高中数学《均匀随机数的产生》公开课优秀教学设计
- 格式:doc
- 大小:829.50 KB
- 文档页数:13
均匀随机数的产生
1、教学任务分析
(1)通过本节课的学习让学生知道如何利用计算器或计算机Excel软件产生均匀随机数,并会利用随机模拟方法估计未知量.
(2)通过本节课学习让学生学会建立严格的几何模型来解决多元的几何概型问题。
(3)这是概率必修章节的最后一个知识点,前面已经学过了(整数值)随机数的产生和用蒙特卡罗模拟方法估计概率值.本节的主要思路是对照前面学过的知识让学生自主思考、设计方案。
(4)用随机模拟法估计未知量.例3是圆周率的估计,例4则是不规则平面图形面积的估计.
(5)建立严格的几何模型,解决例1中涉及到的两元几何概型问题.
2.教学重点与难点
重点:
(1) 均匀随机数的产生,设计模型并运用随机模拟法估计未知量;
(2) 转化为严格的几何概型再分析上述问题.
难点:
(1) 如何设计随机模拟法;(2) 如何转化为严格的几何概型问题.
3.教学流程
4.教学情境设计。
均匀随机数的产生一、教学内容解析本课选自人民教育出版社(数学必修3)A版第三章《概率》中“几何概型”的第二课时《3.3.2均匀随机数的产生》。
均匀随机数是在学生已经掌握几何概型的基础上,来学习解决几何概型问题的又一方法,本节课的教学对全面系统地理解掌握概率知识,对于培养学生自觉动手、动脑的习惯,对于学生辩证思想的进一步形成,具有良好的作用. 通过对本节例题的模拟试验,认识用计算机模拟试验解决概率问题的方法,体会到用计算机产生随机数,可以产生大量的随机数,又可以自动统计试验的结果,同时可以在短时间内多次重复试验,可以对试验结果的随机性和规律性有更深刻的认识。
在教学过程中有意识地让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程,同时使学生认识数学的实用价值和科学价值。
本节课的教学重难点:重点是掌握使用EXCEL软件产生[0,1]及[a,b]上均匀随机数;学会采用适当的随机模拟法去估算几何概率.难点是二、教学目标设置1、通过模拟试验,了解均匀随机数的概念;了解利用计算器(计算机)产生均匀随机数的方法。
2、培养学生自己动手,主动思考,发现创新的好习惯。
通过学习体会数形结合的思想方法。
3、通过学习使学生经历设计和运用模拟方法来近似计算概率,让学生深刻体会频率和概率的区别,通过大量模拟实验,充分感受“大数规律”,从而理解频率估计概率的科学性。
进而提高分析实际问题的能力,增强数学应用意识。
4、营造和谐的课堂氛围,通过独立思考,合作交流使学生获得学习数学的成功体验,培养良好的学习习惯及严谨的思维方式。
三、学生学情分析学生已有的认知基础是古典概型的概念,初步认识到几何概型是解决概率的另一种数学模型,并且能区分两种不同概率模型,学生在学习完古典概型后,已经了解利用随机模拟的方法解决概率问题,能设计方案通过产生整数随机数解决古典概型的概率.教学中,通过古典概型与几何概型的对比,引导学生探索利用计算机如何产生某区间上均匀随机数,并通过实验操作,经历讨论、交流、计算机验证使学生经历从直观到抽象、具体到一般的形成知识的过程.四、教学策略分析1.根据学生情况,本课采用计算机产生均匀随机数,使用学生熟悉的软件EXCEL这样符合学生的认知规律,可以有效提高学生数学思维的参与度,利于新课的学习。
3.3.2均匀随机数的产生教学目标通过模拟试验,了解均匀随机数的概念;了解利用计算器(计算机)产生均匀随机数的方法。
1、培养学生自己动手,主动思考,发现创新的好习惯。
通过学习体会数形结合的思想方法。
2、通过学习使学生经历设计和运用模拟方法来近似计算概率,让学生深刻体会频率和概率的区别,通过大量模拟实验,充分感受“大数规律”,从而理解频率估计概率的科学性。
进而提高分析实际问题的能力,增强数学应用意识。
3、营造和谐的课堂氛围,通过独立思考,合作交流使学生获得学习数学的成功体验,培养良好的学习习惯及严谨的思维方式。
教学重点掌握使用EXCEL软件产生[0,1]及[a,b]上均匀随机数;学会采用适当的随机模拟法去估算几何概率.教学难点用适当的随机模拟法去估算几何概率.教学过程(一)创设情境,引入新知问题1:父亲离开家去工作的时间在早上7:00—8:00之间 ,求父亲在7:30之后离开家上班的概率?问题2:如何判断这个问题是一个几何概型的?几何概型特点是什么?【师生活动】:学生思考、发言,教师补充.【设计意图】:引导学生把实际问题转化为数学问题,同时在几何概型中要把一个变量问题转化为长度比来解决问题,同时为例题《订报纸》,两个变量问题做铺垫。
问题3:假设你家订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00—8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少?问题4:对比上一个问题,都是时间问题,都是几何概型,怎么上一个是长度比,这道题用面积比,有什么区别?【师生活动】:教师引导学生通过类比、观察、交流后,得出方法。
帮助学生分析问题,引导学生将实际问题转化为数学问题,并用数学符号语言表达,解题过程由学生思考陈述,教师板书过程,师生共同总结本题特点。
【设计意图】:这是本节课的难点,通过问题引发学生思考一个变量可否解决问题,自然是学生分析出需要设两个变量。
人教版高中必修3 3.3.2 均匀随机数的产生教学设计
一、教学目标
1.了解均匀随机数的定义和特点;
2.掌握利用计算机生成均匀随机数的方法;
3.培养学生的计算机编程能力和创新意识。
二、教学内容
1.均匀随机数的定义及其特点;
2.利用计算机生成均匀随机数的方法;
3.计算机编程实现产生均匀随机数。
三、教学过程
步骤一:导入
1.引导学生回顾前面所学的概率知识,特别是随机事件和概率的概念;
2.引导学生思考,如果需要产生大量的随机数,应该如何实现。
步骤二:均匀随机数的定义和特点
1.通过例子引导学生了解均匀随机数的定义和特点;
2.给学生示范如何计算均匀随机数的概率。
步骤三:计算机产生均匀随机数的方法
1.引导学生了解计算机产生均匀随机数的算法;
2.讲解线性同余法生成随机数的原理和实现方法;
3.配合案例进行演示。
步骤四:计算机编程实现
1.列出程序框架,包括主程序和子程序;
2.引导学生编写主程序和子程序的伪代码;
3.学生自主编写程序,并进行测试。
步骤五:总结
1.引导学生总结均匀随机数的特点和计算机产生随机数的方法;
2.引导学生思考如何利用随机数进行实际应用。
四、教学重点与难点
1.掌握计算机产生均匀随机数的算法和程序实现方法;
2.能够熟练地运用计算机产生随机数。
五、教学评价
1.观察学生的课堂表现,包括参与度、思维活跃度、编写程序功底等;
2.组织小组讨论,分享编程体会;
3.通过作业、期末考试等方式进行考核。
3.3.2均匀随机数的产生教学设计教材:人教A版必修3 第三章概率 3.3几何概型教材地位分析在现实生活中,很多随机问题无法用公式求得准确概率,于是在高中数学的概率模块学习中,新增了随机模拟这一重要内容。
本课作为概率必修的章节的尾声,在掌握了概率定义,古典概型整数值随机数的产生及几何概型公式计算的基础上,学习均匀随机数的产生方法,并运用于随机模拟试验中,为解决现实生活中的随机问题,提供了另一个实用可操作的途径。
教学内容分析本课教学的主要内容是:学习用计算器(机)产生均匀随机数的一般方法;探究例2,一方面用随机模拟的方法统计事件发生的频率,并估计为概率,另一方面用几何概型的公式计算得到准确的概率,并验证随机模拟结果的可靠性;最后通过例3圆周率的估计问题来巩固随机模拟的思想方法。
●教学重点:学习用计算器(机)产生均匀随机数的一般方法;用随机模拟的方法解决例2的送报纸问题。
●教学难点:随机模拟试验的设计过程。
教学目标设置通过本课的学习,希望学生能达到以下三个层次的目标●知识目标:了解均匀随机数的特点;熟练掌握用计算器和计算机产生均匀随机数方法;通过例2和例3,学会设计随机模拟试验。
●能力目标:提升数据处理能力,实践操作能力和归纳总结能力●思想目标:巩固和深化频率估计概率的随机模拟思想。
学生学情分析本节课教学对象是高二学生,具备以下知识和能力:●已学习概率的定义,理解随着试验次数的增加,频率会越来越接近概率;●在古典概型的学习中,已初步接触了随机模拟试验;●已经学习几何概型的公式计算方法,并基本能识别不同几何测度的概率问题;教学策略分析在高考中,随机模拟试验的内容较少涉及,传统授课中,例2送报纸问题常以几何概型公式计算的方法为教学重点。
但在数学核心素养的培养中,数学建模与数据处理是重要的部分,而随机模拟是此能力培养的重点内容之一,教学中需提供大量实践操作的机会。
故本课采用数学试验的教学策略,从试验原理的引入到试验工具的学习,从设计试验的方案到体验试验的操作,应用理论对试验结果进行论证,最后提炼出试验的主要思路,并加以巩固运用,让学生体验随机模拟试验的全过程。
“几何概型”教学设计四川省眉山中学校谢维勇一、教材分析“几何概型”是人教A版高中数学必修3第三章概率第三节的内容,安排在“随机事件的概率”和“古典概型”之后,其上位知识为概率的统计定义和等可能事件定义,下位知识为运用计算机产生均匀随机数估计”几何概型”的概率等内容。
”几何概型”是新课程新增加的内容,介绍”几何概型”主要是为了更广泛地满足随机模拟的需要,对”几何概型”的要求仅限于初步体会”几何概型”的意义。
”几何概型”在概率论中占有重要的地位,它将”古典概型”中等可能事件数量从有限推广到无限,更广泛地满足随机模拟的需要,进一步完善了人类对概率模型的认识。
教材中”几何概型”这一节共分两个课时,这里是针对第一节课的教学设计,主要涉及”几何概型”的定义、计算公式及其简单应用。
“几何概型”的课堂教学活动应侧重学生对”几何概型”本质的理解和计算公式的掌握教学的关键是处理好以下几个方面:一是克服”古典概型”思维定势的影响,阐释并引入”几何概型”的意义;二是归纳”几何概型”特征,理解”几何概型”与”古典概型”的本质区别;三是一维、二维到三维”几何概型”中测度的具体内容。
因此,将本节课教学的重难点确定为:”几何概型”概念的建构和选择恰当的概率模型进行概率计算。
二、教学目标1了解”几何概型”的基本特点及与”古典概型”的异同。
2会依据具体问题选择恰当测度进行简单的”几何概型”计算。
3依据具体问题选择基本事件恰当的几何表征发展学生直观想象的数学素养4通过”几何概型”概念的建构过程和选择恰当的概率模型进行概率计算发展学生数学建模的数学素养三、教学重难点教学重点:”几何概型”概念的建构和选择恰当的概率模型进行概率计算教学难点:”几何概型”概念的建构和依据具体问题选择基本事件恰当的几何表征。
四、教学方法本节课采用学生探究与教师讲授相结合的教学方法,注重启发式教学,多以问题链的形式出现,并结合多媒体辅助教学。
在课堂教学过程中,通过分组讨论、合作交流的形式,使学生体验数学活动中的发现与创造,让学生亲身经历”几何概型”概念的建构过程,从观察到分析再到归纳,感受事物从具体到抽象,从特殊到一般,从感性到理性的认知过程,逐渐培养透过现象看本质的思维方法和能力。
3.3.2 均匀随机数的产生教学目标:德育目标:教学重点:教学难点:课时安排1课时教学过程导入新课在古典概型中我们可以利用(整数值)随机数来模拟古典概型的问题,那么在几何概型中我们能不能通过随机数来模拟试验呢?如果能够我们如何产生随机数?又如何利用随机数来模拟几何概型的试验呢?引出本节课题:均匀随机数的产生.推进新课提出问题(1)请说出古典概型的概念、特点和概率的计算公式?(2)请说出几何概型的概念、特点和概率的计算公式?(3)给出一个古典概型的问题,我们除了用概率的计算公式计算概率外,还可用什么方法得到概率?对于几何概型我们是否也能有同样的处理方法呢?(4)请你根据整数值随机数的产生,用计算器模拟产生[0,1]上的均匀随机数.(5)请你根据整数值随机数的产生,用计算机模拟产生[0,1]上的均匀随机数.(6)[a,b ]上均匀随机数的产生.活动:学生回顾所学知识,相互交流,在教师的指导下,类比前面的试验,一一作出回答,教师及时提示引导.讨论结果:(1)在一个试验中如果a.试验中所有可能出现的基本事件只有有限个;(有限性)b.每个基本事件出现的可能性相等.(等可能性)我们将具有这两个特点的概率模型称为古典概率模型(classical models of probability ),简称古典概型.古典概型计算任何事件的概率计算公式为:P (A )=基本事件的总数数所包含的基本事件的个A . (2)对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.几何概型的基本特点:a.试验中所有可能出现的结果(基本事件)有无限多个;b.每个基本事件出现的可能性相等.几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A . (3)我们可以用计算机或计算器模拟试验产生整数值随机数来近似地得到所求事件的概率,对于几何概型应当也可.(4)我们常用的是[0,1]上的均匀随机数.可以利用计算器来产生0—1之间的均匀随机数(实数),方法如下:试验的结果是区间[0,1]内的任何一个实数,而且出现任何一个实数是等可能的,因此,就可以用上面的方法产生的0—1之间的均匀随机数进行随机模拟.(5)a.选定A1格,键入“=RAND()”,按Enter键,则在此格中的数是随机产生的[0,1]之间的均匀随机数.b.选定A1格,按Ctrl+C快捷键,选定A2—A50,B1—B50,按Ctrl+V快捷键,则在A2—A50, B1—B50的数均为[0,1]之间的均匀随机数.(6)[a,b]上均匀随机数的产生:利用计算器或计算机产生[0,1]上的均匀随机数X=RAND,然后利用伸缩和平移变换,X=X*(b-a)+a就可以得到[a,b]上的均匀随机数,试验结果是[a,b]内任何一实数,并且是等可能的.这样我们就可以通过计算机或计算器产生的均匀随机数,用随机模拟的方法估计事件的概率. 应用示例例1 假设你家订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00—8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少?活动:用计算机产生随机数模拟试验,我们可以利用计算机产生0—1之间的均匀随机数,利用计算机产生B是0—1的均匀随机数,则送报人送报到家的时间为B+6.5,利用计算机产生A 是0—1的均匀随机数,则父亲离家的时间为A+7,如果A+7>B+6.5,即A>B-0.5时,事件E={父亲离家前能得到报纸}发生.也可用几何概率的计算公式计算.解:1.选定A1格,键入“=RAND()”,按Enter键,则在此格中的数是随机产生的[0,1]之间的均匀随机数.2.选定A1格,按Ctrl+C快捷键,选定A2—A50,B1—B50,按Ctrl+V快捷键,则在A2—A50,B1—B50的数均为[0,1]之间的均匀随机数.用A列的数加7表示父亲离开家的时间,B列的数加6.5表示报纸到达的时间.这样我们相当于做了50次随机试验.3.如果A+7>B+6.5,即A-B>-0.5,则表示父亲在离开家前能得到报纸.4.选定D1格,键入“=A1-B1”;再选定D1,按Ctrl+C,选定D2—D50,按Ctrl+V.5.选定E1格,键入频数函数“=FREQUENCY (D1:D50,-0.5)”,按Enter 键,此数是统计D 列中,比-0.5小的数的个数,即父亲在离开家前不能得到报纸的频数.6.选定F1格,键入“=1-E1/50”,按Enter 键,此数是表示统计50次试验中,父亲在离开家前能得到报纸的频率.例2 在如下图的正方形中随机撒一把豆子,用计算机随机模拟的方法估算圆周率的值.解:随机撒一把豆子,每个豆子落在正方形内任何一点是等可能的,落在每个区域的豆子数与这个区域的面积近似成正比,即落在正方形中的豆子数落在圆中的豆子数正方形的面积圆的面积≈. 假设正方形的边长为2,则422ππ=⨯=正方形的面积圆的面积. 由于落在每个区域的豆子数是可以数出来的,所以π≈落在正方形中的豆子数落在圆中的豆子数×4,这样就得到了π的近似值. 课堂小结作业课后反思。
3.3.2 均匀随机数的产生教学目标知识与技能1.了解均匀随机数的概念;2.掌握利用计算器(计算机)产生均匀随机数的方法;3.会利用均匀随机数解决具体的有关概率的问题.过程与方法通过模拟试验,感知应用数字解决问题的方法,自觉养成动手动脑的好习惯。
情感态度与价值观通过对实际问题的解决,养成勤学严谨的学习习惯,激发学生的学习兴趣,树立学好知识,服务社会的良好品质。
教学重点均匀随机数的产生,设计模型并运用随机模拟方法估计未知量。
教学难点如何把未知的估计问题转化为随机模型问题课时安排1课时教学过程一、复习回顾,导入新课提问:(1)什么是几何概型?(2)几何概型的概率公式是怎样的?(3)几何概型的特点是什么?在古典概型中我们可以利用(整数值)随机数来模拟古典概型的问题,那么在几何概型中我们能不能通过随机数来模拟试验呢?如果能够我们如何产生随机数?又如何利用随机数来模拟几何概型的试验呢?引出本节课题:均匀随机数的产生.二、推进新课,探究新知提问:给出一个古典概型的问题,我们除了用概率的计算公式计算概率外,还可用什么方法得到概率?对于几何概型我们是否也能有同样的处理方法呢?1.用计算器产生均匀随机数我们常用的是[0,1]上的均匀随机数.可以利用计算器来产生0—1之间的均匀随机数(实数),方法如下:试验的结果是区间[0,1]内的任何一个实数,而且出现任何一个实数是等可能的,因此,就可以用上面的方法产生的0—1之间的均匀随机数进行随机模拟.2.用Excel软件产生均匀随机数a.选定A1格,键入“=RAND()”,按Enter键,则在此格中的数是随机产生的[0,1]之间的均匀随机数.b.选定A1格,按Ctrl+C快捷键,选定A2—A50,B1—B50,按Ctrl+V快捷键,则在A2—A50, B1—B50的数均为[0,1]之间的均匀随机数.3.[a,b]上均匀随机数的产生:利用计算器或计算机产生[0,1]上的均匀随机数X=RAND,然后利用伸缩和平移变换,X=X*(b-a)+a就可以得到[a,b]上的均匀随机数,试验结果是[a,b]内任何一实数,并且是等可能的.这样我们就可以通过计算机或计算器产生的均匀随机数,用随机模拟的方法估计事件的概率.三、应用示例例1 假设你家订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00—8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少?例2 在如下图的正方形中随机撒一把豆子,用计算机随机模拟的方法估算圆周率的值.例3 利用随机模拟方法计算下图中阴影部分(y=1和y=x2所围成的部分)的面积.四、变式训练1.在长为12 cm的线段AB上任取一点M,并以线段AM为边作正方形,求这个正方形的面积介于36 cm2与81 cm2之间的概率.2.如下图,∠AOB=60°,OA=2,OB=5,在线段OB上任取一点C,试求:(1)△AOC为钝角三角形的概率;(2)△AOC为锐角三角形的概率.五、课堂小结均匀随机数在日常生活中有着广泛的应用,我们可以利用计算器或计算机来产生均匀随机数,从而来模拟随机试验,其具体方法是:建立一个概率模型,它与某些我们感兴趣的量(如概率值、常数)有关,然后设计适当的试验,并通过这个试验的结果来确定这些量.六、作业布置P146 B组4题设计感想本节课我们根据问题的需要利用一组随机数进行模拟试验,也利用两组随机数进行模拟试验.用随机数模拟的关键是把实际问题中事件A及基本事件总体对应的区域转化为随机数的范围.用计算机产生随机数,可以产生大量的随机数,又可以自动统计试验的结果,同时可以在短时间内多次重复试验,可以对试验结果的随机性和规律性有更深刻的认识;相信通过本节的学习一定会提高同学们的应用能力,也能解决平常不能解决的一些问题.。
《均匀随机数的产生》教学设计1、知识与技能:(1)掌握几何概型的概率公式:P(A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ; (2)了解均匀随机数的概念;(3)掌握利用计算器(计算机)产生均匀随机数的方法;(4)会利用均匀随机数解决具体的有关概率的问题。
2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数学解决问题的方法,自觉养成动手、动脑的良好习惯。
3、情感态度与价值观:通过模拟方法的设计体验数学的重要性和信息技术在数学中的应用;通过动手模拟,动脑思考,体会做数学的乐趣;通过合作试验,培养合作与交流的团队精神。
【教学重点】掌握[0,1]上均匀随机数的产生及[a ,b ]上均匀随机数的产生.学会采用适当的随机模拟法去估算几何概率。
【教学难点】利用计算器或计算机产生均匀随机数并运用到概率的实际应用中。
(一)新课导入假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,你父亲离开家去上班的时间在早上7:00~8:00之间,如果把“你父亲在离开家之前能得到报纸”称为事件A ,则事件A 的概率是多少?计算该事件的概率有两种方法:1、利用几何概型的公式:找到试验的全部结果构成的区域及父亲离开家前能拿到报纸的区域;2、用随机模拟的方法。
那么如何应用这两种方法来求解呢?(二)新课讲授试用计算器来产生一个0~1之间的均匀随机数。
解析:实验结果是[0,1]内的任何一个实数,而且出现任何一个实数,而且出现任何一个实数都是等可能的,因此,就可以用上面的方法产生的0—1之间的均匀随机数进行随机模拟。
思考1:计算机只能产生[0,1]上的均匀随机数,如果试验的结果是区间[a,b]上等可能出现的任何一个值,则需要产生[a,b]上的均匀随机数,对此,你有什么办法解决?答:首先利用计算器或计算机产生[0,1]上的均匀随机数X=RAND,然后利用伸缩和平移变换:Y=X*(b—a)+a计算Y的值,则Y为[a,b]上的均匀随机数。
3.3.2均匀随机数的产生教学设计教材:人教A版必修3 第三章概率 3.3几何概型广东省惠州市第一中学郭慧敏教材地位分析在现实生活中,很多随机问题无法用公式求得准确概率,于是在高中数学的概率模块学习中,新增了随机模拟这一重要内容。
本课作为概率必修的章节的尾声,在掌握了概率定义,古典概型整数值随机数的产生及几何概型公式计算的基础上,学习均匀随机数的产生方法,并运用于随机模拟试验中,为解决现实生活中的随机问题,提供了另一个实用可操作的途径。
教学内容分析本课教学的主要内容是:学习用计算器(机)产生均匀随机数的一般方法;探究例2,一方面用随机模拟的方法统计事件发生的频率,并估计为概率,另一方面用几何概型的公式计算得到准确的概率,并验证随机模拟结果的可靠性;最后通过例3圆周率的估计问题来巩固随机模拟的思想方法。
●教学重点:学习用计算器(机)产生均匀随机数的一般方法;用随机模拟的方法解决例2的送报纸问题。
●教学难点:随机模拟试验的设计过程。
教学目标设置通过本课的学习,希望学生能达到以下三个层次的目标●知识目标:了解均匀随机数的特点;熟练掌握用计算器和计算机产生均匀随机数方法;通过例2和例3,学会设计随机模拟试验。
●能力目标:提升数据处理能力,实践操作能力和归纳总结能力●思想目标:巩固和深化频率估计概率的随机模拟思想。
学生学情分析本节课教学对象是高二学生,具备以下知识和能力:●已学习概率的定义,理解随着试验次数的增加,频率会越来越接近概率;●在古典概型的学习中,已初步接触了随机模拟试验;●已经学习几何概型的公式计算方法,并基本能识别不同几何测度的概率问题;教学策略分析在高考中,随机模拟试验的内容较少涉及,传统授课中,例2送报纸问题常以几何概型公式计算的方法为教学重点。
但在数学核心素养的培养中,数学建模与数据处理是重要的部分,而随机模拟是此能力培养的重点内容之一,教学中需提供大量实践操作的机会。
故本课采用数学试验的教学策略,从试验原理的引入到试验工具的学习,从设计试验的方案到体验试验的操作,应用理论对试验结果进行论证,最后提炼出试验的主要思路,并加以巩固运用,让学生体验随机模拟试验的全过程。
3.3.2均匀随机数的产生
教学设计
教材:人教A版必修3 第三章概率 3.3几何概型
教材地位分析
在现实生活中,很多随机问题无法用公式求得准确概率,于是在高中数学的概率模块学习中,新增了随机模拟这一重要内容。
本课作为概率必修的章节的尾声,在掌握了概率定义,古典概型整数值随机数的产生及几何概型公式计算的基础上,学习均匀随机数的产生方法,并运用于随机模拟试验中,为解决现实生活中的随机问题,提供了另一个实用可操作的途径。
教学内容分析
本课教学的主要内容是:学习用计算器(机)产生均匀随机数的一般方法;探究例2,一方面用随机模拟的方法统计事件发生的频率,并估计为概率,另一方面用几何概型的公式计算得到准确的概率,并验证随机模拟结果的可靠性;最后通过例3圆周率的估计问题来巩固随机模拟的思想方法。
●教学重点:学习用计算器(机)产生均匀随机数的一般方法;用随机模拟的方法解决例2的送报纸问题。
●教学难点:随机模拟试验的设计过程。
教学目标设置
通过本课的学习,希望学生能达到以下三个层次的目标
●知识目标:了解均匀随机数的特点;熟练掌握用计算器和计算机产生均匀随机数方法;通过例2和例3,学会设计随机模拟试验。
●能力目标:提升数据处理能力,实践操作能力和归纳总结能力
●思想目标:巩固和深化频率估计概率的随机模拟思想。
学生学情分析
本节课教学对象是高二学生,具备以下知识和能力:
●已学习概率的定义,理解随着试验次数的增加,频率会越来越接近概率;
●在古典概型的学习中,已初步接触了随机模拟试验;
●已经学习几何概型的公式计算方法,并基本能识别不同几何测度的概率问题;
教学策略分析
在高考中,随机模拟试验的内容较少涉及,传统授课中,例2送报纸问题常以几何概型公式计算的方法为教学重点。
但在数学核心素养的培养中,数学建模与数据处理是重要的部分,而随机模拟是此能力培养的重点内容之一,教学中需提供大量实践操作的机会。
故本课采用数学试验的教学策略,从试验原理的引入到试验工具的学习,从设计试验的方案到体验试验的操作,应用理论对试验结果进行论证,最后提炼出试验的主要思路,并加以巩固运用,让学生体验随机模拟试验的全过程。
由此,课前需做好以下教学准备:每个小组配备一台笔记本电脑,两个计算器,教师自制转盘教具,印制课堂学案。
教学流程框图
实践操作:
3.理论计算验证
从理论的角度思考“送报纸”问题,计算出准确的概率。
3.1一个时间确定,一个时间随机,明确事件发生的条件。
离家时间确定为7:20,送报时间为6:30至7:20即可
A 发生的条件是送报时间≤离家时间。
设量建系,量化面积,计算概率
邮递员送报纸时间为x , 则6.57.5x ≤≤,爸爸离家时间8≤,爸爸离家前取得报纸, 只需送报时间早于离家时间,则 y x ≥:
111
7222118
⨯⨯=⨯。