钳形接地电阻测试仪测量原理
- 格式:docx
- 大小:51.63 KB
- 文档页数:4
钳形接地电阻测量方式及测量原理一、接地电阻测试仪的发展历程和正确选用接地电阻测量方式及测量原理前言接地电阻测试仪是检验、测量接地电阻的常用仪表,也是电气安全检查与接地工程竣工验收不可缺少的工具,广泛应用于电力、铁路、交通、部队、电信、金融、化工、气象等领域的电气设备接地测量及传输线路的接地测量等等。
近年来由于计算机技术的飞速发展,接地电阻测试仪也渗透了大量的微处理器技术,其测量功能,内容与精度是一般仪器所不能相比的。
二、接地电阻测试仪的发展里程最初人们对接地电阻的测量是用伏安法,这种试验是非常原始的。
下图是用安培计、伏特计的测量方法。
在测定电阻时须先估计电流的大小,选出适当截面的绝缘导线,在预备试验时可利用可变电阻R调整电流,当正式测定时,则将可变电阻短路,由安培计和伏特计所得的数值可以算出接地电阻。
R地=U接地体/I入地式中U接地体──接地极电压I入地──入地电流伏安法测量地阻有明显的不足之处,第一:繁琐、工作量大。
试验时,接地棒距离地极为20~50米,而辅助接地距离接地点40~100米。
另外受外界干扰影响极大,在强电压区域内有时无法测量。
五六十年代苏联的E型摇表测量取代了伏安法测量。
由于携带方便,又是手摇发电机,工作量比伏安法小。
七十年代国产接地电阻测试仪问世,无论在测量范围、分度值、准确性还是结构、体积、重量,都要胜于"E"型摇表。
因此,相当一段时间内接地电阻仪都以手摇表为典型仪器。
手摇式表在使用时,应将设备自身接地体与设备断开,以避免接地体影响测量的准确性。
上述仪器由于手摇发电机的关系,精度都很差。
八十年代数字接地电阻测试仪的投入使用给接地电阻测试带来了生机,虽然测试的接线方法同手摇表没什么两样,但是其稳定性远比摇表指针式高得多。
在此基础上又出现了一种数字式接地电阻测试仪,测试时采用两线法在线测量,不必打辅助接地桩,把水管、暖气管道或交流电插座的零线做为辅助接地,能测量接地电阻、土壤电阻率、交流电压等指标,并有自动补偿功能,不仅提高了测量精度,还具有防误操作、智能提示等功能。
钳形接地电阻测试仪的原理
钳形接地电阻测试仪是一种用于测量接地电阻的仪器。
它采用了非接触式的测量原理,能够快速、准确地测量接地电阻值。
该仪器基于电磁感应原理工作。
当通过一个导体(例如接地电极)的电流发生变化时,它会产生一个周围的磁场。
钳形接地电阻测试仪利用内置的磁场传感器来检测这个磁场的变化。
当测试仪的夹口(钳形夹具)夹住导体时,它会检测到电流通过导体时产生的磁场变化。
根据电磁感应定律,磁场的变化率与电流的变化率成正比。
测试仪通过测量这个变化率来计算接地电阻的值。
具体来说,测试仪会测量导体上的电流变化率,并将其转换为电压信号。
然后,它使用内置的放大器和计算机处理这个信号,并根据预设的校准参数计算出接地电阻的值。
需要注意的是,钳形接地电阻测试仪的测量结果可能会受到其他因素的影响,例如导体的形状、尺寸、材料等。
因此,在使用钳形接地电阻测试仪时,需要仔细遵循使用说明并根据具体情况进行校准和适当的修正。
钳形接地电阻测试仪原理
钳形接地电阻测试仪是一种用于测量接地电阻的专用仪器。
其原理是通过钳形夹具将测试仪与地线直接接触,使电流在钳形夹具和地线之间流动,根据欧姆定律计算出接地电阻的大小。
具体而言,钳形接地电阻测试仪采用了非接触式测试的方式,即无需断开接地系统或接触测量点。
测试仪的钳形夹具内部绕有一对相互绝缘的线圈,其中一个线圈产生一个交变电磁场,而另一个线圈用于测量由地线引起的磁场变化。
当钳形夹具放置在接地线上时,电流通过地线会产生一个磁场,其中一对线圈就会测量到磁场的变化。
测试仪会通过测量这个变化来计算出接地电阻的大小。
要注意的是,钳形接地电阻测试仪的测量结果还受到环境条件的影响,例如外界磁场的干扰、接地系统的接地电阻分布不均等。
因此在进行测试时,需要避免这些干扰,并尽量提高测量精度。
总的来说,钳形接地电阻测试仪通过测量接地线周围的磁场变化来计算接地电阻的大小,无需接触测量点,且具有快速、准确的特点,是进行接地电阻测量的一种常用工具。
接地电阻测试仪的原理是怎样的
1.电流注入原理
接地电阻测试仪首先通过内部电源产生一个稳定的电流信号,通常为
正弦波信号。
这个电流信号会被注入到接地系统中,产生一个由土壤导体、金属构件和电极组成的回路。
根据欧姆定律,当通过一个电阻时,电流与
电压成正比,因此,电流值可以被测量和记录下来。
2.电压测量原理
接地电阻测试仪会在接地系统上注入一个电流信号,然后测量回路上
的电压。
这个电压通常由测试仪内部的感应电压探头来测量。
感应电压探
头相当于一个高阻抗电压表,它通过感应作用测量接地系统上的电压,而
无需直接接触。
3.计算电阻值的原理
接地电阻计算公式为R=V/I,其中,R为接地电阻值,V为测量得到
的电压值,I为测量得到的电流值。
接地电阻测试仪会测量和记录电流和
电压值,然后根据这个公式计算得到接地电阻的值。
接地电阻测试仪的原理是基于电流和电压之间的关系,通过测量和计
算来确定接地系统的电阻值。
这种测试仪器可以在不同类型的接地系统中
使用,包括工业设备、建筑物和电力系统。
它可以帮助用户确定接地系统
的质量,确保系统的安全性和可靠性。
接地电阻测试仪测试原理接地电阻测试仪是一种用于测量电气设备或系统接地电阻的仪器。
它通过测量接地回路中的电流和电压,来确定接地电阻的大小。
接地电阻测试仪的测试原理主要基于欧姆定律和万用表的测量原理。
一、欧姆定律和接地电阻测试仪欧姆定律是电学基础中的核心定律之一,它描述了电阻、电流和电压之间的关系。
根据欧姆定律,电阻(R)等于电流(I)通过该电阻产生的电压(U)之比,即:R = U / I接地电阻测试仪利用欧姆定律来测量接地回路中的电阻。
其测试原理是通过流经接地回路的电流,测量在该电流下所产生的电压。
通过分析电流和电压之间的关系,可以计算出接地电阻的大小。
二、接地电阻测试仪的工作原理接地电阻测试仪通常采用四线法进行测量。
四线法是一种通过使用两组电流线和两组电压线进行测量的方法,可以排除测试线的电阻对测量结果的影响。
接地电阻测试仪的工作原理如下:1. 接地电阻回路连接:首先,将测试仪的电流线连接到接地电源上,将电压线连接到接地电极上,从而形成一个完整的接地电阻回路。
2. 施加电流:测试仪会向接地电源注入一个特定的电流。
3. 测量电压:测试仪的电压线会测量接地回路中的电压。
这个电压是由电流通过接地电阻时产生的。
4. 计算接地电阻:接地电阻测试仪利用测量到的电流和电压数据,按照欧姆定律的原理,计算出接地电阻的数值。
5. 结果显示:计算完成后,接地电阻测试仪会在屏幕上显示测量结果。
三、接地电阻测试仪的优点接地电阻测试仪在接地电阻测试中具有许多优点,包括:1. 高精度:接地电阻测试仪能够提供高精度的测量结果,可准确评估电气设备或系统的接地状况。
2. 快速便捷:接地电阻测试仪能够在较短的时间内完成测试过程,提高工作效率。
3. 安全可靠:接地电阻测试仪使用非侵入性的测量方法,不会对电气设备或系统造成任何损坏,安全可靠。
4. 易于操作:接地电阻测试仪操作简单,只需按照指示连接线路并按下测试按钮即可完成测试。
5. 数据记录和分析:接地电阻测试仪通常具备数据记录和分析功能,可以保存测试结果并进行后续处理。
接地电阻钳表原理一、引言接地电阻钳表是一种常用的电测工具,用于测量接地系统的接地电阻。
接地电阻是指将电气设备的金属外壳或其他导电部分与地面连接,以确保设备的安全运行。
接地电阻钳表通过测量接地系统中的电阻值,判断接地系统是否正常工作。
本文将介绍接地电阻钳表的原理。
二、接地电阻钳表的结构接地电阻钳表通常由两个主要部分组成:测量夹和显示器。
测量夹是用来夹住被测电路的导线,通过测量夹与地线之间的电阻值来测量接地电阻。
显示器用于显示测量结果。
三、接地电阻钳表的工作原理接地电阻钳表的工作原理基于电阻测量的基本原理。
当电流通过一个导体时,会在导体上产生电压降。
根据欧姆定律,电阻值等于电压降与电流的比值。
因此,测量接地电阻的原理是通过测量接地系统中的电压降和流过该系统的电流,计算出接地电阻的值。
接地电阻钳表使用了非接触式测量技术。
测量夹内置了传感器,可以感应到电流的变化。
当测量夹夹住被测电路的导线时,传感器可以检测到电流的大小。
同时,测量夹还内置了一个电压传感器,可以测量夹与地线之间的电压降。
通过测量电流和电压降,接地电阻钳表可以计算出接地电阻的值。
四、接地电阻钳表的使用方法使用接地电阻钳表进行接地电阻测量的步骤如下:1. 打开接地电阻钳表,并确保电池电量充足。
2. 将测量夹的夹口打开,将其夹住被测电路的导线。
3. 确保测量夹与地线之间的金属接触良好。
4. 在显示器上观察测量结果,即可得到接地电阻的值。
五、接地电阻钳表的注意事项在使用接地电阻钳表进行测量时,需要注意以下事项:1. 确保测量夹与地线之间的金属接触良好,以避免测量误差。
2. 在测量电流时,要确保电路处于正常工作状态。
3. 避免在有强电场或强磁场的环境中进行测量,以免影响测量结果。
4. 定期校准接地电阻钳表,以确保测量结果的准确性。
六、接地电阻钳表的应用领域接地电阻钳表广泛应用于电力、通信、铁路、石油化工等行业。
在这些行业中,接地系统的正常工作对设备的安全运行至关重要。
钳形接地电阻测试仪校准方法研究摘要钳形接地电阻测试仪广泛应用于电力、电信、建筑等行业的接地电阻测量,是传统接地电阻测量技术的重大突破。
本文以钳形接地电阻测试仪为对象,对其校准方法以及要点进行了简单分析,确定了实际校准过程中接线方法,并设计了一种校准辅助装置,确保可以为实际计量作业提供保障。
关键词钳形接地电阻测试仪;校准;接线方法;辅助装置钳形接地电阻仪测量接地电阻的基本原理是测量回路电阻。
钳表的钳口部分由电压线圈及电流线圈组成。
电压线圈提供激励信号,并在被测回路上感应一个电势E。
在电势E的作用下将在被测回路产生电流I。
钳阻仪对E及I进行测量,并通过E/I的公式即可得到被测电阻R。
对钳形接地电阻仪进行校准,可以通过对以往实践经验的总结作为基础,有重点的进行控制,提高校准效果。
1 钳形接地电阻测试仪特点1.1 作业简单钳形接地电阻测试仪在实际计量作业中操作相对简单,只需利用钳表钳口对被测接地线钳绕处理,便可以将测量的接地电阻值显示在液晶屏上。
并且,还可以根据实际条件自动切换测量量程档位,相比传统测量方法,不用辅助电极,无需将接地体与负载隔离,实现在线测量[1]。
1.2 可靠性高以往所用接地电阻值测量方法,所得结果主要由辅助电极位置以及与接地体之间相对位置决定数值准确性。
并且,电压极和电流极与接地体间土壤电阻率均匀性差也会造成测量结果可靠性降低。
再加上如果辅助电极位置存在限制,无法与计算值相符合,则会产生布极误差。
即便是面对的为相同接地体,所选辅助电极位置不同,最终得到的测量结果也会存在较大差异,存在一定程度的分散性,而导致测量结果准确性的降低。
相比较而言,钳形接地电阻测试仪的应用可以消除布极误差,保证测量结果的准确性。
2 钳形接地电阻测试仪校准2.1 校准条件对钳形接地电阻测试仪进行校准,确保接地电阻测量结果的准确性,前提是要做好准备工作。
常用的校准设备如导线以及十进制标准电箱,其中电阻箱参数为:最小步进值0.01Ω,阻值调节范围0.01~1000Ω。
一、钳形地阻表测量原理接地电阻测试仪钳形地阻表是一种新颖的测量工具,它方便、快捷,外形酷似钳形电流表,测试时不需辅助测试桩,只需往被测地线上一夹,几秒钟即可获得测量结果,极大地方便了地阻测量工作。
钳形地阻表还有一个很大的优点是可以对在用设备的地阻进行在线测量,而不需切断设备电源或断开地线。
电路中E和I旁的圆环表示钳形地阻表的环形卡口,Rx为被测地线桩的地阻,R1、R2 ...Rn为分布式接地系统中其它接地点的地阻。
该图可以进一步等效为图3。
测量时,钳形地阻表利用电磁感应原理通过其前端卡口(内有电磁线圈)所构成的环向被测线缆送入一恒定电压E,该电压被施加在图3所示的回路中,地阻表可同时通过其前端卡口测出回路中的电流I,根据E和I,即可计算出回路中的总电阻,即:E/I=Rx+1/(1/R1+1/R2+...+1/Rn)1/(1/R1+1/R2+...+1/Rn)为R1、R2 ...Rn 并联后的总电阻在分布式多点接地系统中,通常有Rx >>1/(1/R1+1/R2+...+1/Rn), “>>”意为“远远大于”假设上述条件成立,则被测地阻Rx=E/I。
事实上,钳形地阻表通过其前端卡环这一特殊的电磁变换器送入线缆的是1.7kHz的交流恒定电压,在电流检测电路中,经过滤波、放大、A/D转换,只有1.7kHz的电压所产生的电流被检测出来。
正因这样,钳形地阻表才排除了商用交流电和设备本身产生的高频噪声所带来的地线上的微小电流,以获得准确的测量结果,也正因为如此,钳形地阻表才具有了在线测量这一优势。
实际上,该表测出的是整个回路的阻抗,而不是电阻,不过在通常情况下他们相差极小。
钳形地阻表可即刻将结果显示在LCD显示屏上,当卡口没有卡好时,它可在LCD上显示“open jaw”或类似符号。
由于钳形地阻表的特殊结构,使它可以很方便地作为电流表使用,很多这类仪表同时具有钳形电流表的功能。
另一方面,虽然钳形地阻表测试时使用一定频率的信号以排除干扰,但在被测线缆上有很大电流存在的情况下,测量也会受到干扰,导致结果不准确。
钳形接地电阻测试仪原理
钳形接地电阻测试仪是一种用于测量接地电阻的专用仪器,其原理是利用电流和电压的关系来计算接地电阻的数值。
接地电阻是指接地体与大地之间的电阻,是保障电气设备安全运行的重要参数之一。
下面将介绍钳形接地电阻测试仪的原理及其工作原理。
首先,钳形接地电阻测试仪利用了电流和电压的关系来测量接地电阻。
在测试过程中,测试仪通过夹持接地体,利用内置的电流源在接地体上施加一定的电流,同时测量接地体上的电压值。
根据欧姆定律,电流与电压成正比,通过测量电流和电压的数值,可以计算出接地电阻的数值。
其次,钳形接地电阻测试仪的工作原理是基于电磁感应定律。
测试仪内置的夹持式传感器可以感知被测接地体上的电流,同时测量接地体上的电压,通过内部的计算模块可以实时计算出接地电阻的数值。
这种工作原理使得测试仪具有非接触式测量的特点,可以在不断电的情况下进行测试,提高了测试的安全性和便捷性。
钳形接地电阻测试仪的原理简单清晰,通过测量电流和电压的关系来计算接地电阻的数值,工作原理基于电磁感应定律,具有非
接触式测量的特点。
在实际使用中,只需将测试仪夹持在被测接地体上,即可进行快速、准确的接地电阻测试,是一种非常实用的电气安全测试仪器。
总之,钳形接地电阻测试仪是一种利用电流和电压的关系来测量接地电阻的专用仪器,其工作原理基于电磁感应定律,具有非接触式测量的特点。
通过简单的操作,可以快速、准确地测量接地电阻的数值,是电气设备安全运行的重要保障之一。
钳形接地电阻测试仪钳形接地电阻测试仪测量原理一、测量原理1.电阻测量原理ETCR2000系列钳形接地电阻测试仪测量接地电阻的基本原理是测量回路电阻。
见下图。
钳表的钳口部分由电压线圈及电流线圈组成。
电压线圈提供激励信号,并在被测回路上感应一个电势E。
在电势E的作用下将在被测回路产生电流I。
钳表对E及I进行测量,并通过下面的公式即可得到被测电阻R。
2.电流测量原理ETCR2000C钳形接地电阻仪测量电流的基本原理与电流互感器的测量原理相同。
见下图。
被测量导线的交流电流I,通过钳口的电流磁环及电流线圈产生一个感应电流I1,钳表对I1进行测量,通过下面的公式即可得到被测电流I。
钳形接地电阻测试仪其中:n为副边与原边线圈的匝数比。
二、接地电阻测量方法1.多点接地系统对多点接地系统(例如输电系统杆塔接地、通信电缆接地系统、某些建筑物等),它们通过架空地线(通信电缆的屏蔽层)连接,组成了接地系统。
见下图。
1 2 3 4钳形接地电阻测试仪其中:R1为欲测的接地电阻。
R0为所有其它杆塔的接地电阻并联后的等效电阻。
虽然,从严格的接地理论来说,由于有所谓的“互电阻”的存在,R0并不是通常的电工学意义上的并联值(它会比电工学意义上的并联值稍大),但是,由于每一个杆塔的接地半球比起杆塔之间的距离要小得多,而且毕竟接地点数量很大,R0要比R1小得多。
因此,可以从工程角度有理由地假设R0=0。
这样,我们所测的电阻就应该是R1了。
多次不同环境、不同场合下与传统方法进行对比试验,证明上述假设是完全合理的。
2.有限点接地系统这种情况也较普遍。
例如有些杆塔是5个杆塔通过架空地线彼此相连;再如某些建筑物的接地也不是一个独立的接地网,而是几个接地体通过导线彼此连接。
在这种情况下,如果将上图中的R0视为0则会对测量结果带来较大误差。
出于与上述同样的理由,我们忽略互电阻的影响,将接地电阻的并联后的等效电阻按通常意义上的计算方法计算。
这样,对于N个(N 较小,但大于2)接地体的接地系统,就可以列出N个方程: 钳形接地电阻测试仪其中:R1、R2、…….RN 是我们要求得的N 个接地体的接地电阻。
钳形接地电阻测试仪测量原理
一、测量原理
1.电阻测量原理
ETCR2000系列钳形接地电阻测试仪测量接地电阻的基本原理是测量回路电阻。
见下图。
钳表的钳口部分由电压线圈及电流线圈组成。
电压线圈提供激励信号,并在被测回路上感应一个电势E。
在电势E的作用下将
在被测回路产生电流I。
钳表对E及I进行
测量,并通过下面的公式即可得到被测电阻
R。
2.电流测量原理
ETCR2000C钳形接地电阻仪测量电流的基本原理与电流互感器的测量原理相同。
见下图。
被测量导线的交流电流I,通过钳口的电流磁环及电流线圈产生一个感应电流I1,钳表对I1进行测量,通过下面的公式即可得到被测电流I。
其中:n为副边与原边线圈的匝数比。
二、接地电阻测量方法
1.多点接地系统
对多点接地系统(例如输电系统杆塔接地、通信电缆接地系统、某些建筑物等),它们通过架空地线(通信电缆的屏蔽层)连接,组成了接地系统。
见下图。
其中:R1为欲测的接地电阻。
R0为所有其它杆塔的接地电阻并联后的等效电阻。
虽然,从严格的接地理论来说,由于有所谓的“互电阻”的存在,R0并不是通常的电工学意义上的并联值(它会比电工学意义上的并联值稍大),但是,由于每一个杆塔的接地半球比起杆塔之间的距离要小得多,而且毕竟接地点数量很大,R0要比R1小得多。
因此,可以从工程角度有理由地假设R0=0。
这样,我们所测的电阻就应该是R1了。
多次不同环境、不同场合下与传统方法进行对比试验,证明上述假设是完全合理的。
2.有限点接地系统
这种情况也较普遍。
例如有些杆塔是5个杆塔通过架空地线彼此相连;再如某些建筑物的接地也不是一个独立的接地网,而是几个接地体通过导线彼此连接。
在这种情况下,如果将上图中的R0视为0则会对测量结果带来较大误差。
出于与上述同样的理由,我们忽略互电阻的影响,将接地电阻的并联后的等效电阻按通常意义上的计算方法计算。
这样,对于N 个(N 较小,但大于
2)接地体的接地系统,就可以列出N 个方程:
其中:R1、R2、…….RN 是我们要求得的N 个接地体的接地电阻。
R1T 、R2T 、……RNT 分别是用钳表在各接地支路所测得的电阻。
这是一个有N 个未知数,N 个方程的非线性方程组。
它是有确定解的,但是人工解它是十分困难的,当N 较大时甚至是不可能的。
NT N N R R R R R =++++-)1(211......111R 1T R N R 3 R 2 R 1 1 ...... 1 1 1
? ? ? ? ?
为此,请选购我公司的有限点接地系统解算程序软件,用户即可使用办公电脑或手提电脑进行机解。
从原理上来说,除了忽略互电阻以外,这种方法不存在忽略R0
所带来的测量误差。
但是,用户需要注意的是:您的接地系统中,有几个彼此相连接的接地体,就必须测量出同样个数的测试值供程序解算,不能或多或少。
而程序也是输出同样个数的接地电阻值。
3.单点接地系统
从测试原理来说,ETCR2000系列钳表只能测量回路电阻,对单点接地是测不出来的。
但是,用户完全可以利用一根测试线及接地系统附近的接地极,人为地制造一个回路进行测试。
下面介绍二种用钳表测量单点接地的方法,此方法可应用于传统的电压-电流法无法测试的场合。
(1)二点法
见下图,在被测接地体RA附近找一个独立的接地较好的接地体RB(例如临近的自来水管、建筑物等)。
将RA和RB用一根测试线连接起来。
尾相连即可用钳表测出其阻值RL。
所以,如果钳表的测量值小于接地电阻的允许值,那么这两个接地体的接地电阻都是合格的。
(2)三点法
如下图,在被测接地体RA附近找二个独立的接地体RB和RC。
第一步,将RA 和RB 用一根测试线连接起来,见下图。
用钳表读得第
R2。
R3。
这样,所以:
这就是接地体RA 的接地电阻值。
为了便于记忆上述公式,可将三个接地体看作一个三角形,则被测电阻等于邻边电阻相加减对边电阻除2。
其它两个作为参照物的接地体的接地电阻值为:
R C R B R ? ? 2 R A R C R ? ? 3 2
2 3 1
R R R R A ? ? ? R A R R B ? ? 1 R A R R C ? ? 3。