界里时爆收的,估计公式为:R=20lg(ZW/ZS)(dB) 式中,Zw=电磁波的波阻抗,Zs=屏蔽资料的个性阻抗.电磁波的波阻抗定义为电场分量与磁场分量的比值:Zw = E / H.正在距离辐射源较近(<λ/2π,称为近场区)时,波阻抗的值与决于辐射源的本量、瞅测面到源的距离、介量个性等.若辐射源为大电流、矮电压(辐射源电路的阻抗较矮),则爆收的电磁波的波阻抗小于377,称为矮阻抗波,大概磁场波.若辐射源为下电压,小电流(辐射源电路的阻抗较下),则波阻抗大于377,称为下阻抗波大概电场波.关于近场区内波阻抗的简曲估计公式本文不予叙述,免得冲浓中心,感兴趣的读者不妨参照有关电磁场圆里的参照书籍.当距离辐射源较近(>λ/2π,称为近场区)时,波波阻抗仅与电场波传播介量有关,其数值等于介量的个性阻抗,气氛为377Ω.屏蔽资料的阻抗估计要领为:|ZS|=3.68×107(fμr/σr) (Ω) f=进射电磁波的频次(Hz),μr=相对付磁导率,σr=相对付电导率从上头几个公式,便不妨估计出百般屏蔽资料的屏蔽效能了,为了便当安排,底下给出一些定性的论断.●正在近场区安排屏蔽时,要分别思量电场波战磁场波的情况;●屏蔽电场波时,使用导电性好的资料,屏蔽磁场波时,使用导磁性好的资料;●共一种屏蔽资料,对付于分歧的电磁波,屏蔽效能使分歧的,对付电场波的屏蔽效能最下,对付磁场波的屏蔽效能最矮,也便是道,电场波最简单屏蔽,磁场波最易屏蔽;●普遍情况下,资料的导电性战导磁性越好,屏蔽效能越下;●屏蔽电场波时,屏蔽体尽管靠拢辐射源,屏蔽磁场源时,屏蔽体尽管近离磁场源;有一种情况需要特天注意,那便是1kHz以下的磁场波.那种磁场波普遍由大电流辐射源爆收,比圆,传输大电流的电力线,大功率的变压器等.对付于那种频次很矮的磁场,只可采与下导磁率的资料举止屏蔽,时常使用的资料是含镍80%安排的坡莫合金.2 孔洞战漏洞的电磁揭收与对付策普遍除了矮频磁场中,大部分金属资料不妨提供100dB 以上的屏蔽效能.然而正在本量中,罕睹的情况是金属搞成的屏蔽体,并不那样下的屏蔽效能,以至险些不屏蔽效能.那是果为许多安排人员不相识电磁屏蔽的关键.最先,需要相识的是电磁屏蔽与屏蔽体交天与可并不关系.那与静电场的屏蔽分歧,正在静电中,只消将屏蔽体交天,便不妨灵验天屏蔽静电场.而电磁屏蔽却与屏蔽体交天与可无关,那是必须精确的.电磁屏蔽的关键面有二个,一个是包管屏蔽体的导电连绝性,即所有屏蔽体必须是一个完备的、连绝的导电体.另一面是不克不迭有脱过机箱的导体.对付于一个本量的机箱,那二面真止起去皆非常艰易.最先,一个真用的机箱上会有很多孔洞战孔缝:透气心、隐现心、拆置百般安排杆的开心、分歧部分分离的漏洞等.屏蔽安排的主要真量便是怎么样妥擅处理那些孔缝,共时不会效用机箱的其余本能(好瞅、可维性、稳当性).其次,机箱上经常会有电缆脱出(进),起码会有一条电源电缆.那些电缆会极天里妨害屏蔽体,使屏蔽体的屏蔽效能落矮数格中贝.妥擅处理那些电缆是屏蔽安排中的要害真量之一(脱过屏蔽体的导体的妨害奇尔比孔缝的妨害更大).当电磁波进射到一个孔洞时,其效用相称于一个奇极天线(图1),当孔洞的少度达到λ/2时,其辐射效用最下(与孔洞的宽度无关),也便是道,它不妨将激励孔洞的局部能量辐射进去.对付于一个薄度为0资料上的孔洞,正在近场区中,最坏情况下(制成最大揭收的极化目标)的屏蔽效能(本量情况下屏蔽效能大概会更大一些)估计公式为:SE=100 20lgL 20lg f + 20lg [1 + 2.3lg(L/H)] (dB) 若L ≥λ/2,SE = 0 (dB) 式中各量:L = 漏洞的少度(mm),H = 漏洞的宽度(mm),f = 进射电磁波的频次(MHz).正在近场区,孔洞的揭收还与辐射源的个性有关.当辐射源是电场源时,孔洞的揭收比近场时小(屏蔽效能下),而当辐射源是磁场源时,孔洞的揭收比近场时要大(屏蔽效能矮).近场区,孔洞的电磁屏蔽估计公式为:若ZC >(7.9/D·f):SE = 48 + 20lg ZC 20lgL·f+ 20lg [1 + 2.3lg (L/H) ] 若Zc<(7.9/D·f):SE = 20lg [ (D/L) + 20lg (1 + 2.3lg (L/H) ]式中:Zc=辐射源电路的阻抗(Ω),D = 孔洞到辐射源的距离(m),L、H = 孔洞少、宽(mm),f = 电磁波的频次(MHz)证明:● 正在第二个公式中,屏蔽效能与电磁波的频次不关系.● 大普遍情况下,电路谦脚第一个公式的条件,那时的屏蔽效能大于第二中条件下的屏蔽效能.● 第二个条件中,假设辐射源是杂磁场源,果此不妨认为是一种正在最坏条件下,对付屏蔽效能的守旧估计.● 对付于磁场源,屏蔽效能与孔洞到辐射源的距离有关,距离越近,则揭收越大.那面正在安排时一定要注意,磁场辐射源一定要尽管近离孔洞.多个孔洞的情况当N个尺寸相共的孔洞排列正在所有,而且相距很近(距离小于λ/2)时,制成的屏蔽效能下落为20lgN1/2.正在分歧里上的孔洞不会减少揭收,果为其辐射目标分歧,那个个性不妨正在安排中用去预防某一个里的辐射过强.除了使孔洞的尺寸近小于电磁波的波少,用辐射源尽管近离孔洞等要领减小孔洞揭收以中,减少孔洞的深度也不妨减小孔洞的揭收,那便是停止波导的本理.普遍情况下,屏蔽机箱上分歧部分的分离处不可能真足交触,只可正在某些面交触上,那形成了一个孔洞阵列.漏洞是制成屏蔽机箱屏蔽效能落级的主要本果之一.减小漏洞揭收的要领有:● 减少导电交触面、减小漏洞的宽度,比圆使用板滞加工的脚法(如用铣床加工交触表面)去减少交触里的仄坦度,减少紧固件(螺钉、铆钉)的稀度;● 加大二块金属板之间的沉叠里积;● 使用电磁稀启衬垫,电磁稀启衬垫是一种弹性的导电资料.如果正在漏洞处拆置上连绝的电磁稀启衬垫,那么,对付于电磁波而止,便如共正在液体容器的盖子上使用了橡胶稀启衬垫后不会爆收液体揭收一般,不会爆收电磁波的揭收.3 脱过屏蔽体的导体的处理制成屏蔽体做废的另一个主要本果是脱过屏蔽体的导体.正在本量中,很多结构上很周到的屏蔽机箱(机柜)便是由于有导体曲交脱过屏蔽箱而引导电磁兼容考查波折,那是缺累电磁兼容体味的安排师感触狐疑的典型问题之一.推断那种问题的要领是将设备上正在考查中不需要连交的电缆拔下,如果电磁兼容问题消得,证明电缆是引导问题的果素.办理那个问题有二个要领:● 对付于传输频次较矮的旗号的电缆,正在电缆的端心处使用矮通滤波器,滤除电缆上不需要的下频频次身分,减小电缆爆收的电磁辐射(果为下频电流最简单辐射).那共样也能预防电缆上感触到的环境噪声传进设备内的电路.● 对付于传输频次较下的旗号的电缆,矮通滤波器大概会引导旗号得真,那时只可采与屏蔽的要领.然而要注意屏蔽电缆的屏蔽层要360°拆交,那往往是很易的.正在电缆端心拆置矮通滤波器有二个要领● 拆置正在线路板上,那种要领的便宜是经济,缺面是下频滤波效验短好.隐然,那个缺面对付于那种用途的滤波器是格中致命的,果为,咱们使用滤波器的脚法便是滤除简单引导辐射的下频旗号,大概者空间的下频电磁波正在电缆上感触的电流.● 拆置正在里板上,那种滤波器曲交拆置正在屏蔽机箱的金属里板上,如馈通滤波器、滤波阵列板、滤波连交器等.由于曲交拆置正在金属里板上,滤波器的输进、输出之间真足断绝,交天劣良,导线上的搞扰正在机箱端心上被滤除,果此滤波效验格中理念.缺面是拆置需要一定的结构协共,那必须正在安排初期举止思量.由于新颖电子设备的处事频次越去越下,对付付的电磁搞扰频次也越去越下,果此正在里板上拆置搞扰滤波器成为一种趋势.一种使用格中便当、本能格中劣良的器件便是滤波连交器.滤波连交器的形状与一般连交器的形状真足相共,不妨曲交替换.它的每根插针大概孔上有一个矮通滤波器.矮通滤波器不妨是简朴的单电容电路,也不妨是较搀杂的电路.办理电缆上搞扰的一个格中简朴的要领是正在电缆上套一个铁氧体磁环,那个要领虽然往往灵验,然而是有一些条件.许多人对付铁氧体寄予了过下憧憬,只消一逢到电缆辐射的问题,便正在电缆上套铁氧体,往往会得视.铁氧体磁环的效验预测公式为:共模辐射革新 =20lg(加磁环后的共模环路阻抗/加磁环前的共模环路阻抗)比圆,如果出加铁氧体时的共模环路阻抗为100Ω,加了铁氧体以去为1000Ω,则共模辐射革新为20dB.证明:奇尔套上铁氧体后,电磁辐射并不明隐的革新,那本去纷歧定是铁氧体不起效用,而大概是除了那根电缆以中,另有其余辐射源.正在电缆上使用铁氧体磁环时,要注意下列一些问题:● 磁环的内径尽管小● 磁环的壁尽管薄● 磁环尽管少● 磁环尽管拆置正在电缆的端头处金属屏蔽效用可用屏蔽效用(SE)对付屏蔽罩的适用性举止评估,其单位是分贝,估计公式为SEdB=A+R+B 其中A:吸支耗费(dB) R:反射耗费(dB) B:矫正果子(dB)(适用于薄屏蔽罩内存留多个反射的情况)一个简朴的屏蔽罩会使所爆收的电磁场强度落至最初的格中之一,即SE 等于20dB;而有些场合大概会央供将场强落至为最初的十万分之一,即SE要等于100dB. 吸支耗费是指电磁波脱过屏蔽罩时能量耗费的数量,吸支耗费估计式为AdB=1.314(f×σ×μ)1/2×t其中f:频次(MHz) μ:铜的导磁率σ:铜的导电率t:屏蔽罩薄度反射耗费(近场)的大小与决于电磁波爆收源的本量以及与波源的距离.对付于杆状大概曲线形收射天线而止,离波源越近波阻越下,而后随着与波源距离的减少而下落,然而仄里波阻则无变更(恒为377). 差异,如果波源是一个小型线圈,则此时将以磁场为主,离波源越近波阻越矮.波阻随着与波源距离的减少而减少,然而当距离超出波少的六分之一时,波阻不再变更,恒定正在377处.反射耗费随波阻与屏蔽阻抗的比率变更,果此它不然而与决于波的典型,而且与决于屏蔽罩与波源之间的距离.那种情况适用于小型戴屏蔽的设备. 近场反射耗费可按下式估计R(电)dB=321.8(20×lg r)(30×lg f)[10×lg(μ/σ)] R(磁)dB=14.6+(20×lg r)+(10×lg f)+[10×lg(μ/σ)]其中r:波源与屏蔽之间的距离. SE算式末尾一项是矫正果子B,其估计公式为B=20lg[exp(2t/σ)]此式仅适用于近磁场环境而且吸支耗费小于10dB的情况.由于屏蔽物吸功效用不下,其里里的再反射会使脱过屏蔽层另部分的能量减少,所以矫正果子是个背数,表示屏蔽效用的下落情况.EMI压制战术惟犹如金属战铁之类导磁率下的资料才搞正在极矮频次下达到较下屏蔽效用.那些资料的导磁率会随着频次减少而落矮,其余如果初初磁场较强也会使导磁率落矮,另有便是采与板滞要领将屏蔽罩做成确定形状共样会落矮导磁率.综上所述,采用用于屏蔽的下导磁性资料非常搀杂,常常要背EMI屏蔽资料供应商以及有关接洽机构觅供办理规划. 正在下频电场下,采与薄层金属动做中壳大概内衬资料可达到劣良的屏蔽效验,然而条件是屏蔽必须连绝,并将敏感部分真足覆挡住,不缺心大概漏洞(产死一个法推第笼).然而正在本量中要制制一个无交缝及缺心的屏蔽罩是不可能的,由于屏蔽罩要分成多个部分举止创制,果此便会有漏洞需要交合,其余常常还得正在屏蔽罩上挨孔以便拆置与插卡大概拆置组件的连线.安排屏蔽罩的艰易正在于制制历程中不可预防会爆收孔隙,而且设备运止历程中还会需要用到那些孔隙.制制、里板连线、透气心、中部监测窗心以及里板拆置组件等皆需要正在屏蔽罩上挨孔,从而大大落矮了屏蔽本能.纵然沟槽战漏洞不可预防,然而正在屏蔽安排中对付与电路处事频次波少有关的沟槽少度做小心思量是很有用处的. 任一频次电磁波的波少为: 波少(λ)=光速(C)/频次(Hz) 当漏洞少度为波少(停止频次)的一半时,RF波开初以20dB/10倍频(1/10停止频次)大概6dB/8倍频(1/2停止频次)的速率衰减.常常RF收射频次越下衰减越宽沉,果为它的波少越短.当波及到最下频次时,必须要思量大概会出现的所有谐波,不过本量上只需思量一次及二次谐波即可.一朝相识了屏蔽罩内RF辐射的频次及强度,便可估计出屏蔽罩的最大允许漏洞战沟槽.比圆如果需要对付1GHz(波少为300mm)的辐射衰减26dB,则150mm的漏洞将会开初爆收衰减,果此当存留小于150mm的漏洞时,1GHz辐射便会被衰减.所以对付1GHz频次去道,若需要衰减20dB,则漏洞应小于15 mm(150mm的1/10),需要衰减26dB时,漏洞应小于7.5 mm(15mm的1/2以上),需要衰减32dB 时,漏洞应小于 3.75 mm(7.5mm的1/2以上).可采与符合的导电衬垫使漏洞大小规定正在确定尺寸内,从而真止那种衰减效验. 定正在确定尺寸内,从而真止那种衰减效验.。
电磁干扰的PCB设计方法电磁干扰(Electromagnetic InteRFerence),简称EMI,有传导干扰和辐射干扰两种。
传导干扰主要是电子设备产生的干扰信号通过导电介质或公共电源线互相产生干扰;辐射干扰是指电子设备产生的干扰信号通过空间耦合把干扰信号传给另一个电网络或电子设备。
在PCB电路板中,电磁能通常存在两种形式,差模EMI和共模EMI,电路中器件输出的电流流入一个负载时,就会产生差模EMI。
电流流经多个导电平面,如PCB上的导线组或电缆,就会产生共模辐射。
本文主要列出一些解决EMI的PCB设计方法。
1、IC的电源处理1.1)保证每个IC的电源PIN都有一个0.1UF的去耦电容,对于BGA CHIP,要求在BGA的四角分别有0.1UF、0.01UF的电容共8个。
对走线的电源尤其要注意加滤波电容,如VTT等。
这不仅对稳定性有影响,对EMI也有很大的影响。
2、时钟线的处理2.1)建议先走时钟线。
2.2)频率大于等于66M的时钟线,每条过孔数不要超过2个,平均不得超过1.5个。
2.3)频率小于66M的时钟线,每条过孔数不要超过3个,平均不得超过2.5个2.4)长度超过12inch的时钟线,如果频率大于20M,过孔数不得超过2个。
2.5)如果时钟线有过孔,在过孔的相邻位置,在第二层(地层)和第三层(电源层)之间加一个旁路电容,以确保时钟线换层后,参考层(相邻层)的高频电流的回路连续。
旁路电容所在的电源层必须是过孔穿过的电源层,并尽可能地靠近过孔,旁路电容与过孔的间距最大不超过300MIL。
图2.5-1过孔处的旁路电容2.6)所有时钟线原则上不可以穿岛。
下面列举了穿岛的四种情形。
2.6.1) 跨岛出现在电源岛与电源岛之间。
此时时钟线在第四层的背面走线,第三层(电源层)有两个电源岛,且第四层的走线必须跨过这两个岛。
2.6.2) 跨岛出现在电源岛与地岛之间。
此时时钟线在第四层的背面走线,第三层(电源层)的一个电源岛中间有一块地岛,且第四层的走线必须跨过这两个岛。
PCB设计中的电磁干扰问题电磁干扰(Electromagnetic Interference,简称EMI)是在电路和系统中常见的问题,特别是在PCB(Printed Circuit Board)设计中。
PCB设计中的电磁干扰问题具有重要意义,因为电磁干扰可能导致电路性能下降,甚至造成设备故障。
本文将探讨PCB设计中电磁干扰的原因、影响以及解决方法。
一、电磁干扰的原因在开始讨论电磁干扰问题之前,我们需要了解电磁干扰的产生原因。
电磁干扰主要由两个方面引起:辐射和传导。
1. 辐射干扰辐射干扰是指电路或设备本身产生的电磁波辐射,干扰了周围的电路或设备。
辐射干扰的主要原因包括信号线的高频振荡、电源电压的突变、PCB布局和接地设计不当等。
2. 传导干扰传导干扰是指电磁波通过电路连接导线(如供电线、信号线等)进入电路或设备,干扰了正常的电路信号传输。
传导干扰的主要原因包括电源线和信号线的布局不当、共模干扰、地线回路不完整等。
二、电磁干扰的影响电磁干扰对PCB设计和整个电子系统带来了多方面的影响。
1. 性能下降电磁干扰可能导致电路性能下降,例如信号失真、噪声增加、抖动等。
这些问题会严重影响电路的可靠性和稳定性。
2. 系统故障严重的电磁干扰可能导致电子系统的故障。
例如,电磁辐射干扰可能导致无线通信设备的接收机无法正常接收信号,传导干扰可能导致模拟信号与数字信号互相干扰,从而导致数据错误或丢失。
三、解决电磁干扰的方法为了解决PCB设计中的电磁干扰问题,工程师可以采取一系列的措施。
1. 合理布局合理的PCB布局对于减小电磁干扰影响至关重要。
首先,信号线和电源线应分开布局,信号线和地线应尽量平行布局。
其次,应将高频信号线与低频信号线分开布局,以避免它们之间的相互干扰。
另外,还需要注意电路板的尺寸和形状,合理设计电路板的大小以及内部元件的摆放位置。
2. 适当屏蔽对于一些特别敏感的电路或设备,可以考虑使用屏蔽罩或屏蔽材料来降低电磁辐射干扰。
PCB用高纯铜箔的电磁屏蔽性能研究电磁屏蔽技术在现代电子设备中起着关键作用,特别是在PCB(Printed Circuit Board)设计中。
PCB是一种将电子元件连接起来,并作为电气和机械支撑的基础板。
高纯铜箔是一种常用的材料,被广泛应用于PCB的电磁屏蔽性能研究中。
本文旨在探讨使用高纯铜箔作为PCB的电磁屏蔽层时的性能,并评估其在电磁兼容性方面的应用。
首先,我们来了解一下什么是PCB的电磁屏蔽。
电磁屏蔽是一种通过限制或减弱电磁波的传播来防止电磁干扰的技术。
在PCB中,电子元件之间通过不同的铜层进行连接,而高纯铜箔作为电磁屏蔽层的一种常用选择。
高纯铜箔具有优异的电导性能,这使得它在电磁屏蔽中具有出色的性能。
首先,高纯铜箔的低电阻率使得其能够有效地吸收和传导电磁波。
这使得它能够提供良好的电磁屏蔽性能,减少电磁波对PCB内部组件的干扰。
其次,高纯铜箔的良好柔性使得它能够紧贴于PCB表面,确保电磁波无法穿透。
高纯铜箔的柔性使得它能够适应不同形状的PCB,并提供高效的电磁屏蔽保护。
同时,高纯铜箔还具有较高的机械强度,能够有效地防止物理损伤。
此外,高纯铜箔还具有较高的耐腐蚀性和稳定性。
这使得高纯铜箔能够在各种环境中长期稳定地工作,不会受到外界因素的干扰。
这一点在PCB设计中尤为重要,因为电器设备通常会面临各种环境条件和化学物质。
综上所述,使用高纯铜箔作为PCB的电磁屏蔽层具有多个优势。
不仅因为它具有良好的电导性能和柔性,还因为它具有高的耐腐蚀性和稳定性。
这使高纯铜箔成为PCB设计中的一种理想选择。
但是,要实现高效的电磁屏蔽性能,还需要考虑其他因素。
例如,电磁屏蔽性能还取决于高纯铜箔的厚度和布局。
较厚的高纯铜箔可以提供更好的屏蔽效果,但也会增加成本和重量。
因此,在设计PCB时需要权衡这些因素,根据实际需求选择合适的高纯铜箔厚度。
此外,高纯铜箔的布局方式也会影响电磁屏蔽性能。
根据电路设计的需求,高纯铜箔可以布置在PCB的不同层面。
在电子设备及电子产品中,电磁干扰Electromagnetic Interference能量通过传导性耦合和辐射性耦合来进行传输;为满足电磁兼容性要求,对传导性耦合需采用滤波技术,即采用EMI滤波器件加以抑制;对辐射性耦合则需采用屏蔽技术加以抑制;在当前电磁频谱日趋密集、单位体积内电磁功率密度急剧增加、高低电平器件或设备大量混合使用等因素而导致设备及系统电磁环境日益恶化的情况下,其重要性就显得更为突出;屏蔽是通过由金属制成的壳、盒、板等屏蔽体,将电磁波局限于某一区域内的一种方法;由于辐射源分为近区的电场源、磁场源和远区的平面波,因此屏蔽体的屏蔽性能依据辐射源的不同,在材料选择、结构形状和对孔缝泄漏控制等方面都有所不同;在设计中要达到所需的屏蔽性能,则需首先确定辐射源,明确频率范围,再根据各个频段的典型泄漏结构,确定控制要素,进而选择恰当的屏蔽材料,设计屏蔽壳体;屏蔽体对辐射干扰的抑制能力用屏蔽效能SEShielding Effectiveness来衡量,屏蔽效能的定义:没有屏蔽体时,从传输到空间某一点P的场强 1 1和加入屏蔽体后,辐射干扰源传输到空间同一点P的场强 2 2之比,用dB分贝表示;图1 屏蔽效能定义示意图屏蔽效能表达式为 dB 或dB 工程中,实际的辐射干扰源大致分为两类:类似于对称振子天线的非闭合载流导线辐射源和类似于变压器绕组的闭合载流导线辐射源;由于电偶极子和磁偶极子是上述两类源的最基本形式,实际的辐射源在空间某点产生的场,均可由若干个基本源的场叠加而成图2;因此通过对和所产生的场进行分析,就可得出实际辐射源的及和远、的场特性,从而为屏蔽分类提供良好的理论依据;图2 两类基本源在空间所产生的叠加场远近场的划分是根据两类基本源的场随1/r场点至源点的距离的变化而确定的, 为远近场的分界点,两类源在远近场的场特征及传播特性均有所不同;表1 两类源的场与传播特性场源类型近场远场场特性传播特性场特性传播特性以衰减平面波以衰减非平面波以衰减以衰减波阻抗为空间某点电场强度与磁场强度之比,场源不同、远近场不同,则波阻抗也有所不同,表2与图3分别用图表给出了的波阻抗特性;表2 两类源的波阻抗场源类型波阻抗Ω近场远场电偶极子120π120π磁偶极子120π120π能量密度包括电场分量能量密度和磁场分量能量密度,通过对由同一场源所产生的电场、磁场分量的能量密度进行比较,可以确定场源在不同区域内何种分量占主要成份,以便确定具体的屏蔽分类;能量密度的表达式由下列公式给出:电场分量能量密度磁场分量能量密度场源总能量密度表3 两类源的能量密度能量密度比较场源类型近场远场电偶极子磁偶极子表3给出了两种场源在远、近场的能量密度;从表中可以看出,两类源的近场有很大的区别,电偶极子的近场能量主要为电场分量,可忽略磁场分量;磁偶极子的近场能量主要为磁场分量,可忽略电场分量;两类源在远场时,电场、磁场分量均必须同时考虑;屏蔽类型依据上述分析可以进行以下分类:表4 屏蔽分类场源类型近场远场电偶极子非闭合载流导线电屏蔽包括静电屏蔽电磁屏蔽磁偶极子闭合载流导线磁屏蔽包括恒定磁场屏蔽电磁屏蔽电屏蔽的实质是减小两个设备或两个电路、组件、元件间电场感应的影响;电屏蔽的原理是在保证良好接地的条件下,将干扰源所产生的干扰终止于由良导体制成的屏蔽体;因此,接地良好及选择良导体做为屏蔽体是电屏蔽能否起作用的两个关键因素;磁屏蔽的原理是由屏蔽体对干扰磁场提供低磁阻的磁通路,从而对干扰磁场进行分流,因而选择钢、铁、坡莫合金等高磁导率的材料和设计盒、壳等封闭壳体成为磁屏蔽的两个关键因素;电磁屏蔽的原理是由金属屏蔽体通过对电磁波的反射和吸收来屏蔽辐射干扰源的远区场,即同时屏蔽场源所产生的电场和磁场分量;由于随着频率的增高,波长变得与屏蔽体上孔缝的尺寸相当,从而导致屏蔽体的孔缝泄漏成为电磁屏蔽最关键的控制要素;屏蔽体的泄漏耦合结构与所需抑制的频率密切相关,三类屏蔽所涉及的频率范围及控制要素如表5所示:表5 泄漏耦合结构与控制要素屏蔽类型频率范围10kHz~500kHz 1MHz~500MHz 500MHz~40GHz实际屏蔽体上同时存在多个泄漏耦合结构n个,设机箱接缝、通风孔、屏蔽体壁板等各泄漏耦合结构的单独屏蔽效能如只考虑接缝为SEii=1,2,…,n,则屏蔽体总的屏蔽效能由上式可以看出,屏蔽体的屏蔽效能是由各个泄漏耦合结构中产生最大泄漏耦合的结构所决定的,即由屏蔽最薄弱的环节所决定的;因此进行屏蔽设计时,明确不同频段的泄漏耦合结构,确定最大泄漏耦合要素是其首要的设计原则;在三类屏蔽中,磁屏蔽和电磁屏蔽的难度较大;尤其是电磁屏蔽设计中的孔缝泄漏抑制最为关键,成为屏蔽设计中应重点考虑的首要因素;图4 典型机柜结构示意图根据孔耦合理论,决定孔缝泄漏量的因素主要有两个:孔缝面积和孔缝最大线度尺寸;两者皆大,则泄漏最为严重;面积小而最大线度尺寸大则电磁泄漏仍然较大;图4所示为一典型机柜示意图,上面的孔缝主要分为四类:●机箱机柜接缝该类缝虽然面积不大,但其最大线度尺寸即缝长却非常大,由于维修、开启等限制,致使该类缝成为电子设备中屏蔽难度最大的一类孔缝,采用导电衬垫等特殊屏蔽材料可以有效地抑制电磁泄漏;该类孔缝屏蔽设计的关键在于:合理地选择导电衬垫材料并进行适当的变形控制;●通风孔该类孔面积和最大线度尺寸较大,通风孔设计的关键在于通风部件的选择与装配结构的设计;在满足通风性能的条件下,应尽可能选用屏效较高的屏蔽通风部件;●观察孔与显示孔该类型孔面积和最大线度尺寸较大,其设计的关键在于屏蔽透光材料的选择与装配结构的设计;●连接器与机箱接缝这类缝的面积与最大线度尺寸均不大,但由于在高频时导致连接器与机箱的接触阻抗急剧增大,从而使得的共模传导发射变大,往往导致整个设备的辐射发射出现超标,为此应采用导电橡胶等连接器导电衬垫;综上所述,孔缝抑制的设计要点归纳为:●合理选择屏蔽材料;●合理设计安装互连结构;电磁屏蔽电磁屏蔽是解决电磁兼容问题的重要手段之一;大部分电磁兼容问题都可以通过电磁屏蔽来解决;用电磁屏蔽的方法来解决电磁干扰问题的最大好处是不会影响电路的正常工作,因此不需要对电路做任何修改;1 选择屏蔽材料屏蔽体的有效性用屏蔽效能来度量;屏蔽效能是没有屏蔽时空间某个位置的场强E1与有屏蔽时该位置的场强E2的比值,它表征了屏蔽体对电磁波的衰减程度;用于电磁兼容目的的屏蔽体通常能将电磁波的强度衰减到原来的百分之一至百万分之一,因此通常用分贝来表述屏蔽效能,这时屏蔽效能的定义公式为:SE = 20 lg E1/ E2 dB用这个定义式只能测试屏蔽材料的屏蔽效能,而无法确定应该使用什么材料做屏蔽体;要确定使用什么材料制造屏蔽体,需要知道材料的屏蔽效能与材料的什么特性参数有关;工程中实用的表征材料屏蔽效能的公式为:SE = A + R dB式中的A称为屏蔽材料的吸收损耗,是电磁波在屏蔽材料中传播时发生的,计算公式为:A=fμrσr dBt = 材料的厚度,μr = 材料的磁导率,σr = 材料的电导率,对于特定的材料,这些都是已知的;f = 被屏蔽电磁波的频率;式中的R称为屏蔽材料的反射损耗,是当电磁波入射到不同媒质的分界面时发生的,计算公式为:R=20lgZW/ZS dB式中,Zw=电磁波的波阻抗,Zs=屏蔽材料的特性阻抗;电磁波的波阻抗定义为电场分量与磁场分量的比值:Zw = E / H;在距离辐射源较近<λ/2π,称为近场区时,波阻抗的值取决于辐射源的性质、观测点到源的距离、介质特性等;若辐射源为大电流、低电压辐射源电路的阻抗较低,则产生的电磁波的波阻抗小于377,称为低阻抗波,或磁场波;若辐射源为高电压,小电流辐射源电路的阻抗较高,则波阻抗大于377,称为高阻抗波或电场波;关于近场区内波阻抗的具体计算公式本文不予论述,以免冲淡主题,感兴趣的读者可以参考有关电磁场方面的参考书;当距离辐射源较远>λ/2π,称为远场区时,波波阻抗仅与电场波传播介质有关,其数值等于介质的特性阻抗,空气为377Ω;屏蔽材料的阻抗计算方法为:|ZS|=×10-7fμr/σr Ωf=入射电磁波的频率Hz,μr=相对磁导率,σr=相对电导率从上面几个公式,就可以计算出各种屏蔽材料的屏蔽效能了,为了方便设计,下面给出一些定性的结论;●在近场区设计屏蔽时,要分别考虑电场波和磁场波的情况;●屏蔽电场波时,使用导电性好的材料,屏蔽磁场波时,使用导磁性好的材料;●同一种屏蔽材料,对于不同的电磁波,屏蔽效能使不同的,对电场波的屏蔽效能最高,对磁场波的屏蔽效能最低,也就是说,电场波最容易屏蔽,磁场波最难屏蔽;●一般情况下,材料的导电性和导磁性越好,屏蔽效能越高;●屏蔽电场波时,屏蔽体尽量靠近辐射源,屏蔽磁场源时,屏蔽体尽量远离磁场源;有一种情况需要特别注意,这就是1kHz以下的磁场波;这种磁场波一般由大电流辐射源产生,例如,传输大电流的电力线,大功率的变压器等;对于这种频率很低的磁场,只能采用高导磁率的材料进行屏蔽,常用的材料是含镍80%左右的坡莫合金;2 孔洞和缝隙的电磁泄漏与对策一般除了低频磁场外,大部分金属材料可以提供100dB以上的屏蔽效能;但在实际中,常见的情况是金属做成的屏蔽体,并没有这么高的屏蔽效能,甚至几乎没有屏蔽效能;这是因为许多设计人员没有了解电磁屏蔽的关键;首先,需要了解的是电磁屏蔽与屏蔽体接地与否并没有关系;这与静电场的屏蔽不同,在静电中,只要将屏蔽体接地,就能够有效地屏蔽静电场;而电磁屏蔽却与屏蔽体接地与否无关,这是必须明确的;电磁屏蔽的关键点有两个,一个是保证屏蔽体的导电连续性,即整个屏蔽体必须是一个完整的、连续的导电体;另一点是不能有穿过机箱的导体;对于一个实际的机箱,这两点实现起来都非常困难;首先,一个实用的机箱上会有很多孔洞和孔缝:通风口、显示口、安装各种调节杆的开口、不同部分结合的缝隙等;屏蔽设计的主要内容就是如何妥善处理这些孔缝,同时不会影响机箱的其他性能美观、可维性、可靠性;其次,机箱上总是会有电缆穿出入,至少会有一条电源电缆;这些电缆会极大地危害屏蔽体,使屏蔽体的屏蔽效能降低数十分贝;妥善处理这些电缆是屏蔽设计中的重要内容之一穿过屏蔽体的导体的危害有时比孔缝的危害更大;当电磁波入射到一个孔洞时,其作用相当于一个偶极天线图1,当孔洞的长度达到λ/2时,其辐射效率最高与孔洞的宽度无关,也就是说,它可以将激励孔洞的全部能量辐射出去;对于一个厚度为0材料上的孔洞,在远场区中,最坏情况下造成最大泄漏的极化方向的屏蔽效能实际情况下屏蔽效能可能会更大一些计算公式为:SE=100 - 20lgL - 20lg f + 20lg 1 + L/H dB若L ≥λ/2,SE = 0 dB式中各量:L = 缝隙的长度mm,H = 缝隙的宽度mm,f = 入射电磁波的频率MHz;在近场区,孔洞的泄漏还与辐射源的特性有关;当辐射源是电场源时,孔洞的泄漏比远场时小屏蔽效能高,而当辐射源是磁场源时,孔洞的泄漏比远场时要大屏蔽效能低;近场区,孔洞的电磁屏蔽计算公式为:若ZC >D·f:SE = 48 + 20lg ZC - 20lgL·f+ 20lg 1 + L/H若Zc<D·f:SE = 20lg D/L + 20lg 1 + L/H式中:Zc=辐射源电路的阻抗Ω,D = 孔洞到辐射源的距离m,L、H = 孔洞长、宽mm,f = 电磁波的频率MHz说明:● 在第二个公式中,屏蔽效能与电磁波的频率没有关系;● 大多数情况下,电路满足第一个公式的条件,这时的屏蔽效能大于第二中条件下的屏蔽效能;● 第二个条件中,假设辐射源是纯磁场源,因此可以认为是一种在最坏条件下,对屏蔽效能的保守计算;● 对于磁场源,屏蔽效能与孔洞到辐射源的距离有关,距离越近,则泄漏越大;这点在设计时一定要注意,磁场辐射源一定要尽量远离孔洞;多个孔洞的情况当N个尺寸相同的孔洞排列在一起,并且相距很近距离小于λ/2时,造成的屏蔽效能下降为20lgN1/2;在不同面上的孔洞不会增加泄漏,因为其辐射方向不同,这个特点可以在设计中用来避免某一个面的辐射过强;除了使孔洞的尺寸远小于电磁波的波长,用辐射源尽量远离孔洞等方法减小孔洞泄漏以外,增加孔洞的深度也可以减小孔洞的泄漏,这就是截止波导的原理;一般情况下,屏蔽机箱上不同部分的结合处不可能完全接触,只能在某些点接触上,这构成了一个孔洞阵列;缝隙是造成屏蔽机箱屏蔽效能降级的主要原因之一;减小缝隙泄漏的方法有:● 增加导电接触点、减小缝隙的宽度,例如使用机械加工的手段如用铣床加工接触表面来增加接触面的平整度,增加紧固件螺钉、铆钉的密度;● 加大两块金属板之间的重叠面积;● 使用电磁密封衬垫,电磁密封衬垫是一种弹性的导电材料;如果在缝隙处安装上连续的电磁密封衬垫,那么,对于电磁波而言,就如同在液体容器的盖子上使用了橡胶密封衬垫后不会发生液体泄漏一样,不会发生电磁波的泄漏;3 穿过屏蔽体的导体的处理造成屏蔽体失效的另一个主要原因是穿过屏蔽体的导体;在实际中,很多结构上很严密的屏蔽机箱机柜就是由于有导体直接穿过屏蔽箱而导致电磁兼容试验失败,这是缺乏电磁兼容经验的设计师感到困惑的典型问题之一;判断这种问题的方法是将设备上在试验中没有必要连接的电缆拔下,如果电磁兼容问题消失,说明电缆是导致问题的因素;解决这个问题有两个方法:● 对于传输频率较低的信号的电缆,在电缆的端口处使用低通滤波器,滤除电缆上不必要的高频频率成分,减小电缆产生的电磁辐射因为高频电流最容易辐射;这同样也能防止电缆上感应到的环境噪声传进设备内的电路;● 对于传输频率较高的信号的电缆,低通滤波器可能会导致信号失真,这时只能采用屏蔽的方法;但要注意屏蔽电缆的屏蔽层要360°搭接,这往往是很难的;在电缆端口安装低通滤波器有两个方法● 安装在线路板上,这种方法的优点是经济,缺点是高频滤波效果欠佳;显然,这个缺点对于这种用途的滤波器是十分致命的,因为,我们使用滤波器的目的就是滤除容易导致辐射的高频信号,或者空间的高频电磁波在电缆上感应的电流;● 安装在面板上,这种滤波器直接安装在屏蔽机箱的金属面板上,如馈通滤波器、滤波阵列板、滤波连接器等;由于直接安装在金属面板上,滤波器的输入、输出之间完全隔离,接地良好,导线上的干扰在机箱端口上被滤除,因此滤波效果十分理想;缺点是安装需要一定的结构配合,这必须在设计初期进行考虑;由于现代电子设备的工作频率越来越高,对付的电磁干扰频率也越来越高,因此在面板上安装干扰滤波器成为一种趋势;一种使用十分方便、性能十分优越的器件就是滤波连接器;滤波连接器的外形与普通连接器的外形完全相同,可以直接替换;它的每根插针或孔上有一个低通滤波器;低通滤波器可以是简单的单电容电路,也可以是较复杂的电路;解决电缆上干扰的一个十分简单的方法是在电缆上套一个铁氧体磁环,这个方法虽然往往有效,但是有一些条件;许多人对铁氧体寄予了过高期望,只要一遇到电缆辐射的问题,就在电缆上套铁氧体,往往会失望;铁氧体磁环的效果预测公式为:共模辐射改善 =20lg加磁环后的共模环路阻抗/加磁环前的共模环路阻抗例如,如果没加铁氧体时的共模环路阻抗为100Ω,加了铁氧体以后为1000Ω,则共模辐射改善为20dB;说明:有时套上铁氧体后,电磁辐射并没有明显的改善,这并不一定是铁氧体没有起作用,而可能是除了这根电缆以外,还有其他辐射源;在电缆上使用铁氧体磁环时,要注意下列一些问题:● 磁环的内径尽量小● 磁环的壁尽量厚● 磁环尽量长● 磁环尽量安装在电缆的端头处金属屏蔽效率可用屏蔽效率SE对屏蔽罩的适用性进行评估,其单位是分贝,计算公式为 SEdB=A+R+B 其中 A:吸收损耗dB R:反射损耗dB B:校正因子dB适用于薄屏蔽罩内存在多个反射的情况一个简单的屏蔽罩会使所产生的电磁场强度降至最初的十分之一,即SE等于20dB;而有些场合可能会要求将场强降至为最初的十万分之一,即SE要等于100dB;吸收损耗是指电磁波穿过屏蔽罩时能量损耗的数量,吸收损耗计算式为AdB=f×σ×μ1/2×t其中 f:频率MHz μ:铜的导磁率σ:铜的导电率 t:屏蔽罩厚度反射损耗近场的大小取决于电磁波产生源的性质以及与波源的距离;对于杆状或直线形发射天线而言,离波源越近波阻越高,然后随着与波源距离的增加而下降,但平面波阻则无变化恒为377;相反,如果波源是一个小型线圈,则此时将以磁场为主,离波源越近波阻越低;波阻随着与波源距离的增加而增加,但当距离超过波长的六分之一时,波阻不再变化,恒定在377处;反射损耗随波阻与屏蔽阻抗的比率变化,因此它不仅取决于波的类型,而且取决于屏蔽罩与波源之间的距离;这种情况适用于小型带屏蔽的设备;近场反射损耗可按下式计算R电dB=20×lg r-30×lg f-10×lgμ/σ R磁dB=+20×lg r+10×lg f+10×lgμ/σ其中 r:波源与屏蔽之间的距离;SE算式最后一项是校正因子B,其计算公式为B=20lg-exp-2t/σ此式仅适用于近磁场环境并且吸收损耗小于10dB的情况;由于屏蔽物吸收效率不高,其内部的再反射会使穿过屏蔽层另一面的能量增加,所以校正因子是个负数,表示屏蔽效率的下降情况;EMI抑制策略只有如金属和铁之类导磁率高的材料才能在极低频率下达到较高屏蔽效率;这些材料的导磁率会随着频率增加而降低,另外如果初始磁场较强也会使导磁率降低,还有就是采用机械方法将屏蔽罩作成规定形状同样会降低导磁率;综上所述,选择用于屏蔽的高导磁性材料非常复杂,通常要向EMI屏蔽材料供应商以及有关咨询机构寻求解决方案;在高频电场下,采用薄层金属作为外壳或内衬材料可达到良好的屏蔽效果,但条件是屏蔽必须连续,并将敏感部分完全遮盖住,没有缺口或缝隙形成一个法拉第笼;然而在实际中要制造一个无接缝及缺口的屏蔽罩是不可能的,由于屏蔽罩要分成多个部分进行制作,因此就会有缝隙需要接合,另外通常还得在屏蔽罩上打孔以便安装与插卡或装配组件的连线;设计屏蔽罩的困难在于制造过程中不可避免会产生孔隙,而且设备运行过程中还会需要用到这些孔隙;制造、面板连线、通风口、外部监测窗口以及面板安装组件等都需要在屏蔽罩上打孔,从而大大降低了屏蔽性能;尽管沟槽和缝隙不可避免,但在屏蔽设计中对与电路工作频率波长有关的沟槽长度作仔细考虑是很有好处的;任一频率电磁波的波长为: 波长λ=光速C/频率Hz当缝隙长度为波长截止频率的一半时,RF波开始以20dB/10倍频1/10截止频率或6dB/8倍频1/2截止频率的速率衰减;通常RF发射频率越高衰减越严重,因为它的波长越短;当涉及到最高频率时,必须要考虑可能会出现的任何谐波,不过实际上只需考虑一次及二次谐波即可;一旦知道了屏蔽罩内RF辐射的频率及强度,就可计算出屏蔽罩的最大允许缝隙和沟槽;例如如果需要对1GHz波长为300mm的辐射衰减26dB,则150mm的缝隙将会开始产生衰减,因此当存在小于150mm的缝隙时,1GHz辐射就会被衰减;所以对1GHz频率来讲,若需要衰减20dB,则缝隙应小于15 mm150mm的1/10,需要衰减26dB时,缝隙应小于7.5 mm15mm的1/2以上,需要衰减32dB时,缝隙应小于3.75 mm7.5mm的1/2以上;可采用合适的导电衬垫使缝隙大小限定在规定尺寸内,从而实现这种衰减效果;定在规定尺寸内,从而实现这种衰减效果;。
pcb电磁兼容要求PCB(Printed Circuit Board,印刷电路板)的电磁兼容性(EMC,Electromagnetic Compatibility)要求是确保电子设备在不同电磁环境中稳定运行并避免对其他设备产生干扰的重要方面。
以下是PCB电磁兼容性方面的一些常见要求和注意事项:1.电磁干扰抑制:-PCB应设计为在设备内部有效抑制电磁干扰,防止设备内部的信号相互干扰。
-使用屏蔽罩、滤波器和隔离元件等措施,减小电磁辐射和传导。
2.辐射和传导干扰控制:-控制PCB上导线的长度、走线方式和布局,以减小电磁辐射。
-使用地平面和电源平面来控制传导干扰。
-避免并行导线和高速数字信号线与敏感模拟信号线交叉。
3.防护与屏蔽:-对敏感信号线进行屏蔽,使用屏蔽罩和屏蔽层等。
-采用合适的地线设计,确保地的连通性和均匀性。
4.耦合和共模噪声抑制:-通过合适的电源线滤波器、差模和共模电感器等元件来抑制耦合和共模噪声。
-确保模拟和数字地域的适当隔离。
5.接地设计:-采用低阻抗的地线设计,确保设备内部地的均匀性。
-避免接地回流路径上的闭环。
6.抑制电磁脉冲:-使用合适的电源电容和电源电感器,抑制电磁脉冲。
-采用电源线滤波器,控制电源谐波。
7.标准符合:-遵循相关的EMC标准和规范,例如,EN55022、EN55024等。
-对PCB进行EMC测试,确保其符合适用的标准。
以上是一般性的PCB电磁兼容性要求,具体的要求可能会根据应用领域、产品类型和所处的电磁环境等因素而有所不同。
在设计PCB时,密切关注这些要求可以提高产品的可靠性和稳定性。
PCB的抑制电磁干扰设计[导读]印制板的设计是制作电子产品的重要一环,随着电子技术的飞速发展,PCB 的密度越来越高,PCB设计的好坏对抗干扰能力影响很大。
如果设计不合理会产生电磁干扰,使电路性能受到影响,甚至无法正常工作。
一、电磁干扰主印制板的设计是制作电子产品的重要一环,随着电子技术的飞速发展,PCB 的密度越来越高,PCB设计的好坏对抗干扰能力影响很大。
如果设计不合理会产生电磁干扰,使电路性能受到影响,甚至无法正常工作。
一、电磁干扰主要有1、平行导线之间存在电感效应,电阻效应,电导效应,互感效应。
一根导线上的变化电流必然影响另一根导线,从而产生干扰。
2、印制板上的印制导线,板外连接导线甚至元器件引线都可能成为发射或接收干扰信号的天线。
这在高频电路的印制板设计中尤其不可忽视。
3、电路中磁性元件,如扬声器、电磁铁、永磁表头等产生的恒定磁场以及变压器、继电器等产生的突变磁场,对印制板也会产生影响。
二、抑制电磁干扰的方法电磁干扰无法完全避免,但在设计印制板时可采取一些措施设法抑制干扰强度,提高单元电路本身的抗干扰能力,避免或减少干扰。
1、容易受干扰的导线布设要点通常低电平、高阻抗端导线容易受干扰,布线时应越短越好:输入、输出端用的导线应尽量避免相邻平行,最好加线间地线,以免发生反馈耦合。
平行线效应与长度成正比,按信号去向顺序布线,忌迂回穿插。
远离干扰源,尽量远离电源线,高电平导线:实在躲不开干扰源时,不能与之平行走线,双面板交又通过,单面板飞线过渡。
如图1所示。
2、避免导线成环印制板上环形导线相当于单匝线圈或环形天线,使电感效应和天线效应增强。
布线时尽可能避免成环型面积。
如图2所示。
3、反馈布线要点反馈元件和导线连接输入和输出,布线不当容易引入干扰。
如图3所示放大电路,由于反馈导线越过放大器基极电阻。
可能产生寄生耦合,影响电路工作。
图4所示电路的布设将反馈元件置于中间,输出导线远离前级元件,避免干扰。
电磁屏蔽原理与应用电磁屏蔽是指采用一定的材料或结构,将电磁场的影响降低到可以接受的程度,以保护设备或系统不受外界电磁干扰的影响。
电磁屏蔽技术在电子产品、通信设备、航空航天等领域有着广泛的应用,其原理和方法对于提高设备的抗干扰能力和提高系统的可靠性具有重要意义。
首先,我们来了解一下电磁屏蔽的原理。
电磁屏蔽的原理主要是通过屏蔽材料的吸收、反射和衰减来削弱电磁波的传播和穿透能力。
屏蔽材料通常是具有良好导电性能的金属材料,如铝、铜、镍等,其导电性能可以有效地吸收和反射电磁波。
此外,屏蔽材料的厚度和结构也会影响其屏蔽效果,一般来说,层厚度越大、结构越复杂,屏蔽效果越好。
其次,电磁屏蔽的应用范围非常广泛。
在电子产品中,电磁屏蔽可以有效地减少设备之间的电磁干扰,提高设备的稳定性和可靠性。
在通信设备中,电磁屏蔽可以保护设备免受外界电磁波的干扰,确保通信质量和稳定性。
在航空航天领域,电磁屏蔽可以保护飞行器内部设备不受外界电磁辐射的影响,确保飞行器的正常运行和飞行安全。
此外,电磁屏蔽技术的发展也面临着一些挑战和问题。
首先是屏蔽材料的选择和设计,不同的应用场景需要不同类型的屏蔽材料,如何选择合适的屏蔽材料并设计合理的屏蔽结构是一个关键问题。
其次是屏蔽材料的成本和加工工艺,高性能的屏蔽材料往往价格昂贵,而且加工工艺复杂,如何降低成本并提高生产效率也是一个需要解决的问题。
总的来说,电磁屏蔽技术在现代电子通信领域有着重要的应用意义,其原理和方法对于提高设备的抗干扰能力和提高系统的可靠性具有重要意义。
随着科技的不断发展,电磁屏蔽技术也在不断创新和完善,相信在未来的发展中,电磁屏蔽技术将会发挥更加重要的作用。
PCB电磁屏蔽详解电磁兼容中的屏蔽技术屏蔽是利用屏蔽体来阻挡或减少电磁能传输的一种重要的防护手段。
屏蔽技术用来抑制电磁噪声沿着空间的传播,即切断辐射电磁噪声的传播途径,通常用金属材料或磁性材料把所需屏蔽的区域包围起来,使屏蔽体内外的“场”相互隔离。
屏蔽作为电磁兼容控制的重要手段,可以有效的抑制电磁干扰。
电磁干扰能量通过传导性耦合和辐射性耦合来进行传输。
为满足电磁兼容性要求,对传导性耦合需采用滤波技术,即采用EMI滤波器件加以抑制;对辐射性耦合则需采用屏蔽技术加以抑制。
目前的各种电子设备,尤其是军用电子设备,通常都采用屏蔽技术解决电磁兼容中的问题。
屏蔽按其机理可分为电场屏蔽,磁场屏蔽和电磁屏蔽。
电场屏蔽电场的屏蔽是为了抑制寄生电容耦合( 电场耦合) ,隔离静电或电场干扰。
寄生电容耦合: 由于产品内的各种元件和导线都具有一定电位, 高电位导线相对的低电位导线有电场存在, 也即两导线之间形成了寄生电容耦合。
通常把造成影响的高电位叫感应源, 而被影响的低电位叫受感器。
实际上凡是能幅射电磁能量并影响其它电路工作的都称为感应源( 或干扰源) , 而受到外界电磁干扰的电路都称为受感器。
静电防护的方法: 建立完善的屏蔽结构, 带有接地的金属屏蔽壳体可将放电电流释放到地; 内部电路如果要与金属外壳相连时,要用单点接地, 防止放电电流流过内部电路; 在电缆入口处增加保护器件; 在印制板入口处增加保护环(环与接地端相连)。
磁场屏蔽磁场屏蔽是抑制噪声源和敏感设备之间由于磁场耦合所产生的干扰。
磁场屏蔽主要是依赖高导磁材料所具有的低磁阻对磁通起到分路的作用,使得屏蔽体内部的磁场大大减弱。
如图8-14所示图8-14 磁场屏蔽射频磁屏蔽是利用良导体在入射高频磁场作用下产生涡流,并由涡流的反磁通抑制入射磁场。
常用屏蔽材料有铝、铜及铜镀银等。
电磁屏蔽电磁屏蔽是解决电磁兼容问题的重要手段之一, 大部分电磁兼容问题都可以通过电磁屏蔽来解决。
用电磁屏蔽的方法来解决电磁干扰问题的最大好处是不会影响电路的正常工作, 因此不需对电路做任何修改。
电磁屏蔽的机理就是电磁感应现象。
电磁屏蔽较适用于高频。
低频时感应电流小,屏蔽效果差,应保证屏蔽壳体各部分具有良好的电气连续,使感应电流能在壳体中流畅,以便产生足够大的感应电磁场来抵消外界电磁场,否则将影响屏蔽效果。
电磁屏蔽是利用屏蔽体对干扰电磁波的吸收、反射来达到减弱干扰能量的作用。
它采用低电阻的导体材料,并利用电磁波在屏蔽导体表面产生反射以及在导体内部产生吸收和多次反射而起到屏蔽作用,其目的是为了有效地阻止电磁波从一例空间向另一例空间传扬。
如图所示,对电磁波产生衰减的作用就是电磁屏蔽。
电场屏蔽的原理屏蔽效能屏蔽体的有效性用屏蔽效能来度量。
屏蔽效能是没有屏蔽时空间某个位置的场强与有屏蔽时该位置的场强的比值,它表征了屏蔽体对电磁波的衰减程度。
SE = 20 lg ( E1/ E2 ) dB 如果屏蔽效能计算中使用的磁场,则称为磁场屏蔽效能,如果计算中用的是电场,则称为电场屏蔽效能。
波阻抗在电磁兼容分析中,经常用到波阻抗这个物理量。
电磁波中的电场分量与磁场分量的比值称为波阻抗,定义如下:Z W = E / H根据观测点到辐射源的距离不同,可划分出近场区和远场区两个区域,当距离小于λ/2π时,称为近场区,大于λ/2π时称为远场区。
近场区和远场区的分界面随频率的不同而不同,不是一个定数,这在分析问题时要注意。
例如,在考虑机箱的屏蔽时,机箱相对与线路板上的高速时钟信号而言,可能处于远场区,而对于开关电源较低的工作频率而言,可能处于近场区。
近场区中,波阻抗的值取决于辐射源的性质、观测点到源的距离、介质特性等。
若辐射源为大电流、低电压(辐射源电路的阻抗较低),则产生的电磁波的波阻抗小于377,称为低阻抗波,或磁场波。
若辐射源为高电压,小电流(辐射源电路的阻抗较高),则波阻抗大于377,称为高阻抗波,或电场波。
在远场区,波阻抗仅与电场波传播介质有关,其数值等于介质的特性阻抗,空气为377 。
在近场区内,特定电场波的波阻抗随距离而变化。
如果是电场波,随着距离的增加,波阻抗降低,如果是磁场波,随着距离的增加,波阻抗升高。
在远场区,波阻抗保持不变。
电磁屏蔽的设计屏蔽设计之前总体指标的分配至关重要,有30dB 与70dB 准则之说:一般而言,在同一环境中的一对设备,骚扰电平与抗扰度之差小于30dB,设计阶段可不必专门进行屏蔽设计;若两者之差超过70dB,单靠屏蔽已难保证两者兼容,即使能达到指标,设备成本将急剧增加。
较为可行的办法是总体指标或方案做出适当调整;在30-60dB 之间,则是屏蔽设计的常用期望值。
屏蔽要求高于上述期望值时,最常用的措施是整体屏蔽之后内部再加第二重屏蔽。
由于辐射源分为近区的电场源、磁场源和远区的平面波,因此屏蔽体的屏蔽性能依据辐射源的不同,在材料选择、结构形状和对孔缝泄漏控制等方面都有所不同。
在设计中要达到所需的屏蔽性能,则需首先确定辐射源,明确频率范围,再根据各个频段的典型泄漏结构,确定控制要素,进而选择恰当的屏蔽材料,设计屏蔽壳体。
屏蔽技术常用的屏蔽技术:多层屏蔽、薄膜屏蔽。
单层与多层屏蔽分析为了得到更好的屏蔽效果可以采用多层屏蔽,它对电场和磁场两者都有较好的防护,特别适合于以反射损耗为主的屏蔽体。
隔开的材料可形成多次反射,比同样厚度的金属板能产生更好的屏蔽效果。
多层屏蔽的原则是:各屏蔽层之间不能连接在一起,其间应该隔离空气或者填充其他介质,否则达不到应有的屏蔽效果,各层屏蔽体的材料也不应该相同。
除了要考虑导磁率外,还要考虑饱和电平。
屏蔽室测得铝板, 大小为1 200 mm ×1 200mm,其单层和多层的电场屏蔽效果见表。
当屏蔽体需要有良好的透气性和通风性时,可采用丝网屏蔽,测试丝网大小为600 m ×600 m,屏蔽室测得其电磁场屏蔽效果见表8.2。
由表8.1可知,对比铝板的单层屏蔽和多层屏蔽效果,从中频到高频对于铝板而言更适用于单层屏蔽。
由表可知,就单层屏蔽而言,金属丝网在中频和高频屏蔽效果比较明显,对于多层屏蔽金属丝网更适用于中频的多层屏蔽,且有很好的屏蔽效果。
屏蔽室测得铝板的电磁场屏效屏蔽室测得金属丝网的电磁场屏效薄膜屏蔽薄膜屏蔽通常用喷涂、真空沉积以及粘贴等技术在设备上包覆一层导电薄膜,它的屏蔽效能主要是由反射损耗和多次反射修正因子(下文中介绍)确定。
在不便构造屏蔽体的情况下,既可采用金属箔粘贴方式进行屏蔽又可以采用喷涂方式在基体上覆盖一层薄金属涂层以起吸波、屏蔽作用同时也可防止射频辐射。
屏蔽材料电磁波在穿过屏蔽体时发生衰减是因为能量有了损耗,这种损耗可以分为两部分:反射损耗和吸收损耗。
用于电场屏蔽的屏蔽效能可由下式表示:SE=R+A+B 当电磁波入射到不同媒质的分界面时,就会发生反射,使穿过界面的电磁能量减弱。
由于反射现象而造成的电磁能量损失称为反射损耗。
当电磁波穿过一层屏蔽体时要经过两个界面,因此要发生两次反射。
因此,电磁波穿过屏蔽体时的反射损耗等于两个界面上的反射损耗的总和。
对于电场波而言:第一个界面的反射损耗较大,第二个界面的反射损耗较小。
对于磁场波而言,情况正好相反,第一个界面的反射损耗较小,第二个界面的反射损耗较大。
实际屏蔽效能的计算3. 屏蔽结构屏蔽体的屏蔽效能不仅取决于构成屏蔽体的材料,而且取决于屏蔽体的结构。
电屏蔽体的形状最好设计为盒形或是全封闭的, 然而现实中一个完全封闭的屏蔽体是没有任何价值的,机箱或壳体上常开有很多显示窗、通风口、不同部分结合的缝隙等(如图8-17所示)。
可以根据需要可适当地进行结构设计,来进一步减小分布电容。
入射波 场强距离吸收损耗R1 R2SE =R1+R2+A +BB R1R2缝隙孔洞电场屏蔽的屏蔽体必须接地,最好直接接地,孔洞泄漏越小屏蔽效果越好,主要结构有单层门盖结构和双层门盖结构。
磁场屏蔽是利用高导磁材料构成低磁阻通路,使屏蔽体对磁通进行分流,主要选择铁或其他高导磁率材料防止磁饱和。
被屏蔽物与屏蔽体内壁应留有一定间隙,防止磁短路现象发生;可增加屏蔽体厚度,为了防止电场感应,一般还要接地。
如果屏蔽体不完整,涡流的效果降低,即屏蔽的效果大打折扣,可采用盒状、筒状、柱状的结构。
电磁场屏蔽是利用屏蔽体对电磁波的吸收、反射来阻止电磁能量在空间传播,达到减弱干扰能量的效果。
因此,电磁屏蔽可采用板状、盒状、筒状、柱状的屏蔽体。
由于这些导致电不连续的因素存在,屏蔽体的屏蔽效能往往很低,甚至没有屏蔽效能; 因此对屏蔽体缝隙、孔洞的研究也是十分必要的。
印制板使元器件安装紧凑、连线密集,这一特点无疑是印制板的优点。
然而,印制板分布参数造成的干扰、元器件相互之间的磁场干扰等,如同其他干扰一样,在排板设计中必须引起重视。
(1)避免印制导线之间的寄生藕合。
两条相距很近的平行导线,当信号从一条线中通过时,另一条线内也会产生感应信号。
感应信号的大小与原始信号的频率及功率有关,感应信号便是分布参数产生的干扰源。
为了抑制这种干扰,排板前要分析原理图,区别强弱信号线使弱信号线尽量短,并避免与其他信号线平行靠近。
不同回路的信号线,要尽量避免相互平行布设,双面板两面的印制导线走向要相互垂直,尽量避免平行布设。
(2)印制导线屏蔽。
有时,某种信号线密集地平行,且无法摆脱较强信号的干扰。
在这种情况下可以采用如图8-18所示的印制导线屏蔽的方法,将弱信号屏蔽起来,其效果与屏蔽电缆相似,使之所受的干扰得到抑制。
印制导线的屏蔽(3)减小磁性元件对印制导线的干扰。
要排除这类干扰,一般应该注意分析磁性元件的磁场方向,减少印制导线对磁力线的切割。
8.2.5屏蔽的设计原则(1)设计之前必须确定电磁环境,包括电磁场的类型,场的强度、频率以及屏蔽体至源的距离等。
(2)当需要综合考虑低频磁场和高频磁场的屏蔽时,可以在屏蔽体上再镀上一层其他材料,如银或铜。
为了有效地进行磁屏蔽,必须使用如坡莫合金之类对低磁通密度有高导磁系数的材料。
同时要有一定的厚度,对有一端进去从另一端出来的磁通,其磁阻必须要小。
(3)为了获得更好的屏蔽效能可采用双层屏蔽或多层屏蔽。
需要注意的是:应使屏蔽体的接缝与孔洞的长边平行于磁场分布的方向,圆孔的排列方向要使磁路增加量最小,目的是尽可能不要阻断磁通的通过,屏蔽体加工成型后要进行退火处理。
(4)多块材料组成屏蔽体时,为了保持磁连续性可采用机械法和焊接法。
在转角处或过渡处,为了获得较好的屏蔽效能可采用焊接的方法。
保持接触面的连续性可使磁力线沿低磁阻通道连续,因而可提高屏蔽效能。
对交变电场和磁场而言,保持磁连续性可取得较大的感应电流屏蔽。
对直流电场和磁场而言,连续性可保证磁力线的完好分流。