【精编】2017年浙江省台州市椒江区书生中学数学中考二模试卷与解析
- 格式:doc
- 大小:1.05 MB
- 文档页数:35
浙江省台州市2017年中考数学试卷(解析版)一、选择题1、5的相反数是()A、 5B、C、D、2、如图所示的工件是由两个长方体构成的组合体,则它的主视图是()A、B、C、D、3、人教版初中数学教科书共6册,总字数是978000,用科学记数法可将978000表示为()A、B、C、D、4、有5名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A、方差B、中位数C、众数D、平均数5、如图,点P使∠AOB平分线上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA 的距离是()A、1B、2C、D、46、已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为,当电压为定值时,I关于R的函数图象是()A、B、C、D、7、下列计算正确的是()A、B、C、D、8、如图,已知△ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A、AE=ECB、AE=BEC、∠EBC=∠BACD、∠EBC=∠ABE9、滴滴快车是一种便捷的出行工具,计价规则如下表:小王与小张各自乘坐滴滴快车,行车里程分别为6公里和8.5公里,如果下车时间所付车费相同,那么这两辆滴滴快车的行车时间相差()A、10分钟B、13分钟C、15分钟D、19分钟10、如图,矩形EFGH四个顶点分别在菱形ABCD的四条边上,BE=BF,将△AEH,△CFG分别沿边EH,FG折叠,当重叠部分为菱形且面积是菱形ABCD面积的时,则为()A、B、2 C、D、4二、填空题11、因式分解:________12、如图,已知直线a∥b,∠1=70°,则∠2=________。
浙江省台州市中考数学第二次模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下面说法正确的是( )①矩形的平行投影一定是矩形;②梯形的平行投影一定是梯形;③两相交的直线的平行投影可能是平行的;④如果一个三角形的平行投影是三角形,那么它的中位线平行投影一定是这个三角形平行投影对应的中位线.A.①②B.④C.②③D.①④B2.某班级想举办一次书法比赛,全班45名同学必须每人上交一份书法作品,设一等奖5名,二等奖10名,三等奖15名,那么该班某位同学获一等奖的概率为()A.19B.29C.13D.233.如图所示,在四边形ABCD 中,∠B=∠D=90°,:C:1:2:2CD B CA=,则∠DAB 等于()A.60°B.75°C.90°D.105°4.△ABC 中,A = 47°,AB = 1.5 cm,AC=2 cm,△DEF 中,E = 47°,ED =2.8 cm,EF=2.1 cnn,这两个三角形()A.相似B.不相似C.全等D.以上都不对5.下面语句中,命题的个数是()(1)同角的补角相等.(2)两条直线相交,有几个交点?(3)相等的两个角是对顶角.(4)若a>0,b>0,则ab>0.A.1个 B 2个 C.3个D.4个6.2(6)6x x-=-成立的条件是()A.6x<B.6x>C.6x≤D.6x≥7.若直角三角形的一条直角边长为 5,斜边上的中线长为 6.5,则另一条直角边长等于()A. 3 B.12 C. 7 D. 48.用科学记数法表示:0.0000 45,正确的是()A.4.5×104B.4.5×10-4 C.4.5×10-5D.4.5×1059.下列长度的三条线段能首尾相接构成三角形的是()A.4,2,2 B.1,2,3,C.2,3,6 D.3,6,610.下列基本图形中,经过平移、旋转或轴对称变换后,不能得到最右边图的是()11.如图所示,AD⊥BC于D,那么以AD为高的三角形有()A. 3个B.4个C. 5个D.6个二、填空题12.在山坡上种树,要求株距为 6m,测得斜坡的倾斜角为 30°,则斜坡上相邻两株树间的坡面垂直距离是 m.13.已知扇形面积为 12π㎝,半径为 8 cm,则扇形的弧长是.14.如图,AB、CD 是⊙O的直径,已知∠AOC:∠BOC =1:2,则∠ADC= ,∠BDC= ,∠ADB= .15.正比例函数y kx=的自变量增加4 ,函数值就相应减少2,则k的值为.16.下图是由一些相同的小正方体构成的几何体的三视图,则这个几何体共有小正方体个.17.小王想把 20 元人民币全部兑换成 2元和 5元两种面值的人民币,她有种不同的兑换方法(只兑换一种币值也可以).18.已知在同一平面内,直线a ∥b ,而直线b 和直线c 相交,则直线a 和直线c 的位置关系是 .19.如图是某中学就“月球上有水吗”这一问题调查结果的扇形统计图,则该统计图中, “不知道”部分的圆心角的度数为 ,已知认为“无水”的同学共有100位,那么 参加这次调查的人数是 .20. 计算1422-÷⨯的结果为 .三、解答题21.如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠OAB =30°. (1)求∠APB 的度数; (2)当OA =3时,求AP 的长.22.对于函数289y x x =-+,请回答下列问题:(1)函数2289y x x =-+的图象可以由形如2y ax =的抛物线,经怎样平移得到? (2)函数图象的顶点,对称轴各是多少? (3)x 为何值时函数有最值,最值是多少?23.某公司甲、乙两座仓库分别有运输车 12辆和6辆,要调往A 地 10辆,调往B 地8辆. 已知从甲仓库调运一辆到 A 地和 B 地的费用分别为 40元与 80元;从乙仓库调运一辆到A 地和 B 地的费用分别为 30元与 50元. 设从乙仓库调到入地x 辆车. (1)用含x 的式子表示调运车辆的总费用;(2)若要求总费用不超过 900 元,共有几种运方案? (3)求出总费用最低的方案,最低费用是多少元?24.小语同学在求一组数据的方差时,觉得运用公式2222121[()()()]n S x x x x x x n =-+-++-求方差比较麻烦,善于动脑的小语发现求方差的简化公式22222121[())]n S x x x nx n=+++-,你认为小语的想法正确吗?请你就n=3时,帮助小语证明该简化公式.25.如图,已知AB=CD ,AE ⊥BC ,DF ⊥BC ,CF=BE,则∠A=∠D,为什么?26.已知边长为l cm 的等边三角形ABC ,如图所示.(1)将这个三角形绕它的顶点C 按顺时针方向旋转30°,作出这个图形; (2)再将已知三角形分别按顺时针方向旋转60°,90°,l20°,作出这些图形.(3)继续将三角形向同一方向旋转150°,180°,210°,240°,270°,300°,330°,作出这些图形.你将会得到一个美丽的图案.27.如图所示,在四边形ABCD 中,E ,F 分别为AD ,BC 的中点.已知四边形ABCD 的面积为l ,求四边形DEBF 的 面积.28.一根木条被9条红线均匀地分成l0等分,相邻两条红线之间的长度为l个单位长度.如果只能沿着红线把这根木条锯成3段,以这3段为边拼成三角形,有几种不同的锯法?请写出每种锯法锯成的3段木条的长度.29.按要求画出下列图形并计算求值.(1)画三角形ABC,用量角器量出∠A、∠B、∠C的度数,并求出∠A+∠B+∠C的度数.(2)画四边形ABCD,用量角器量出∠A、∠B、∠C、∠D的度数,并求出∠A+∠B+∠C+∠D 的度数.(3)仿前两题画五边形、六边形并量出它们的度数和,从中发现什么规律,请你把它写出来.3022= .2524【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.2.A3.B4.A5.C6.D7.B8.C9.D10.C11.D二、填空题 12..3π14.30°60°,90°15.12-16. 517.318.相交19.72°,400人20.-16三、解答题 21.解:(1)∵在△ABO 中,OA =OB ,∠OAB =30° ∴∠AOB =180°-2×30°=120°∵PA 、PB 是⊙O 的切线∴OA ⊥PA ,OB ⊥PB .即∠OAP =∠OBP =90° ∴在四边形OAPB 中,∠APB =360°-120°-90°-90°=60°. (2)如图①,连结OP,∵PA 、PB 是⊙O 的切线, ∴PO 平分∠APB ,即∠APO =12∠APB =30° 又∵在Rt △OAP 中,OA =3, ∠APO =30°,∴AP =tan 30OA°=(1)将y = 1 个单位得到的.(2)2y x =22)1-+,∴ 顶点坐标(2,1),对称轴为直线x=2.图①∵a=2>0 ,∴当 x=2 时,y最小值=l.23.(1)(20x+860)元.(2)根据题意,得20x+860≤900.解得2x .∵x为非负整数,∴x=0、1、2.∴共有三种调运方案:(方案一)从甲仓库分别调运10辆、2辆到A、B两地,从乙仓库调运6辆到B地;(方案二)从甲仓库分别调运9辆、3辆到A、B两地,从乙仓库分别调运1辆、5辆到A、B两地;(方案三)从甲仓库分别调运8辆、4辆到A、B两地,从乙仓库分别调运2辆、4辆到A、B两地.(3)方案一的总费用最低,为860元.24.略25.说明Rt△ABE≌Rt△DCF26.略27.128.2用列表尝试法得共有两种不同的锯法,三边分别为2、4、4和3、3、429.画图略(1)180°(2)360°(3)540°;720°;规律:n边形内角和为(n-2)·180°(n≥3)30.7。
台州市书生中学九年级数学二模考试卷温馨提示:1.满分150分,考试时间120分钟.2.答案必须写在答题卷相应的位置上,写在试题卷.草稿纸上无效.一、选择题(本大题共10小题,共40分)1. 下列运算正确的是()A. 2a3•a4=2a7B. a3+a4=a7C. (2a4)3=8a7D. a3÷a4=a【答案】A点睛:本题考查了合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法的应用,主要考查学生的计算能力和判断能力.2. 下列图形中,是中心对称但不是轴对称图形的为()A. B. C. D.【答案】C【解析】A. 既不是轴对称图形,也不是中心对称图形,故本选项错误;B. 是轴对称图形,也是中心对称图形,故本选项错误;C. 不是轴对称图形,是中心对称图形,故本选项正确;D. 是轴对称图形,不是中心对称图形,故本选项错误;故选C.3. 中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A. 44×108B. 4.4×109C. 4.4×108D. 4.4×1010【答案】B【解析】试题解析:4400000000=4.4×109,故选B.4. 若代数式在实数范围内有意义,则实数x的取值范围是().A. x=-2B. x>-2C. x≠0D. x≠-2【答案】D【解析】试题分析:根据分式有意义的条件,分母不等于0,即x+2≠0,解得x≠-2.故选:D.5. 在我县中学生春季田径运动会上,参加男子跳高的16名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是()A. 1.70,1.65B. 1.70,1.70C. 1.65,1.70D. 3,3【答案】B【解析】在这15个数中,处于中间位置的第8个数是1.70,所以中位数是1.70;在这一组数据中1.65是出现次数最多的,所以众数是1.65。
2017浙江省台州市中考数学模拟试卷2姓名:__________班级:__________考号:__________一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选,多选,错选,均不给分)1.计算1﹣5等于()A.6 B.4 C.﹣4 D.﹣62.钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为()A.44×105B.0.44×105C.4.4×106D.4.4×1053.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()A.7cm B.7cm或5cm C.5cm D.3cm4.如图是一个正方体的平面展开图,若把它折成一个正方体,则与空白面相对的面的字是( )A.祝B.考C.试D.顺5.从﹣,0,,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是()A.B.C.D.6.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,联结BC,若∠A=36°,则∠C等于()A.36°B.54°C.60°D.27°7.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.48.如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于点E,则sin∠E的值是()A.B.C.D.9.如图,二次函数y=ax2+bx+c图象的一部分,对称轴为x=,且经过(2,0)这个点,有下列说法:①abc<0;②a+b=0;③a﹣b+c=0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2.上述说法正确的是()A.①②③④B.③④C.①③④D.①②10.希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数称为正方形数.下列数中既是三角形数又是正方形数的是()A .289B .1 024C .1 225D .1 378二 、填空题(本大题共6小题,每小题5分,共30分) 11.分解因式:a 3﹣9a = . 12.适合关于x 的不等式组的整数解是 .13.圆内接正六边形的边心距为23cm ,则这个正六边形的面积为 cm 2.14.已知关于x 的一元一次方程b x x +=+2301121的解为2=x ,那么关于y 的一元一次方程b y y ++=++)()(123101121的解为 . 15.如图,点A 在双曲线y =上,AB ⊥x 轴于点B ,且△AOB 的面积是2,则k 的值是 .16.如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN沿MN 所在直线翻折得到△A ′MN ,连接A ′C ,则A ′C 长度的最小值是 .三、解答题(本大题有8小题,第17-20小题每小题8分,第21小题10分,第22、23小题每小题12分,第24小题14分,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.计算:.18. 据报道,全国硕士研究生2011年入学考试报考人数再一次达到历史高峰,以下是根据2008年——2011年全国硕士研究生报考人数绘制的统计图.(1)请你根据统计图计算出2009年——2011年这三年全国硕士研究生入学考试报考人数比上年增加值的平均数为多少万人(结果保留整数);(2)为了调查各专业报考人数,某网站进行了网上调查,并将调查结果绘制成扇形统计图,请你补全扇形统计图并计算图中表示金融专业的扇形的圆心角为多少度;若2012年全国硕士研究生报考人数按照(1)中的平均数增长,各专业报考人数所占比例与2011年相比基本保持不变,请你预测2012年全国硕士研究生入学考试报考金融专业的考生约有多少万人(结果保留整数).19.某景区的三个景点A.B、C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C,乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离开景点A后的路程S (米)关于时间t(分钟)的函数图象如图所示.根据以上信息回答下列问题:(1)乙出发后多长时间与甲相遇?(2)要使甲到达景点C时,乙与C的路程不超过400米,则乙从景点B步行到景点C的速度至少为多少?(结果精确到0.1米/分钟)20.如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C的俯角为60°,热气球与高楼的水平距离AD为20m,求这栋楼的高度.(结果保留根号)21.某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次22.已知,在△ABC中,∠ACB=90°,CA=CD,CG⊥AD于点H,交AB于点G,E为AB上一点,连接CE交AD于点F.(1)如图1,若CE⊥AB于点E,HG=1,CH=5,求CF的长;(2)如图2,若AC=AE,∠GEH=∠ECH,求证:CE=HE;(3)如图3,若E为AB的中点,作A关于CE的对称点A′,连接CA′,EA′,DA′,请直接写出∠CEH,∠A′CD,∠EA′D之间的等量关系.23.现有一副直角三角板(角度分别为30°、60°、90°、和45°、45°、90°)如图所示,其中一块三角板的直角边AC⊥数轴,AC的中点是数轴原点O,AC=8,斜边AB交数轴于点G,△CDE的边CE=8,将△CDE绕C点顺时针旋转θ度.(1)如图1,点G在数轴上对应的数是__________.(2)当A点在边DE上时,DE与数轴交于F点,求旋转角θ的角度和F点在数轴上对应的数;(3)如图3,当CD过G点时,CE与数轴交于F,请判断四边形BCFG是什么特殊四边形?并说明理由;(4)如图4,当E在数轴上时,DE与边BC交于H点,连接BE.①求证:四边形OCHE是矩形;②求BE的长.24.已知四边形ABCD是正方形,等腰直角△AEF的直角顶点E在直线BC上(不与点B,C重合),FM⊥AD,交射线AD于点M.(1)当点E在边BC上,点M在边AD的延长线上时,如图①,求证:AB+BE=AM;(提示:延长MF,交边BC的延长线于点H.)(2)当点E在边CB的延长线上,点M在边AD上时,如图②;当点E在边BC的延长线上,点M 在边AD上时,如图③.请分别写出线段AB,BE,AM之间的数量关系,不需要证明;(3)在(1),(2)的条件下,若BE=,∠AFM=15°,则AM=.答案解析一、选择题1. 分析:根据有理数的减法运算法则进行计算即可得解.解:1﹣5=﹣4.故选C.2. 分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.解:将4400000用科学记数法表示为:4.4×106.故选:C.3. 分析:分3cm长的边是腰和底边两种情况,分别利用三角形的周长,等腰三角形的性质和三角形的三边关系进行讨论即可求解.解:当长是3cm的边是底边时,三边为3cm,5cm,5cm,等腰三角形成立;当长是3cm的边是腰时,底边长是13﹣3﹣3=7cm,而3+3<7,不满足三角形的三边关系.故底边长是3cm.故选D.4.解:这是一个正方体的平面展开图,共有六个面,其中面“考”与面“利”相对,“顺”与“祝”相对,“试”与空白面相对.故选C.5.分析:先求出无理数的个数,再根据概率公式即可得出结论.解:∵﹣,0,,π,3.5这五个数中,无理数有2个,∴随机抽取一个,则抽到无理数的概率是,故选:B.6. 分析:根据题目条件易求∠BOA,根据圆周角定理求出∠C=∠BOA,即可求出答案.∵AB与⊙O相切于点B,∴∠ABO=90°,∵∠A=36°,∴∠BOA=54°,∴由圆周角定理得:∠C=∠BOA=27°,故选D.7. 分析:作F点关于BD的对称点F′,则PF=PF′,由两点之间线段最短可知当E、P、F′在一条直线上时,EP+FP有最小值,然后求得EF′的长度即可.解:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选:C.8.分析:连接OC,如图,利用圆周角定理得到∠BOC=∠CDB=30°,再根据切线的性质得∠OCE=90°,所以∠E=30°,然后根据特殊角的三角函数值求解.解:连接OC,如图,∠BOC=∠CDB=30°,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,∴∠E=30°,∴sinE=sin30°=.故选A.9.分析: 根据抛物线的对称轴、开口方向以及与y 轴的交点判断①;根据对称轴判断②;根据x =﹣1时,y =0判断③;根据抛物线的对称性判断④.解:①∵抛物线开口向下,∴a <0,∵抛物线与y 轴交于正半轴,∴c >0,∵﹣=,a <0,∴b >0,∴abc <0,正确;②∵﹣=,∴﹣b =a ,即a +b =0,正确;③当x =﹣1时,y =0,∴a ﹣b +c >0,正确;④根据抛物线的对称轴是x =可知,点(0,y 1)和点(1,y 2)关于x =对称,∴y 1=y 2,正确,故选:A .10.解:三角形数的第n 个为1+2+3+4+…+n =12n (n +1),正方形数的第n 个为n 2, A .12n (n +1)=289无整数解,不合题意; B .12n (n +1)=1 024无整数解,不合题意; C .12n (n +1)=1 225,解得n =49,符合题意; D .12n (n +1)=1 378无整数解,不合题意. 答案 C二 、填空题11. 分析: 本题应先提出公因式a ,再运用平方差公式分解.解:a 3﹣9a =a (a 2﹣32)=a (a +3)(a ﹣3).12.分析: 根据一元一次不等式组解出x 的取值,根据x 是整数解得出x 的可能取值.解: 解①得2x <﹣2,即x <﹣1,解②得2x >x ﹣3,即x >﹣3,综上可得﹣3<x <﹣1,∵x 为整数,故x =﹣2故答案为:﹣2.13.解:因为圆内接正六边形的两条半径与正六边形边长组成等边三角形,由边心距可求得正六边形的边长是,把正六边形分成6个这样的三角形,则这个正六边形的面积为4×÷2×6=.14.解:将看作整体可知方程b y y ++=++)()(123101121的解为,所以y +1=x =2 y =1. 15.分析: 根据反比例函数的系数k 的几何意义:在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k |,且保持不变,可得|k |=S △AOB =2,据此求出k 的值是多少即可.解答: 解:∵△AOB 的面积是2,∴|k |=2,∴|k |=4,解得k =±4,又∵双曲线y =的图象经过第二、四象限,∴k =﹣4,即k 的值是﹣4.故答案为:﹣4.16.分析:根据题意,在N的运动过程中A′在以M为圆心、AD为直径的圆上的弧AD上运动,当A′C取最小值时,由两点之间线段最短知此时M、A′、C三点共线,得出A′的位置,进而利用锐角三角函数关系求出A′C的长即可.解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=,∴FM=DM×cos30°=,∴MC==,∴A′C=MC﹣MA′=﹣1.故答案为:﹣1.三、解答题17.分析:根据零指数幂、负整数指数幂、绝对值和二次根式的化简分别进行计算即可得出答案.解:原式=3+﹣1+2﹣1=4.18.分析:(1)求出三年的增长的值除以3就是这三年全国硕士研究生入学考试报考人数比上年增加值的平均数.(2)算出金融所占的百分比,画出扇形图,然后乘以360°就是所求.算出2012年的年全国硕士研究生入学人数乘以金融算占的百分比就是所求.解答:解:(1)(151-120)÷3≈10万;(2)(1-15%-15%-15%-20%)=35%;360°×35%=126°;(151+10)×35%=56万.19.分析:(1)利用待定系数法求一次函数解析式进而利用两函数相等时即为相遇时,求出时间即可;(2)根据题意得出要使两人相距400m,乙需要步行的距离为:5400-3000-400=2000(m),乙所用的时间为:30分钟,进而得出答案.解:(1)设S甲=kt,将(90,5400)代入得:5400=90k,解得:k=60,∴S甲=60t;当0≤t≤30,设S乙=at+b,将(20,0),(30,3000)代入得出:,解得:,∴当0≤t≤30,S乙=300t﹣6000.当y甲=y乙,∴60t=300t﹣6000,解得:t=25,∴乙出发后5后与甲相遇.(2)由题意可得出;当甲到达C地,乙距离C地400m时,乙需要步行的距离为:5400﹣3000﹣400=2000(m),乙所用的时间为:30分钟,故乙从景点B步行到景点C的速度至少为:≈66.7(m/分),答:乙从景点B步行到景点C的速度至少为66.7m/分.20. 分析:在Rt△ABD中,求出BD,在Rt△ACD中,求出CD,二者相加即为楼高B C.解:在Rt△ABD中,∠BDA=90°,∠BAD=45°,∴BD=AD=20.在Rt△ACD中,∠ADC=90°,∠CAD=60°,∴CD=AD=20.∴BC=BD+CD=20+20(m).答:这栋楼高为(20+20)m.21.分析:(1)每件的利润为6+2(x﹣1),生产件数为95﹣5(x﹣1),则y=[6+2(x﹣1)][95﹣5(x﹣1)];(2)由题意可令y=1120,求出x的实际值即可.解:(1)∵第一档次的产品一天能生产95件,每件利润6元,每提高一个档次,每件利润加2元,但一天生产量减少5件.∴第x档次,提高的档次是x﹣1档.∴y=[6+2(x﹣1)][95﹣5(x﹣1)],即y=﹣10x2+180x+400(其中x是正整数,且1≤x≤10);(2)由题意可得:﹣10x2+180x+400=1120整理得:x2﹣18x+72=0解得:x1=6,x2=12(舍去).答:该产品的质量档次为第6档.22.分析:(1)关键已知条件推出△ACD是等腰直角三角形,由等腰三角形的性质得到∠CAD=∠CDA=45°通过全等三角形得到HF=HG=1,由勾股定理得到结论;(2)如图2,过H作MH⊥EH,交CE于M,连接AM,由已知条件得到△EHM为等腰直角三角形,∠EHM=90°,于是得到EH=MH,EM=HE,关键全等三角形的性质得到∠MAF=∠ECH证得△ACE 是等腰三角形于是得到结论;(3)关键三角形的中位线的性质得到EH∥BC,根据轴对称的性质得到∠CA′E=∠CAE=90°﹣∠CEH,CA=CA′,根据三角形的内角和得到∠A′CD+90°﹣∠CEH+∠EA′D+90°﹣∠CEH+∠EA′D=180°,即可得到结论.解:(1)∵∠ACB=90°,CA=CD,∴△ACD是等腰直角三角形,∴∠CAD=∠CDA=45°,∵CG⊥AD,∴∠CHF=∠AHG=90°,∠ACH=∠DCH=∠ACB=×90°=45°,AH=DH=CH=5,∴∠GAH+∠AGC=90°,∵CE⊥AB,∴∠CEG=90°,∴∠GCE+∠AGC=90°,∴∠GCE=∠GAH,在△CHF与△AHG中,,∴△CHF≌△AHG,∴HF=HG=1,∴CF===;(2)如图2,过H作MH⊥EH,交CE于M,连接AM,∵AC=AE,∴∠AEC=∠ACE,∵∠GEH=∠ECG,∵MH⊥EH,∴△EHM为等腰直角三角形,∠EHM=90°,∴EH=MH,EM=HE,∴∠AHM=∠AHC+∠CHM=90°+∠CHM=∠EHM+∠CHM=∠CHE,在△AHM与△CHE中,,∴△AHM≌△CHE,∴∠MAF=∠ECH,∴∠MAF+∠AFC=∠ECH+∠AFC=180°,∴∠CHD=180°﹣90°,∴AM⊥CE,∵AC=AE,∴△ACE是等腰三角形,∴CM=EM=HE,∴CE=2EM=2HE;(3)∵H为AD的中点,E我AB的中点,∴EH是△ABD的中位线,∴EH∥BC,∴∠CEH=∠BCE,∴∠ACE=∠ACB﹣∠BCE=90°﹣∠BCE=90°﹣∠CEH,∵EC=AE,∴∠CAE=∠ACE=90°﹣∠CEH,∴∠CAE=∠ACE=90°﹣∠CEH,∵A关于CE的对称点A′,∴∠CA′E=∠CAE=90°﹣∠CEH,CA=CA′,∵CA=CD,∴CA′=CD,∴∠CDA′=∠CA′D=∠CA′E+∠EA′D=90°﹣∠CEH+∠EA′D,∵∠A′CD+∠CDA′+∠CA′D=180°,∴∠A′CD+90°﹣∠CEH+∠EA′D+90°﹣∠CEH+∠EA′D=180°,化简得:∠A′CD+2∠EA′D=2∠CEH,23.分析:(1)利用等腰直角三角形可得BC的值,易证OG是△ACB的中位线,即可得出点G在数轴上对应的数;(2)由∠AEC=60°,AC=CE,可得△ACE是等边三角形,由∠DCE=90°,即可得出旋转角θ的角度为30°,利用RT△FOA可得FO的值,即可得出F点在数轴上对应的数;(3)利用FG∥BC,且FG=BC求得四边形BCFG是平行四边形即可,(4)①利用RT△COE,可得OC=4,CE=8,可得出∠CEO=30°,进而得出∠CED=60°,由∠OEH=90°,∠COE=∠OCB=90°,即可得出四边形OCHE是矩形;②在RT△EHB中,求出CH,HB,利用勾股定理BE=求解即可.解:(1)如图1,∵RT△ACB是等腰直角三角形,AC=8,∴BC=8,∵三角板的直角边AC⊥数轴,AC的中点是数轴原点O,∴OG=BC=×8=4,∴点G在数轴上对应的数是4,故答案为:4.(2)如图2,∵∠AEC=60°,AC=CE=8,∴△ACE是等边三角形,∵∠DCE=90°,∴∠ACD=90°﹣60°=30°,∴旋转角θ的角度为30°,∵∠EAC=60°,∠AOF=90°,AO=4,∴FO=AO=4,(3)如图3,∵点G为AB的中点,∴∠OCG=45°,∵∠ECD=90°,∴∠FCO=45°,∴FO=CO=4,∴FG=BG=8,∵FG∥BC,∴四边形BCFG是平行四边形,(4)①如图4,∵在RT△COE中,OC=4,CE=8,∴∠CEO=30°,∵∠CED=60°,∴∠OEH=90°,∵∠COE=∠OCB=90°,∴四边形OCHE是矩形;②∵∠CEO=30°,∴∠BCE=30°,∵四边形OCHE是矩形;∴CH=EH=4,∴HB=BC﹣CH=8﹣4,∴BE===.24.分析:(1)首先利用等腰直角三角形的性质和正方形的性质得AE=EF,∠ABE=∠EHF=90°,利用全等三角形的判定定理证明△ABE≌△EHF,再利用全等三角形的性质定理可得结论;(2)同(1)首先证明△ABE≌△EHF,再利用全等三角形的性质定理可得结论;(3)利用分类讨论的思想,首先由∠AFM=15°,易得∠EFH,由△ABE≌△EHF,根据全等三角形的性质易得∠AEB,利用锐角三角函数易得AB,利用(1)(2)的结论,易得AM.解答:(1)证明:如图①,延长MF,交边BC的延长线于点H,∵四边形ABCD是正方形,FM⊥AD,∴∠ABE=90°,∠EHF=90°,四边形ABHM为矩形,∴AM=BH=BE+EH∵△AEF为等腰直角三角形,∴AE=AF,∠AEB+∠FEH=90°,∵∠EFH+∠FEH=90°,∴∠AEB=∠EFH,在△ABE与△EHF中,,∴△ABE≌△EHF(AAS),∴AB=EH,∵AM=BH=BE+EH,∴AM=BE+AB,即AB+BE=AM;(2)解:如图②,∵∠AEB+∠FEH=90°,∠AEB+∠EAB=90°,∴∠FEH=∠EAB,在△ABE与△EHF中,,∴△ABE≌△EHF(AAS),∴AB=EH=EB+AM;如图③∠BAE+∠AEB=90°,∠AEB+∠HEF=90°,∴∠BAE=∠HEF,在△ABE与△EHF中,,∴△ABE≌△EHF(AAS),∴AB=EH,∴BE=BH+EH=AM+AB;(3)解:如图①,∵∠AFM=15°,∠AFE=45°,∴∠EFM=60°,∴∠EFH=120°,在△EFH中,∵∠FHE=90°,∠EFH=120°,∴此情况不存在;如图②,∵∠AFM=15°,∠AFE=45°,∴∠EFH=60°,∵△ABE≌△EHF,∴∠EAB=∠EFH=60°,∵BE=,∴AB=BE•tan60°=×=3,∵AB=EB+AM,∴AM=AB﹣EB=3﹣;如图③,∵∠AFM=15°,∠AFE=45°,∴∠EFH=45°﹣15°=30°,∴∠AEB=30°,∵BE=,∴AB=BE•tan30°==1,∵BE=AM+AB,AM=BE﹣AB=,故答案为:3﹣或.。
2017年浙江省台州市中考数学试卷16.如图,有一个边长不定的正方形ABCD,它的两个相对的顶点A,C分别在边长为1的正六边形一组平行的对边上,另外两个顶点B,D在正六边形内部(包括边界),则正方形边长a的取值范围是.23.交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征,其中流量q(辆/小时)指单位时间内通过道路指定断面的车辆数;速度v(千米/小时)指通过道路指定断面的车辆速度,密度k(辆/千米)指通过道路指定断面单位长度内的车辆数.为配合大数据治堵行动,测得某路段流量q与速度v之间关系的部分数据如下表:速度v(千米/小时)…51020324048…流量q(辆/小时)…55010001600179216001152…(1)根据上表信息,下列三个函数关系式中,刻画q,v关系最准确的是(只填上正确答案的序号)①q=90v+100;②q=32000v;③22120q v v=-+.(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少?(3)已知q,v,k满足q=vk,请结合(1)中选取的函数关系式继续解决下列问题.①市交通运行监控平台显示,当12≤v<18时道路出现轻度拥堵.试分析当车流密度k在什么范围时,该路段将出现轻度拥堵;②在理想状态下,假设前后两车车头之间的距离d(米)均相等,求流量q最大时d的值.24.在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程2520x x -+=,操作步骤是:第一步:根据方程的系数特征,确定一对固定点A (0,1),B (5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A ,另一条直角边恒过点B ;第三步:在移动过程中,当三角板的直角顶点落在x 轴上点C 处时,点C 的横坐标m 即为该方程的一个实数根(如图1);第四步:调整三角板直角顶点的位置,当它落在x 轴上另一点D 处时,点D 的横坐标n 即为该方程的另一个实数根.(1)在图2中,按照“第四步”的操作方法作出点D (请保留作出点D 时直角三角板两条直角边的痕迹);(2)结合图1,请证明“第三步”操作得到的m 就是方程2520x x -+=的一个实数根;(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程20ax bx c ++= (a ≠0,24b ac -≥0)的实数根,请你直接写出一对固定点的坐标;(4)实际上,(3)中的固定点有无数对,一般地,当m 1,n 1,m 2,n 2与a ,b ,c 之间满足怎样的关系时,点P (m 1,n 1),Q (m 2,n 2)就是符合要求的一对固定点?。
台州市书生中学 2017学年第二学期模拟考九年级数学试卷(满分:150分 考试时间:120分钟) 一、选择题(每小题4分,共40分)1.下列实数中,其中无理数的是( ) A .31 B .3 C .9-D .-52.由5个大小相同的正方体组成的几何体如图所示,则几何体的俯视图...是( )A .B .C .D .3.为了增强学生体质,学校发起评选“健步达人”活动,小明用计步器记录自己一个月(30天)每天走的步数,并绘制成如下统计表:步数(万步)1.0 1.2 1.1 1.4 1.3 天数335712在每天所走的步数这组数据中,众数和中位数分别是( ) A .1.3,1.1 B .1.3,1.4 C .1.4,1.4 D .1.3,1.3 4.将不等式组⎩⎨⎧>+≤-04062x x 的解集表示在数轴上,下面表示正确的是( )A .B .C .D .5.下列运算正确的是( ) A .3a 2-2a 2=1B .a 2•a 3=a 6C .(a-b )2=a 2-b 2D (a+b )2=a 2+2ab+b 26.已知圆锥的底面半径为2,母线长为4,则它的侧面积为( ) A .4π B .16π C .34π D .8π7.已知a , b ,c 为常数,且(a-c)2>a 2+c 2,则关于x 的方程ax 2+bx+c=0根的情况是( ) A . 有两个相等的实数根 B . 有两个不相等的实数根C . 无实数根D . 有一根为08.如图,在平行四边形ABCD 中,用直尺和圆规作∠BAD 的平分 线AG 交BC 于点E ,若BF=6,AB=5,则AE 的长为( )A . 4B .6C .8D .109.如图,抛物线y=ax 2+bx+c (a ≠0)过点(1,0)和点(0,-2),且顶点在第三象限,设P=a-b+c ,则P 的取值范围是( ).A .-4 < P < 0B .-8 < P < -4C .-8 < P < 0D .-2 < P < 010.如图,在Rt △ABC 中,∠B=90°,BC=2AB=4,点D ,E 分别是边BC ,AC 的中点,连接DE .将△EDC 绕点C 按顺时针方向旋转,当△EDC 旋转到A ,D ,E 三点共线时,线段BD 的长为( ).A .52B .554 C .52或554D .52或556 二、填空题(每小题5分,共30分) 11.要使式子21x x +-有意义,则x 的取值范围是 ▲ . 12.已知:AB 是⊙O 的直径,弦CD ⊥AB ,连接OC 、AD ,∠OCD=32°,则∠A= ▲ . 13.如图,反比例函数y 1=x3的图象与一次函数y 2=x+2的图象交于A 、B 两点.当x 满足 ▲ 时,y 1<y 2.第12题 第13题 第16题FB'ABE14.将一个三角形经过放大后得到另一个三角形,如果所得三角形在原三角形的外部,这两个三角形各对应边平行且距离都相等,那么我们把这样的两个三角形叫做“等距三角形”,它们对应边之间的距离叫做“等距”.如果两个等边三角形是“等距三角形”, 它们的“等距”是 1,那么它们周长的差是 ▲.15.已知在直角坐标平面内,以点 P (1,2)为圆心,r 为半径画圆,⊙P 与坐标轴恰好有三个交点,那么 r 的取值是 ▲.16.如图,矩形ABCD 中,AB=5,BC=7,E 为BC 上的动点,将矩形沿直线AE 翻折,使点B 的对应点B '落在∠ADC 的平分线上,过点B '作B 'F ⊥BC 于点F ,求△B 'EF 的周长__▲____.三、解答题(第17~20题每题8分,第21题10分,第22、23每题12分,第24题14分,共80分)17.(8分)计算:()︒+-+-30cos 4232118.(8分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上。
浙江省台州市2017年中考数学试卷一、选择题(本题有10小题,每小题4分,满分40分)1、(2017•台州)在、0、1、﹣2这四个数中,最小的数是()A、B、0 C、1 D、﹣2考点:有理数大小比较。
分析:本题是对有理数的大小比较考查,根据任何负数都小于非负数,直接得出答案.解答:解:在有理数、0、1、﹣2中,最大的是1,只有﹣2是负数,∴最小的是﹣2.故选D.点评:此题主要考查了有理数的比较大小,解决此类问题的关键是根据负数的性质得出答案.2、(2017•台州)下列四个几何体中,主视图是三角形的是()A、B、C、D、考点:简单几何体的三视图。
分析:主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案.解答:解:主视图是三角形的一定是一个锥体,只有B是锥体.故选:B.点评:此题主要考查了几何体的三视图,主要考查同学们的空间想象能力.3、(2017•台州)要反映台州市某一周每天的最高气温的变化趋势,宜采用()A、条形统计图B、扇形统计图C、折线统计图D、频数分布统计图考点:统计图的选择。
专题:分类讨论。
分析:根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.解答:解:根据题意,得要求直观反映台州市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.故选C.点评:此题主要考查统计图的选择,根据扇形统计图、折线统计图、条形统计图各自的特点来判断.4、(2017•台州)计算(a3)2的结果是()A、3a2B、2a3C、a5D、a6考点:幂的乘方与积的乘方。
分析:根据幂的乘方:底数不变,指数相乘,计算后直接选取答案.解答:解:(a3)2=a3×2=a6.故选D.点评:此题主要考查的是幂的乘方,不要与同底数幂的乘法互相混淆;幂的乘方:底数不变,指数相乘;同底数幂的乘法:底数不变,指数相加.5、(2017•台州)若两个相似三角形的面积之比为1:4,则它们的周长之比为()A、1:2B、1:4C、1:5D、1:16考点:相似三角形的性质。
2017年浙江省台州市椒江区书生中学中考数学二模试卷一、选择题(本大题共10小题,共40分)1.(4分)下列运算正确的是()A.2a3•a4=2a7B.a3+a4=a7 C.(2a4)3=8a7D.a3÷a4=a2.(4分)下列图形中,是中心对称但不是轴对称图形的为()A .B .C .D .3.(4分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108 B.4.4×109C.4.4×108D.4.4×10104.(4分)若代数式在实数范围内有意义,则实数x的取值范围是()A.x=﹣2 B.x>﹣2 C.x≠0 D.x≠﹣25.(4分)在我县中学生春季田径运动会上,参加男子跳高的16名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是()A.1.70,1.65 B.1.70,1.70 C.1.65,1.70 D.3,36.(4分)如图,在平行四边形ABCD中,AC与BD相交于点O,E是OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4 B.1:3 C.1:2 D.1:17.(4分)如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是()A.100°B.80°C.60°D.50°8.(4分)一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=(k ≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(﹣2,0),则下列结论中,正确的是()A.b=2a+k B.a=b+k C.a>b>0 D.a>k>09.(4分)阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM 的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox 上,则正六边形的顶点C的极坐标应记为()A.(60°,4)B.(45°,4)C.(60°,2)D.(50°,2)10.(4分)如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,动点P从点B出发,沿着B﹣A﹣D在菱形ABCD的边上运动,运动到点D停止,点P′是点P关于BD的对称点,PP′交BD于点M,若BM=x,△OPP′的面积为y,则y 与x之间的函数图象大致为()A.B.C.D.二、填空题(本大题共6小题,共30分)11.(5分)分解因式:2x2﹣8x+8=.12.(5分)在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1y2.(填“>”“<”或“=”)13.(5分)如图,直线l与⊙相切于点D,过圆心O作EF∥l交⊙O于E、F两点,点A是⊙O上一点,连接AE,AF,并分别延长交直线于B、C两点;若⊙的半径R=5,BD=12,则∠ACB的正切值为.14.(5分)如图所示,将一个含30°角的直角三角板ABC绕点A顺时针旋转,使得点B,A,C′在同一条直线上,若BC=1,则点B旋转到B′所经过的路线长为.15.(5分)如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA=.16.(5分)如图,将二次函数y=x2﹣m(其中m>0)的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,形成新的图象记为y1,另有一次函数y=x+b的图象记为y2,则以下说法:①当m=1,且y1与y2恰好有三个交点时b有唯一值为1;②当b=2,且y1与y2恰有两个交点时,m>4或0<m<;③当m=﹣b时,y1与y2一定有交点;④当m=b时,y1与y2至少有2个交点,且其中一个为(0,m).其中正确说法的序号为.三、解答题(本大题共8小题,共72分)17.(7分)计算:cos245°+﹣•tan30°.18.(9分)如图,已知反比例函数y1=与一次函数y2=k2x+b的图象交于点A (1,8),B(﹣4,m)两点.(1)求k1,k2,b的值;(2)求△AOB的面积;(3)请直接写出不等式x+b的解.19.(9分)2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是;扇形统计图中的圆心角α等于;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.20.(9分)“4000辆自行车、187个服务网点”,湖州市7大片区现已实现公共自行车服务全覆盖,为人们的生活带来了方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.(1)求AD的长;(2)求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)21.(11分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.22.(10分)有一种螃蟹,从河里捕获后不放养最多只能活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变,现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元,据测算,以后每千克活蟹的市场价每天可上升1元,但是放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元.(1)设X天后每千克活蟹的市场价为P元,写出P关于x的函数关系式.(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售额为Q元,写出Q关于X的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=销售总额﹣收购成本﹣费用),最大利润是多少?23.(12分)若一个四边形的一条对角线把四边形分成两个等腰三角形,且其中一个等腰三角形的底角是另一个等腰三角形底角的2倍,我们把这条对角线叫做这个四边形的黄金线,这个四边形叫做黄金四边形.(1)如图1,在四边形ABCD中,AB=AD=DC,对角线AC,BD都是黄金线,且AB<AC,CD<BD,求四边形ABCD各个内角的度数;(2)如图2,点B是弧AC的中点,请在⊙O上找出所有的点D,使四边形ABCD 的对角线AC是黄金线(要求:保留作图痕迹);(3)在黄金四边形ABCD中,AB=BC=CD,∠BAC=30°,求∠BAD的度数.24.(13分)如图1,Rt△ABC中,∠ACB=Rt∠,AC=8,BC=6,点D为AB的中点,动点P从点A出发,沿AC方向以每秒1个单位的速度向终点C运动,同时动点Q从点C出发,以每秒2个单位的速度先沿CB方向运动到点B,再沿BA 方向向终点A运动,以DP,DQ为邻边构造▱PEQD,设点P运动的时间为t秒.(1)当t=2时,求PD的长;(2)如图2,当点Q运动至点B时,连结DE,求证:DE∥AP.(3)如图3,连结CD.①当点E恰好落在△ACD的边上时,求所有满足要求的t值;②记运动过程中▱PEQD的面积为S,▱PEQD与△ACD的重叠部分面积为S1,当<时,请直接写出t的取值范围是.2017年浙江省台州市椒江区书生中学中考数学二模试卷参考答案与试题解析一、选择题(本大题共10小题,共40分)1.(4分)下列运算正确的是()A.2a3•a4=2a7B.a3+a4=a7 C.(2a4)3=8a7D.a3÷a4=a【解答】解:A、结果是2a7,故本选项符合题意;B、a3和a4不能合并,故本选项不符合题意;C、结果是8a12,故本选项不符合题意;D、结果是,故本选项不符合题意;故选A.2.(4分)下列图形中,是中心对称但不是轴对称图形的为()A.B.C.D.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选C.3.(4分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108 B.4.4×109C.4.4×108D.4.4×1010【解答】解:4 400 000 000=4.4×109,故选:B.4.(4分)若代数式在实数范围内有意义,则实数x的取值范围是()A.x=﹣2 B.x>﹣2 C.x≠0 D.x≠﹣2【解答】解:∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠﹣2.故选:D.5.(4分)在我县中学生春季田径运动会上,参加男子跳高的16名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是()A.1.70,1.65 B.1.70,1.70 C.1.65,1.70 D.3,3【解答】解:第8和第9位同学的成绩是1.70,1.70,故中位数是1.70;数据1.70出现的次数最多,故众数是1.70.故选B.6.(4分)如图,在平行四边形ABCD中,AC与BD相交于点O,E是OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4 B.1:3 C.1:2 D.1:1【解答】解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴,∵O为对角线的交点,∴DO=BO,又∵E为OD的中点,∴DE=DB,则DE:EB=1:3,∴DF:AB=1:3,∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2;故选:C.7.(4分)如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是()A.100°B.80°C.60°D.50°【解答】解:如图,翻折△ACD,点A落在A'处,∴∠A'=∠A=100°,∵四边形A'CBD是⊙O的内接四边形,∴∠A'+∠B=180°,∴∠B=80°,故选B.8.(4分)一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=(k ≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(﹣2,0),则下列结论中,正确的是()A.b=2a+k B.a=b+k C.a>b>0 D.a>k>0【解答】解:∵根据图示知,一次函数与二次函数的交点A的坐标为(﹣2,0),∴﹣2a+b=0,∴b=2a.∵由图示知,抛物线开口向上,则a>0,∴b>0.∵反比例函数图象经过第一、三象限,∴k>0.A、由图示知,双曲线位于第一、三象限,则k>0,∴2a+k>2a,即b<2a+k.故A选项错误;B、∵k>0,b=2a,∴b+k>b,即b+k>2a,∴a=b+k不成立.故B选项错误;C、∵a>0,b=2a,∴b>a>0.故C选项错误;D、观察二次函数y=ax2+bx和反比例函数y=(k≠0)图象知,当x=﹣=﹣=﹣1时,y=﹣k>﹣=﹣=﹣a,即k<a,∵a>0,k>0,∴a>k>0.故D选项正确;故选:D.9.(4分)阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM 的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox 上,则正六边形的顶点C的极坐标应记为()A.(60°,4)B.(45°,4)C.(60°,2)D.(50°,2)【解答】解:如图,设正六边形的中心为D,连接AD,∵∠ADO=360°÷6=60°,OD=AD,∴△AOD是等边三角形,∴OD=OA=2,∠AOD=60°,∴OC=2OD=2×2=4,∴正六边形的顶点C的极坐标应记为(60°,4).故选:A.10.(4分)如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,动点P从点B出发,沿着B﹣A﹣D在菱形ABCD的边上运动,运动到点D停止,点P′是点P关于BD的对称点,PP′交BD于点M,若BM=x,△OPP′的面积为y,则y 与x之间的函数图象大致为()A.B.C.D.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,OA=AC=3,OB=BD=4,AC⊥BD,①当BM≤4时,∵点P′与点P关于BD对称,∴P′P⊥BD,∴P′P∥AC,∴△P′BP∽△CBA,∴,即,∴PP′=x,∵OM=4﹣x,∴△OPP′的面积y=PP′•OM=×x(4﹣x)=﹣x2+3x;∴y与x之间的函数图象是抛物线,开口向下,过(0,0)和(4,0);②当BM≥4时,y与x之间的函数图象的形状与①中的相同,过(4,0)和(8,0);综上所述:y与x之间的函数图象大致为.故选:D.二、填空题(本大题共6小题,共30分)11.(5分)分解因式:2x2﹣8x+8=2(x﹣2)2.【解答】解:原式=2(x2﹣4x+4)=2(x﹣2)2.故答案为2(x﹣2)2.12.(5分)在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1<y2.(填“>”“<”或“=”)【解答】解:∵一次函数y=2x+1中k=2>0,∴y随x的增大而增大,∵x1<x2,∴y1<y2.故答案为:<.13.(5分)如图,直线l与⊙相切于点D,过圆心O作EF∥l交⊙O于E、F两点,点A是⊙O上一点,连接AE,AF,并分别延长交直线于B、C两点;若⊙的半径R=5,BD=12,则∠ACB的正切值为.【解答】解:连接OD,作EH⊥BC,如图,∵EF为直径,∴∠A=90°,∵∠B+∠C=90°,∠B+∠BEH=90°,∴∠BEH=∠C,∵直线l与⊙相切于点D,∴OD⊥BC,而EH⊥BC,EF∥BC,∴四边形EHOD为正方形,∴EH=OD=OE=HD=5,∴BH=BD﹣HD=7,在Rt△BEH中,tan∠BEH==,∴tan∠ACB=.故答案为.14.(5分)如图所示,将一个含30°角的直角三角板ABC绕点A顺时针旋转,使得点B,A,C′在同一条直线上,若BC=1,则点B旋转到B′所经过的路线长为π.【解答】解:由旋转得:∠B′AC′=∠BAC=30°,∴∠BAB′=180°﹣30°=150°,在Rt△ABC中,∵BC=1,∴AB=2BC=2,∴l==π,则点B旋转到B′所经过的路线长为π;故答案为:π.15.(5分)如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA=.【解答】解:如图,连接AN、CM,延长BM交AD于H.∵AB⊥BN,AD⊥DN,∴∠ABN=∠ADN=90°,在Rt△ANB和Rt△AND中,,∴△ABN≌△ADN,∴∠BAN=∠DAN,∴AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S=S△ONB=S△OMD=S△OND=a,△OMB∵四边形BMDN的面积是菱形ABCD面积的,=S△AMD=S△CNB=S△CND=4a,∴S△AMB∴AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,∵△ABO∽△BNO,∴OB2=OA•ON=5k2,∴OB=k,AB=AD==k,∵AD•BH=•BD•AO,∴BH==,∴AH===k,∴cosA===.故答案为16.(5分)如图,将二次函数y=x2﹣m(其中m>0)的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,形成新的图象记为y1,另有一次函数y=x+b的图象记为y2,则以下说法:①当m=1,且y1与y2恰好有三个交点时b有唯一值为1;②当b=2,且y1与y2恰有两个交点时,m>4或0<m<;③当m=﹣b时,y1与y2一定有交点;④当m=b时,y1与y2至少有2个交点,且其中一个为(0,m).其中正确说法的序号为②④.【解答】解:①错误.如图1中,当直线y=x+b与抛物线相切时,也满足条件只有三个交点.此时b≠1,故①错误.②正确.如图2中,当抛物线经过点(﹣2,0)时,0=4﹣m,m=4,观察图象可知m>4时,y1与y2恰有两个交点.由消去y得到x2+x+2﹣m=0,当△=0时,1﹣8+4m=0,∴m=,观察图象可知当0<m<时,y1与y2恰有两个交点.故②正确.③错误.如图3中,当b=﹣4时,观察图象可知,y1与y2没有交点,故③错误.④正确.如图4中,当b=4时,观察图象可知,b>0,y1与y2至少有2个交点,且其中一个为(0,b),故④正确.故答案为②④三、解答题(本大题共8小题,共72分)17.(7分)计算:cos245°+﹣•tan30°.【解答】解:原式=()2+﹣×=+﹣1=.18.(9分)如图,已知反比例函数y1=与一次函数y2=k2x+b的图象交于点A (1,8),B(﹣4,m)两点.(1)求k1,k2,b的值;(2)求△AOB的面积;(3)请直接写出不等式x+b的解.【解答】解:(1)∵反比例函数y=与一次函数y=k2x+b的图象交于点A(1,8)、B(﹣4,m),∴k1=1×8=8,m=8÷(﹣4)=﹣2,∴点B的坐标为(﹣4,﹣2).将A(1,8)、B(﹣4,﹣2)代入y2=k2x+b中,,解得:.∴k1=8,k2=2,b=6.(2)当x=0时,y2=2x+6=6,∴直线AB与y轴的交点坐标为(0,6).=×6×4+×6×1=15.∴S△AOB(3)观察函数图象可知:当﹣4<x<0或x>1时,一次函数的图象在反比例函数图象的上方,∴不等式x+b的解为﹣4≤x<0或x≥1.19.(9分)2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是30;扇形统计图中的圆心角α等于144°;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.【解答】解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;故答案为:30,144°;补全统计图如图所示:(2)根据题意列表如下:设竖列为小红抽取的跑道,横排为小花抽取的跑道,记小红和小花抽在相邻两道这个事件为A,∴.20.(9分)“4000辆自行车、187个服务网点”,湖州市7大片区现已实现公共自行车服务全覆盖,为人们的生活带来了方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.(1)求AD的长;(2)求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)【解答】解:(1)在Rt△ADF中,由勾股定理得,AD===15(cm).(2)AE=AD+CD+EC=15+30+15=60(cm).过点E作EH⊥AB于H,在Rt△AEH中,sin∠EAH=,∴EH=AE•sin∠EAH=AB•sin75°≈60×0.97=58.2(cm).答:点E到AB的距离为58.2 cm.21.(11分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.【解答】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)解:在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD===4,∴S△OCD===8,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S阴影=S△COD﹣S扇形OBC∴S阴影=8﹣,∴阴影部分的面积为8﹣.22.(10分)有一种螃蟹,从河里捕获后不放养最多只能活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变,现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元,据测算,以后每千克活蟹的市场价每天可上升1元,但是放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元.(1)设X天后每千克活蟹的市场价为P元,写出P关于x的函数关系式.(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售额为Q元,写出Q关于X的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=销售总额﹣收购成本﹣费用),最大利润是多少?【解答】解:(1)由题意知:p=30+x;(2)由题意知:活蟹的销售额为(1000﹣10x)(30+x)元,死蟹的销售额为200x元,∴Q=(1000﹣10x)(30+x)+200x=﹣10x2+900x+30000;(3)设总利润为L=Q﹣30000﹣400x=﹣10x2+500x,=﹣10(x2﹣50x)=﹣10(x2﹣50x+252﹣252)=﹣10(x﹣25)2+6250.当x=25时,总利润最大,最大利润为6250元.23.(12分)若一个四边形的一条对角线把四边形分成两个等腰三角形,且其中一个等腰三角形的底角是另一个等腰三角形底角的2倍,我们把这条对角线叫做这个四边形的黄金线,这个四边形叫做黄金四边形.(1)如图1,在四边形ABCD中,AB=AD=DC,对角线AC,BD都是黄金线,且AB<AC,CD<BD,求四边形ABCD各个内角的度数;(2)如图2,点B是弧AC的中点,请在⊙O上找出所有的点D,使四边形ABCD 的对角线AC是黄金线(要求:保留作图痕迹);(3)在黄金四边形ABCD中,AB=BC=CD,∠BAC=30°,求∠BAD的度数.【解答】解:(1)∵在四边形ABCD中,对角线AC是黄金线,∴△ABC是等腰三角形,∵AB<AC,∴AB=BC或AC=BC,①当AB=BC时,∵AB=AD=DC,∴AB=BC=AD=DC,又∵AC=AC,∴△ABC≌△ADC,此种情况不符合黄金四边形定义,②AC=BC,同理,BD=BC,∴AC=BD=BC,易证得△ABD≌△DAC,△CAB≌△BDC,∴∠DAC=∠DCA=∠ABD=∠ADB,∠BDC=∠BCD=∠CAB=∠CBA,且∠DCA<∠DCB,∴∠DAC<∠CAB又由黄金四边形定义知:∠CAB=2∠DAC,设∠DAC=∠DCA=∠ABD=∠ADB=x°,则∠BDC=∠BCD=∠CAB=∠CBA=2x°,∴∠DAB=∠ADC=3x°,而四边形的内角和为360°,∴∠DAB=∠ADC=108°,∠BCD=∠CBA=72°,答:四边形ABCD各个内角的度数分别为108°,72°,108°,72°.(2)由题意作图为:(3)∵AB=BC,∠BAC=30°,∴∠BCA=∠BAC=30°,∠ABC=120°,ⅰ)当AC为黄金线时,∴△ACD是等腰三角形,∵AB=BC=CD,AC>BC,∴AD=CD或AD=AC,当AD=CD时,则AB=BC=CD=AD,又∵AC=AC,∴△ABC≌△ADC,如图3,此种情况不符合黄金四边形定义,∴AD≠CD,当AD=AC时,由黄金四边形定义知,∠ACD=∠D=15°或60°,此时∠BAD=180°(不合题意,舍去)或90°(不合题意,舍去);ⅱ)当BD为黄金线时,∴△ABD是等腰三角形,∵AB=BC=CD,∴∠CBD=∠CDB,①当AB=AD时,△BCD≌△BAD,此种情况不符合黄金四边形定义;②当AB=BD时,AB=BD=BC=CD,∴△BCD是等边三角形,∴∠CBD=60°,∴∠A=30°或120°(不合题意,舍去),∴∠ABC=180°(不合题意,舍去),此种情况也不符合黄金四边形定义;③当AD=BD时,设∠CBD=∠CDB=y°,则∠ABD=∠BAD=(2y)°或,∵∠ABC=∠CBD+∠ABD=120°,当∠ABD=2y°时,y=40,∴∠BAD=2y=80°;当时,y=80°,∴;由于∠ADB=180°﹣40°﹣40°=100°,∠BDC=80°,∴∠ADB+∠BDC=180°,∴此种情况不能构成四边形,综上所述:∠BAD的度数为80°.24.(13分)如图1,Rt△ABC中,∠ACB=Rt∠,AC=8,BC=6,点D为AB的中点,动点P从点A出发,沿AC方向以每秒1个单位的速度向终点C运动,同时动点Q从点C出发,以每秒2个单位的速度先沿CB方向运动到点B,再沿BA 方向向终点A运动,以DP,DQ为邻边构造▱PEQD,设点P运动的时间为t秒.(1)当t=2时,求PD的长;(2)如图2,当点Q运动至点B时,连结DE,求证:DE∥AP.(3)如图3,连结CD.①当点E恰好落在△ACD的边上时,求所有满足要求的t值;②记运动过程中▱PEQD的面积为S,▱PEQD与△ACD的重叠部分面积为S1,当<时,请直接写出t的取值范围是<t<..【解答】解:(1)如图1中,作DF⊥CA于F,当t=2时,AP=2,DF=AD•sinA=5×=3,∵AF=AD•cosA=5×=4,∴PF=4﹣2=2,∴PD===.(2)如图2中,在平行四边形PEQD中,∵PE∥DQ,∴PE∥AD,∵AD=DQ.PE=DQ,∴PE=AD,∴四边形APED是平行四边形,∴DE∥AP.(3)①分三种情况讨论:Ⅰ.当点E在CA上时,DQ⊥CB(如图3所示),∵∠ACB=Rt∠,CD 是中线,∴CD=BD,∴CQ=CB=3即:t=Ⅱ.当点E在CD上,且点Q在CB上时(如图4所示),过点E作EG⊥CA于点G,过点D作DH⊥CB于点H,易证Rt△PGE≌Rt△DHQ,∴PG=DH=4,∴CG=4﹣t,GE=HQ=CQ﹣CH=2t﹣3,∵CD=AD,∴∠DCA=∠DAC∴在Rt△CEG中,tan∠ECG===,∴t=Ⅲ.当点E在CD上,且点Q在AB上时(如图5所示),过点E作EF⊥CA于点F,∵CD=AD,∴∠CAD=∠ACD.∵PE∥AD,∴∠CPE=∠CAD=∠ACD,∴PE=CE,∴PF=PC=,PE=DQ=11﹣2t,∴在Rt△PEF中,cos∠EPF===∴t=综上所述,满足要求的t的值为或或.②如图6中,PE交CD于E′,作E′G′⊥AC于G′,EG⊥AC于G.当△PDE′的面积等于平行四边形PEDQD的面积的时,PE′:EE′=2:1,由(Ⅱ)可知CG=4﹣t,GE=2t﹣3,∴PG=8﹣t﹣(4﹣t)=4,∵E′G′∥EG,∴===,∴PG′=,E′G′=(2t﹣3),CG′=8﹣t﹣=﹣t,∵tan∠ECG==,解得t=.如图7中,当点Q在AB上时,PE交CD于E′,作E′G′⊥AC于G′.∵△PDE′的面积等于平行四边形PEDQD的面积的,∴PE′:EE′=2:1,由Ⅲ可知,PG′=PC=4﹣t,PE′=DQ=(11﹣2t),∵cos∠E′PG′==,∴,解得t=,综上所述,当<时,请直接写出t的取值范围是<t<.。