2018—2019学年度第一学期第一次学科检测九年级数学
- 格式:doc
- 大小:146.50 KB
- 文档页数:8
杭州地区2018-2019学年第一学期九年级12月学习能力检测数学试题(本试卷满分120分,考试时间90分钟)一、选择题(本大题共10小题,每小题3分) 1、在双曲线的每一条曲线上,的增大而增大,则的值可以是( ) A .B .0C .1D .22、将抛物线y=(x ﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( ) A . y =(x ﹣2)2B .y =x 2 C . .y=x 2+6D . y =(x ﹣2)2+63、如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x ,那么x 的值( ) A. 只有1个B. 可以有2个C. 可以有3个D. 有无数个4、如图,是半圆,O 为AB 中点,C 、D 两点在上,且AD ∥OC ,连接BC 、BD .若=63°,则的度数是( )A .54°B .57°C .60°D .63°5、已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD=( ) A .B .C .D .2(第4题图) (第5题图) (第7题图) 6、对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x ≥0时,y 随x 的增大而减小,其中正确结论的个数为( ) A .1B .2C .3D .47、如图,点A ,B ,C ,D 为⊙O 上的四个点,AC 平分∠BAD ,AC 交BD 于点E ,CE=4,CD=6,则AE 的长为( )1ky x-=y x 都随k 1-215-215+3A.4B.5C.6D.78、某商品的进货单价为90元,按100元一个出售,能售出500个,如果这种商品每涨价1元,其销售量就减少10。
2018至2019学年度第一学期九年级上学期中试卷数学试题(考试时间100分钟,满分120分) 班别: 姓名: 成绩:一、选择题(每小题3分,本大题30分): 1. 下列方程是一元二次方程的是( ). A .2x+3=0B .y 2+x-2=0 C .x 2=1 D .x 2+1=02.下列函数解析式中,一定是二次函数的是( ).A. 13-=x yB. c bx ax y ++=2C. 1222+-=t t s D. xx y 12+= 3.二次函数y=(x-1)2﹣1的最小值是( ). A .2B .-1C .1D .-24. 下列交通标志中既是中心对称图形,又是轴对称图形的是( )。
A .B .C .D .5. 一元二次方程的解是( ) A .B .C .或D .或6. 抛物线y= x 2+4的顶点坐标是( ). A .(0,4)B .(-4,0)C .(0,-4)D .(4,0)7. 二次函数245y x x =+-的图象的对称轴为( ). A .4x =B .4x =-C .2x =D .2x =-8. 某厂一月份的总产量为500吨,三月份的总产量达到为700吨。
若平均每月增长率是 ,则可以列方程( ).A .500(1+2x )=700B .500(1+x 2)=700C .500(1+x )2=700D .700(1+x 2)=500 9.将抛物线2y x =向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( ).A .2(2)3y x =+-B .2(2)3y x =++C .2(2)3y x =-+D .2(2)3y x =-- 10.点B 与点A (﹣2,3)关于原点对称,点B 的坐标为( ).A.(2,﹣3) B.(﹣2,3) C.(2,3) D.(﹣2,﹣3)二、填空题(每小题4分,本大题24分):11、一元二次方程3x2 -2x﹣1=0的一次项系数是,常数项是。
2018—2019学年度第一学期阶段检测九年级数学试题含答案注意事项:1.答卷前,请考生务必将自己的姓名、考号、考试科目及选择题答案涂写在答题卡上,并同时将学校、姓名、考号、座号填写在试卷的相应位置。
2.本试卷分为卷I (选择题)和卷II (非选择题)两部分,共120分。
考试时间为90分钟。
第Ⅰ卷(选择题 共45分)一、选择题(本大题共15小题,每小题3分,满分45分)1.方程x (x +1)=0的解是A. x =0B. x =1C. x 1=0,x 2=1D. x 1=0,x 2=-12.图中三视图所对应的直观图是3.用配方法解关于x 的一元二次方程x 2-2x -3=0,配方后的方程可以是A .(x -1)2=4B .(x +1)2=4C .(x -1)2=16D .(x +1)2=16 4.如果反比例函数x k y =的图像经过点(-3,-4),那么函数的图象应在 A .第一、三象限B .第一、二象限C .第二、四象限D .第三、四象限 5.若函数xm y =的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是 A .m >1B . m >0C . m <1D .m <0 6.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC △相似的是B . A . B .C .D .A B7.如果两个相似三角形的相似比是1:2,那么这两个相似三角形的周长比是A .2:1B .1:C . 1:4D .1:2 8.一元二次方程2x 2 + 3x +5=0的根的情况是A .有两个不相等的实数B .有两个相等的实数C .没有实数根D .无法判断 9.如图是小明一天上学、放学时看到的一根电线杆的影子的俯视图,按时间先后顺序进行排列正确的是A .(1)(2)(3)(4)B .(4)(3)(1)(2)C .(4)(3)(2)(1)D .(2)(3)(4)(1) 10. 下列各点中,不在反比例函数xy 6-=图象上的点是 A .(-1,6) B .(-3,2) C .)12,21(- D .(-2,5)11.如右图,在△ABC 中,看DE ∥BC ,21=AB AD ,DE =4 cm ,则BC 的长为 A .8 cm B .12 cm C .11 cm D .10 cm12.下列结论不正确的是A .所有的矩形都相似B .所有的正方形都相似 11题图C .所有的等腰直角三角形都相似D .所有的正八边形都相似13.在函数y=xk (k<0)的图像上有A(1,y 1)、B(-1,y 2)、C(-2,y 3)三个点,则下列各式中正确的是A . y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 2<y 3<y 114.如图所示的两个圆盘中,指针落在每一个数上的机会均等,则两个指针同时落在偶数上的概率是A.525 B.625C.1025 D.1925 14题图15.如图,正方形OABC 和正方形ADEF 的顶点A ,D ,C 在坐标轴上,点F 在AB 上,点B ,E 在函数1(0)y xx =>的图象上,则点E 的坐标是A .⎝⎭;B .⎝⎭C .⎝⎭;D .⎝⎭ 15题图第Ⅱ卷(非选择题 共75分)二、填空题(本大题共6小题,每小题3分,满分18分,把答案填在题中的横线上。
青浦区2018学年第一学期九年级期终学业质量调研测试数学试卷2019.1(完成时间:100分钟 满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每小题4分,满分24分)[每题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂] 1.下列图形中,一定相似的是( )A. 两个正方形;B. 两个菱形;C. 两个直角三角形;D. 两个等腰三角形. 2.如图,已知AB //CD //EF ,它们依次交直线1l 、2l 于点A 、D 、F和点B 、C 、E ,如果AD ∶DF =3∶1,BE =10,那么CE 等于( ) A .103; B .203;C .52;D .152.3.在Rt △ABC 中,∠C =90º,如果∠A =α,BC =a ,那么AC 等于( )A. tan α⋅a ;B. cot α⋅a ;C.sin α⋅a ;D.cos α⋅a . 4.下列判断错误的是( )A.0=0a ; B. 如果+2= abc ,3-= a b c ,其中0≠ c ,那么 a ∥b ;C. 设e 为单位向量,那么||1= e ; D. 如果||2||=a b ,那么2= a b 或2=-a b . 5.如图,已知△ABC ,D 、E 分别在边AB 、AC 上,下列条件中,不能确定△ADE ∽△ACB 的是( )A .∠AED =∠B ; B .∠BDE +∠C =180°;C .⋅=⋅AD BC AC DE ; D .⋅=⋅AD AB AE AC .6.已知二次函数2=++y ax bx c A .0>ac ; B .0>b ; C .0+<a c ; D .+=0a b c +.l 2l 1FED C BAD CBA E (第2题图)(第6题图)(第5题图)二、填空题:(本大题共12题,每小题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.如果 ,那么 ▲. 8.计算:3(2)2(3)a b a b ---= ▲ .9. 如果两个相似三角形的相似比为1∶3,那么它们的周长比为 ▲.10.二次函数 的图像的顶点坐标是 ▲ .11.抛物线 的对称轴是直线1=x ,那么m = ▲ . 12.抛物线 在y 轴右侧的部分是 ▲ .(填“上升”或“下降”)13.如果α是锐角,且sin α=cos 20°,那么α= ▲ 度.14.如图,某水库大坝的橫断面是梯形ABCD ,坝高为15米,迎水坡CD 的坡度为1:2.4,那么该水库迎水坡CD 的长度为 ▲ 米. 15.如图,在边长相同的小正方形组成的网格中,点A 、B 、C都在这些小正方形的顶点上,则tan ∠ABC 的值为 ▲ . 16.在△ABC 中, AB =AC ,高AH 与中线BD 相交于点E ,如果BC=2,BD=3,那么AE= ▲.17.如图,在Rt △ABC 中,∠ACB=90°,AC=1,tan ∠CAB=2,将△ABC 绕点A 旋转后,点B 落在AC 的延长线上的点D , 点C 落在点E ,DE 与直线BC 相交于点F ,那么CF= ▲. 18.对于封闭的平面图形,如果图形上或图形内的点S 到图形上的任意一点P 之间的线段都在图形内或图形上,那么这样的 点S 称为“亮点”. 如图,对于封闭图形ABCDE ,S 1是 “亮点”,S 2不是“亮点”,如果AB ∥DE ,AE ∥DC , AB=2,AE=1,∠B=∠C= 60°,那么该图形中所有“亮点” 组成的图形的面积为 ▲ .ABCCAA BCD241y x x =--23y x mx m =-+-22y x =-(第15题图)(第17题图)25=+xx y x y =(第18题图)(第14题图)三、解答题(本大题共7题,满分78分) [请将解题过程填入答题纸的相应位置] 19.(本题满分10分)计算:()121sin 301cot 3030cos 45-︒︒︒︒+--.20.(本题满分10分, 第(1)小题5分,第(2)小题5分)如图,在平行四边形ABCD 中,点E 在边BC 上,CE=2BE , AC 、DE 相交于点F .(1)求DF ∶EF 的值;(2)如果CB a = ,CD b =,试用 a 、b 表示向量EF .21.(本题满分10分, 第(1)小题5分,第(2)小题5分)如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,2=⋅AE AD AB ,∠ABE =∠ACB .(1)求证:DE ∥BC ; (2)如果 ADE S ∶DBCE S =四边形1∶8,求 ADE S ∶BDE S 的值.22.(本题满分10分)如图,在港口A 的南偏东37°方向的海面上,有一巡逻艇B ,A 、B 相距20海里,这时在巡逻艇的正北方向及港口A 的北偏东67°方向上,有一渔船C 发生故障.得知这一情况后,巡逻艇以25海里/小时的速度前往救援,问巡逻艇能否在1小时内到达渔船C (参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin67°≈1213,cos67°≈513,tan67°≈125)23.(本题满分12分,第(1)小题7分,第(2)小题5分)已知:如图,在△ABC 中,点D 、E 分别在边BC 、AC 上,点F 在DE 的延长线上,AD=AF ,AE CE DE EF ⋅=⋅.(1)求证:△ADE ∽△ACD ;(2)如果AE BD EF AF ⋅=⋅,求证:AB=AC .ED CBA北EABCDFABDEF(第21题图)(第20题图)24.(本题满分12分, 其中第(1)小题3分,第(2)小题5分,第(3)小题4分)在平面直角坐标系xOy 中,将抛物线2y x =-平移后经过点A (-1,0)、B (4,0),且平移后的抛物线与y 轴交于点C (如图).(1)求平移后的抛物线的表达式;(2)如果点D 在线段CB 上,且CDCAD 的正弦值;(3)点E 在y 轴上且位于点C 的上方,点P 在直线BC 上,点Q 在平移后的抛物线上,如果四边形ECPQ 是菱形,求点Q 的坐标.25.(本题满分14分,其中第(1)小题4分,第(2)小题6分,第(3)小题4分)如图,在梯形ABCD 中,AD//BC ,BC =18,DB =DC =15,点E 、F 分别在线段BD 、CD 上,DE =DF =5. AE 的延长线交边BC 于点G , AF 交BD 于点N 、其延长线交BC 的延长线于点H . (1)求证:BG =CH ;(2)设AD =x ,△ADN 的面积为y ,求y 关于x 的函数解析式,并写出它的定义域; (3)联结FG ,当△HFG 与△ADN 相似时,求AD 的长.NHG FEDC AB (第24题图)(备用图)(第25题图)青浦区2018学年第一学期期终学业质量调研 九年级数学试卷参考答案及评分说明2019.1一、选择题:1.A ; 2.C ; 3.B ; 4.D ; 5.C ; 6.D . 二、填空题:7.23; 8. a ; 9.1:3; 10.(2,-5); 11.2; 12.上升;13.70; 14.39; 15.12; 16. 17.12;18.4. 三、解答题:19.解:原式=1211122-⎛⎫+ ⎪⎝⎭⎛ ⎝⎭. ··············································· (4分)=21+12-. ·············································································· (4分)= ································································································· (2分)20.解:(1)∵四边形ABCD 是平行四边形,∴AD=BC ,AD//BC ,·············································································· (2分)∴=DF ADEF EC. ··················································································· (1分) ∵CE=2BE ,∴32=BC EC ,······································································ (1分) ∴32=DF EF . ······················································································· (1分) (2)∵CE=2BE ,∴23=CE CB , ∴2233== CE CB a .····························· (1分)∵=- ED CD CE ,∴23=- ED b a .················································· (1分)∵32=DF EF ,∴25=EF ED , ····························································· (1分)∴25= EF ED , ···················································································· (1分)222453515⎛⎫=-=- ⎪⎝⎭b a b a . ··································································· (1分) 21.证明:(1)∵2=⋅AE AD AB ,∴=AE ABAD AE. ················································ (1分) 又∵∠EAD =∠BAE ,∴△AED ∽△ABE , ··············································· (1分) ∴∠AED =∠ABE . ··············································································· (1分) ∵∠ABE =∠ACB ,∴∠AED =∠ACB . ···················································· (1分) ∴DE ∥BC .························································································· (1分) (2)∵DE ∥BC ,∴△ADE ∽△ABC ,∴2⎛⎫= ⎪⎝⎭ADE ABC S AD S AB .············································ (1分) ∵18四边形= ADE DBCES S ,∴19= ADE ABC S S . ··················································· (1分) ∴219⎛⎫= ⎪⎝⎭AD AB , ················································································ (1分) ∴13=AD AB ,······················································································ (1分) ∴12=AD DB ,∴12= ADE BDE S S . ···························································· (1分) 22.解:过点A 作AH ⊥BC ,垂足为点H .由题意,得∠ACH =67°,∠B =37°,AB =20. 在Rt △ABH 中,∵sin ∠=AHB AB ,∴sin 20sin 3712=⋅∠=⨯︒≈AH AB B . ···················· (3分) ∵cos ∠=BHB AB,∴cos 20cos3716=⋅∠=⨯︒≈BH AB B .···················· (3分)在Rt △ACH 中, ∵tan ∠=AH ACH CH ,∴12=5tan tan 67=≈∠︒AH CH ACH . ······················· (3分) ∵BC =BH +CH ,∴BC ≈16 +5=21. ∵212125125÷=<, 所以,巡逻艇能在1小时内到达渔船C 处.················································· (1分)23.证明:(1)∵AD=AF ,∴∠ADF =∠F . ································································· (1分)∵AE CE DE EF ⋅=⋅,∴=AE EFDE CE. ·············································· (1分) 又∵∠AEF =∠DEC ,∴△AEF ∽△DEC . ·············································································· (2分) ∴∠F =∠C . ······················································································· (1分) ∴∠ADF =∠C . ·················································································· (1分) 又∵∠DAE =∠CAD ,∴△ADE ∽△ACD .············································································ (1分)(2)∵AE BD EF AF ⋅=⋅,∴AE EFAF BD=.················································ (1分) ∵AD=AF ,∴AE EFAD BD=.·································································· (1分) ∵∠AEF =∠EAD +∠ADE ,∠ADB =∠EAD +∠C ,∴∠AEF =∠ADB . ··············································································· (1分) ∴△AEF ∽△ADB . ············································································ (1分) ∴∠F =∠B ,∴∠C =∠B ,∴AB=AC . ·························································································· (1分)24.解:(1)设平移后的抛物线的解析式为2+=-+y x bx c . ·································· (1分)将A (-1,0)、B (4,0),代入得101640.,--+=⎧⎨-++=⎩b c b c ··············································································· (1分) 解得:34.,=⎧⎨=⎩b c所以,2+34=-+y x x .····································································· (1分)(2)∵2+34=-+y x x ,∴点C 的坐标为(0,4) ··············································· (1分).设直线BC 的解析式为y =kx +4,将B (4,0),代入得kx +4=0,解得k =-1, ∴y =-x +4. 设点D 的坐标为(m ,4- m ).∵CD22=2m ,解得=1m 或=1-m (舍去),∴点D 的坐标为(1,3). ············································································ (1分) 过点D 作DM ⊥AC ,过点B 作BN ⊥AC ,垂足分别为点M 、N . ∵1122⋅=⋅AC BN AB OC54=⨯BN,∴=BN . (1分) ∵DM ∥BN ,∴=DM CD BN CB,∴=DM BN17=DM . ··············· (1分)∴sin =17221∠==DM CAD AD .············································ (1分) (3)设点Q 的坐标为(n ,2+34-+n n ).如果四边形ECPQ 是菱形,则0>n ,PQ ∥y 轴,PQ =PC ,点P 的坐标为(n ,4-+n ). ∵22+3444=-++-=-PQ n n n n n,=PC ,······································ (2分)∴24-n n,解得=4n =0n (舍). ············································· (1分) ∴点Q的坐标为(42). ·························································· (1分)25.解:(1)∵AD//BC ,∴=AD DE BG EB ,=AD DFCH FC. ······························································ (2分) ∵DB =DC =15,DE =DF =5, ∴12==DE DF EB FC ,∴=AD ADBG CH. ···················································· (1分) ∴BG =CH .·························································································· (1分)(2)过点D 作DP ⊥BC ,过点N 作NQ ⊥AD ,垂足分别为点P 、Q .∵DB =DC =15,BC =18,∴BP = CP =9,DP =12.········································· (1分)∵12==AD DE BG EB ,∴BG = CH =2x ,∴BH =18+2x . ································· (1分) ∵AD ∥BC ,∴=A D D N B H N B ,∴182=+x DN x NB ,∴182+15==++x DN DNx x NB DN , ∴56=+xDN x . ·················································································· (1分)∵AD ∥BC ,∴∠ADN =∠DBC ,∴sin ∠ADN =sin ∠DBC , ∴=NQ PD DN BD ,∴46=+xNQ x . ························································· (1分) ∴()21142092266=⋅=⋅=<≤++x x y AD NQ x x x x .····························· (2分)(3)∵AD ∥BC ,∴∠DAN =∠FHG .(i )当∠ADN =∠FGH 时,∵∠ADN =∠DBC ,∴∠DBC =∠FGH ,∴BD ∥FG , ·························································································· (1分) ∴=BG DF BC DC ,∴51815=BG ,∴BG =6,∴AD =3. ······························· (1分) (ii )当∠ADN =∠GFH 时, ∵∠ADN =∠DBC=∠DCB , 又∵∠AND =∠FGH ,∴△ADN ∽△FCG . ············································································· (1分) ∴=AD FC DN CG ,∴()5182106⋅-=⋅+xx x x ,整理得23290--=x x ,解得 2=x ,或32-=x (舍去).······································· (1分)综上所述,当△HFG 与△ADN 相似时,AD 的长为3或2.。
南京市旭东中学九年级月考数学试题(满分: 100 分 时间: 100分钟)一、选择题(本大题共6小题。
每小题2分,共12分)1.一元二次方程()01=-x x 的解是 ( )A.0=xB. 1=xC.10==x x 或D. 10-==x x 或2.已知关于x 的一元二次方程012=+-ax x 一个根为1,a 的值为( )A.1B. -1C.2D. -23.已知三角形的外心在三角形的内部,那么这个三角形是( )A.任意三角形B. 直角三角形C.锐角三角形D. 钝角三角形4.已知ʘO 的半径3=r , 10=PO ,则点P 与ʘO 的位置关系是( )A.点P 在ʘO 内;B.点P 在ʘO 上;C.点P 在ʘO 外;D.不能确定5.下列说法中,不正确的是( )A.过圆心的弦是圆的直径B.等弧的长度一定相等C.周长相等的两个圆是等圆D.同一条弦所对的两条弧一定是等弧6.要组织一次排球邀请赛, 参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛。
设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( ) A.()28121=+x x B. ()28121=-x x C.()281=+x x D. ()281=-x x二、填空题(本大题共10小题,每小题2分,共20分,请把答案直接填写在答题卡相应位置上)7.方程()121-=+x x x ,把方程化为一般形式 .8.以-3和7为根且二次项系数为1的一元二次方程是 .9.以3、4为两边长的三角形的第三边长是方程040132=+-x x 的根,则这个三角形的周长 .10.ʘO 的半径为5cm ,圆心O 到弦AB 的距离为3cm ,则弦AB 的长为 cm.11.一个直角三角形的面积是6cm 2,两条直角边的差是1cm ,则直角三角形的两条直角边分别为 .12.已知关于x 一元二次方程032=--x x 两个实数根分别为βα、,则()()33++βα= .13.如图,点A 、B 、C 在ʘO 上,AB//CO, ∠A=30°, 则∠B= .14.如图,在ʘO 中,∠D=70°,∠ACB=50°,则∠BAC= .15.已知半径为10 cm 的ʘO 中的两条平行弦AB 、CD ,且AB=12cm ,CD=16cm ,则弦 AB 、CD 之间的距离为 cm.16.某商场以每个玩具80元价格进了一批玩具,定价为120元时,平均每天可售出20个,为了扩大销售,增加盈利,商场决定采取适当的降价措施经调查发现,在一定范围内,玩具的单价每降1元,商场每天可多售出2个.(1)假设玩具单价下降x 元,则平均每天可售出______个玩具, 为了扩大销售并不能亏本,x 的取值范围为 .(2)若商场想要每天获得1200元的利润,根据题意列出方程 .三、解答题(本大题共9小题,共68分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解方程()04322=--x18. (6分)解方程x x 232=- (配方法)19. (6分)解方程()01222=--x x20. (6分)解方程()()4421=++t t21.(8分)如图,在破残的圆形残片上,弦AB 的垂直平分线交弧AB 于点C ,交弦AB 于点D ,已知AB=8cm,,CD=2cm.(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)求出(1)中所作圆的半径.22.(8分)关于x 的方程()0422=+++k x k kx 有两个不相等的实数根,求k 的取值范围.23.(10分)如图,△ABC 内接于ʘO, AB 是ʘO 的直径,点D 在ʘO 上,且∠BAC=∠CAD,过点C 作CE ⊥AD ,垂足为E.(1) 试判断CE 与00的位置关系,并说明理由;(2)若AB=10,AC=8,求CE.24. (8分)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为5万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.5万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为万元.(2)如果该养殖户第3年的养殖成本为8. 025万元,求可变成本平均每年增长的百分率x.25. (10分) 已知△ABC中,AB=AC, 以AB为直径的圆0交BC于D,交AC于E,(1)如图①,若AB=6, CD=2,求AC边上的高;(2) 如图②,当∠A为锐角时,使判断∠BAC与∠CBE的关系,并证明你的结论;(3)若②中的边AB不动,边AC绕点A按逆时针旋转,当∠BAC为钝角时,如图③, CA 的延长线与圆0相交于E.请问:∠BAC与∠CBE的关系是否与(2)中你得出的关系相同?若相同,请加以证明.【参考答案】1-6:CCCCDA7. 012=+-x x8. 02142=--x x (答案不唯一)9. 1210. 811. 3cm 、4cm12. 913. 1514. 2015. 14或216. (1)()202+x ,400≤x <;(2)()()1200802202=--+x x 17. 25,2121==x x 18. 1,31-==x x19. 1,311==x x 20. 3,021-==t t 21.解:(1)作图如下,22.01≠-k k 且>23.(1)略;(2)CE=4.824.(1)()215.2+x ;(2)10%25.解答:解:(1)连接AD.∵AB为直径,∴AD⊥BC.又∵AB=AC,∴BD=CD.又CD=2,∴BD=2.由CE•CA=CD•CB,得6•CE=2•(2+2),∴CE=1.(2)∠BAD与∠CBE的关系是:∠BAC=2∠CBE.理由如下:由(1),得AD⊥BC.又AB=AC,∴∠1=∠2.又∠2=∠CBE,∴∠BAC=2∠CBE.(3)相同.理由如下:连接AD.∵AB为直径,∴AD⊥BC,又AB=AC,∴∠1=∠2,∵∠CAD是圆内接四边形AEBD的外角,∴∠2=∠CBE,∴∠CAB=2∠CBE.。
2018-2019学年度第一学期九年级期中质量调研
数学试卷
一、选择题(本大题共12 小题,每小题3分,共36 分)
1. 下列各点,在二次函数的图象上的是
A.(0,0)
B.(-1,-1)
C.(1,9)
D.(2,-2)
2. 下列图案中,可以看作是中心对称图形的有
A.1个
B.2个
C.3个
D.4个
3. 在平面直角坐标系中,点P(-3,2)绕原点O顺时针旋转180°,所得到的对应点P '的坐标为
A.(3,2)
B.(2,-3)
C.(-3,-2)
D.(3,-2)
4. 下列命题中不正确的是
A.圆是轴对称图形,任何一条直径所在直线都是圆的对称轴
B.圆是中心对称图形,圆心是它的对称中心
C.同弧或等弧所对的圆心角相等
D.平分弦的直径一定垂直于这条弦
5. 抛物线的顶点坐标为
A.(4,7)
B.(-4,7)
C.(4,-7)
D.(-4,-7)
6.抛物线向上平移3个单位,再向左平移两个单位,那么得到的抛物线解析式为()
7. 如图,以△ABC的边BC为直径的圆O分别交AB,AC于点D、E,连接OD、OE,若,则∠A的度数为。
2018-2019学年白云区九年级一模考试数学科答案一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案 A D D B D C A C B C二、填空题(每小题3分,共18分)11. 67︒12. 6110⨯13. 22(3)a b a-14. ()221y x=++15. 1 316. 11三、解答题(共102分)17. 解:去括号,得:2x﹣6>1,移项,得:2x>1+6,合并同类项,得:2x>7,系数化成1得:x>..18.证明:在△ABC和△DCB中,∴△ABC≌△DCB(SAS)∴AC=DB19. 解:(1)A=(3x﹣1)(2x+1)﹣x+1﹣6y2=6x2+x﹣1﹣x+1﹣6y2=6x2﹣6y2;(2)解方程组,得,A=6x2﹣6y2=6×32﹣6×22=54﹣24=30;20. 解:(1)“最喜欢篮球”的人数为40×12.5%=5(人),“最喜欢乒乓球”对应扇形的圆心角度数为360°×20%=72°,∵该校学生中“最喜欢足球”人数所占百分比为1﹣(12.5%+12.5%+20%+25%)=30%,∴估计该校学生中“最喜欢足球”的人数为1500×30%=450(人),故答案为:5,72°,450;(2)列表如下:由图可知总有20种等可能性结果,其中所抽取的2名学生中至少有1名女生的情况有14种,所以所抽取的2名学生中至少有1名女生的概率为=.21.解:(1)将点B(﹣3,﹣2)代入y=mx,∴m=6,∴y=6x,∴n=2,∴A(2,3),将A (2,3),B (﹣3,﹣2)代入y =kx +b ,3=223k bk b +⎧⎨-=-+⎩, ∴11k b =⎧⎨=⎩,∴y =x +1;(2)y =x +1与x 轴交点坐标(﹣1,0), ∴S =×1×(3+2)=;22. 解:设原来每套铅笔套装的价格是x 元,现在每套铅笔套装的价格是0.8x 元,依题意得:﹣2=.解得x =5.经检验:x =5是原方程的解,且符合题意. 答:原来每套铅笔套装的价格是5元.23. 解:(1)如图所示:EF ⊥EC ; (2)∵四边形ABCD 是矩形,∴∠A =∠D =90°,即∠AFE +∠AEF =90°, ∵EF ⊥EC ,∴∠DEC +∠AEF =90°, ∴∠AFE =∠DEC ,又∠A =∠D , ∴△AEF ∽△DCE , ∴=,∵AE =ED . ∴=,又∠A =∠FEC =90°,∴AEF ∽△ECF ;(3)存在k 值,使得△AEF 与△BFC 相似 理由如下:设BC =a ,则AB =ka ,∵△AEF 与△BFC 相似,∠A =∠B =90°,∠BCF ≠∠AFE ,∴△AEF∽△BCF,∴==,∴AF=ka,BF=ka,∵△AEF∽△DCE,∴=,即=,解得,k=.24. 解:(1)将点A、B坐标代入二次函数表达式得:,解得:,故:抛物线的表达式为:y=x2﹣x﹣,令y=0,则x=﹣1或3,令x=0,则y=﹣,故点C坐标为(3,0),点P(1,﹣2);(2)当点D在C点右侧时,过点B作BH⊥AC交于点H,过点P作PG⊥x轴交于点G,设:∠DPC=∠BAC=α,S△ABC=×AC×BH=×BC×y A,解得:BH=2,sinα===,则tanα=,由题意得:GC=2=PG,故∠PCB=45°,延长PC,过点D作DM⊥PC交于点M,则MD=MC=x,在△PMD中,tanα===,解得:x=2,则CD=x=4,故点D(7,0);综上,D点坐标为(50703(,)或(,),02106242245322462535(0)3),D C D xAB AC BC PC ACB PCD DPC BACDPC BACDC PCBC ACxxD∠=∠=∠=∠∴∆∆∴=-∴==∴Q当点在点左侧时,设(由勾股定理可得:=,=,=,=,,∽(3)作点A关于对称轴的对称点A′(5,6),过点A′作A′N⊥AP分别交对称轴与点M、交AP于点N,此时AM+MN最小,直线AP表达式中的k值为:=﹣2,则直线A′N表达式中的k值为,设直线A′N的表达式为:y=x+b,将点A′坐标代入上式并求解得:b=,故直线A′N的表达式为:y=x+…①,当x=1时,y=4,故点M(1,4),同理直线AP的表达式为:y=﹣2x…②,联立①②两个方程并求解得:x=﹣,故点N(﹣,).25.解:(1)∵∠BOC=120°,∴∠A=∠BOC=60°,∵∠ACB=60°,∴∠ABC=60°,∴△ABC是等边三角形,∵点M是的中点,点N是的中点,∴=,=,∴∠BCN=∠ACB=30°,∠CBM=∠ABC=30°,∴BF=CF,∠BFC=∠BOC=120°,又△ABC是等边三角形,∴点F与点O重合;(2)如图1,由(1)知∠BCN=∠ACN,∠CBM=∠ABM,∴⊙F是△ABC的内切圆,过点F作FW⊥AB于W,作FS⊥AC于S,则∠FWA=∠FSA=90°,FW=FS,∵∠A=60°,∴∠WFS=120°,∠ABC+∠ACB=120°,∵∠BCN=∠ACB,∠CBM=∠ABC,∴∠BCN+∠CBM=60°,∴∠BFC=∠EFD=120°,∴∠WFE=∠SFD,∴△FWE≌△FSD(ASA),∴EF=DF;(3)△DLJ的面积S改变,且≤S<,如图2,由(1)知△ABC是等边三角形,且点F是△ABC是内心和外心,∵=,=,∴BD⊥AC,且AD=CD=1,∴BD=,∠ADB=90°,∵F是△ABC的外心,∴DF=BD=,由旋转知∠ADB=∠GDH=90°,∠ADJ=∠FDI=m°,∵∠BFC=120°,∴∠DFI=∠A=60°,∴△FID∽△AJD,∴===,∴DI=DJ,则S=DI•DJ=DJ2,∴S随DJ的变化而变化,不是定值,当m=30时,DJ⊥AB,此时DJ=AD sin A=,S=×()2=;当m=60时,△ADJ是等边三角形,此时DJ=AD=1,S=×12=;由0<m<60知≤DJ<1,∴≤S<.。
2018-2019学年九(上)厦门市期末教学质量检测数学卷(满分150分;考试时间120分钟)一、选择题(本大题有10小题,每小题4分,共40分) 1.计算-5+6,结果正确的是( ).A.1B.-1C.11D.-112.如图1,在△ABC 中,∠C =90°,则下列结论正确的是( ).A. AB=AC +BCB.AB=AC·BCC. AB 2=AC 2+ BC 2D. AC 2=AB 2+BC 2 3.抛物线y=2(x -1)2-6的对称轴是( ).A.x =-6B.x =-1C. x =21D. x =14.要使分式11x 有意义,x 的取值范围是( ).A.x ≠0B. x ≠1C. x >-1D. x >1 5.下列事件是随机事件的是( ). A.画一个三角形,其内角和是360°B.投掷一枚正六面体骰子,朝上一面的点数小于7C.射击运动员射击一次,命中靶心D.在只装了红球的不透明袋子里,摸出黑球6.图2,图3分别是某厂六台机床十月份第一天和第二天生产 零件数的统计图,与第一天相比,第二天六台机床生产零件数的平均数与方差的变化情况是( ).A.平均数变大,方差不变B.平均数变小,方差不变C.平均数不变,方差变小D.平均数不变,方差变大7.地面上一个小球被推开后笔直滑行,滑行的距离要s 与时间t 的函 数关系如图4中的部分抛物线所示(其中P 是该抛物线的顶点) 则下列说法正确的是( ). A.小球滑行6秒停止 B.小球滑行12秒停止 C.小球滑行6秒回到起点 D.小球滑行12秒回到起点(图1)(图2)(图4)m m 生产的零件数(图3)8.在平面直角坐标系xOy 中,已知A (2,0),B (1,-1),将线段OA 绕点O 逆时针旋转,旋转角为α(0°<α<135°).记点A 的对应点为A 1,若点A 1与点B 的距离为6,则α为( ). A. 30° B.45° C.60° D.90°9.点C 、D 在线段AB 上,若点C 是线段AD 的中点,2BD >AD ,则下列结论正确的是( ).A. CD <AD - BDB. AB >2BDC. BD >ADD. BC >AD10.已知二次函数y=ax 2+bx +c (a >0)的图象经过(0,1),(4,0),当该二次函数的自变量分别取x 1、x 2 (0< x 1<x 2 <4)时,对应的函数值是y 1,y 2,且y 1=y 2,设该函数图象的对称轴是x =m ,则m 的取值范国是( ).A. 0<m <1B.1<m ≤2C.2<m <4D.0<m <4 二、填空题(本大题有6小题,每小题4分,共24分)11.投掷一枚质地均匀的正六面体酸子,投掷一次,朝上一面的点数为奇数的概率是______.12.已知x =2是方程x 2+ax -2=0的根,则a =______.13.如图5,已知AB 是⊙O 的直径,AB =2,C 、D 是圆周上的点,且 ∠CDB =30°,则BC 的长为______.14.我们把三边长的比为3:4:5的三角形称为完全三角形,记命题A : “完全三角形是直角三角形”.若命题B 是命题A 的逆命题,请写出命题B :____________________;并写出一个例子(该例子能判断命题B 是错误的) 15.已知AB 是⊙O 的弦,P 为AB 的中点,连接OA 、OP ,将△OPA 绕点O 旋转到△OQB . 设⊙O 的半径为1,∠AOQ =135°,则AQ 的长为______. 16.若抛物线y=x 2+bx (b >2)上存在关于直线y=x 成轴对称的两个点,则b 的取值范围 是______.三、解答题(本大题有9小题,共86分) 17.(本题满分8分) 解方程x 2-3x +1=018.(本题满分8分) 化简并求值:(1-12+x )÷2212+-x x ,其中x =2-1(图5)已知二次函数y=(x -1)2+n ,当x =2时,y =2.求该二次函数的解析式,并在平面直角坐标系中画出该函数的图象.20. (本题满分8分)如图,已知四边形ABCD 是矩形.(1)请用直尺和圆规在边AD 上作点E ,使得EB=EC . (保留作图痕迹)(2)在(1)的条件下,若AB =4,AD =6,求EB 的长.21.(本题满分8分)如图7,在△ABC 中,∠C =60°,AB =4.以AB 为直径画⊙O ,交边AC于点D . AD 的长为34,求证:BC 是⊙O 的切线.已知动点P 在边长为1的正方形ABCD 的内部,点P 到边AD 、AB 的距离分别为m 、n .(1)以A 为原点,以边AB 所在直线为x 轴,建立平面直角坐标系,如图①所示,当点P 在对角线AC 上,且m =41时,求点P 的坐标;(2)如图②,当m 、n 满足什么条件时,点P 在△DAB 的内部?请说明理由.23.(本题满分10分)小李的活鱼批发店以44元/公斤的价格从港口买进一批2000公斤的某品种活鱼,在运输过程中,有部分鱼未能存活,小李对运到的鱼进行随机抽查,结果如表一.由于市场调节,该品种活鱼的售价与日销售量之间有一定的变化规律,表二是近一段时间该批发店的销售记录.(1)请估计运到的2000公斤鱼中活鱼的总重量;(直接写出答案) (2)按此市场调节的观律,①若该品种活鱼的售价定为52.5元/公斤,请估计日销售量,并说明理由; ②考虑到该批发店的储存条件,小李打算8天内卖完这批鱼(只卖活鱼),且售价保持不变,求该批发店每日卖鱼可能达到的最大利润,并说明理由.(图②)已知P是⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有动点A、B(不与P,Q重合),连接AP、BP. 若∠APQ=∠BPQ.(1)如图10,当∠APQ=45°,AP=1,BP=22时,求⊙O的半径;(2)如图11,选接AB,交PQ于点M,点N在线段PM上(不与P、M重合),连接ON、OP,若∠NOP+2∠OPN=90°,探究直线AB与ON的位置关系,并证明.(图①) (图②)在平面直角坐标系xO y中,点A(0,2),B(p,q)在直线上, 抛物线m经过点B、C(p+4,q),且它的顶点N在直线l上.(1)若B(-2,1),①请在图12的平面直角坐标系中画出直线l与抛物线m的示意图;②设抛物线m上的点Q的模坐标为e(-2≤e≤0)过点Q作x轴的垂线,与直线l交于点H . 若QH=d,当d随e的增大面增大时,求e的取值范围(2)抛物线m与y轴交于点F,当抛物线m与x轴有唯一交点时,判断△NOF的形状并说明理由. yx –4–3–2–11234–4–3–2–11234O。
2018-2019学年安徽省合肥一六八教育集团九年级(上)第一次月考数学试卷一、选择题(本大题共10小题,共40分)1.下列函数不属于二次函数的是()A.y=(x﹣1)(x﹣2)B.y=(x+1)2C.y=2(x+3)2﹣2x2D.y=1﹣x22.抛物线y=3(x+1)2+2的顶点坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,﹣2)D.(﹣1,2)3.设点(﹣1,y1),(2,y2),(3,y3)是抛物线y=﹣2x2+1上的三点,则y1、y2、y3的大小关系为()A.y3>y2>y1B.y1>y3>y2C.y3>y1>y2D.y1>y2>y34.在同一坐标系中,作y=3x2+2,y=﹣3x2﹣1,y=x2的图象,则它们()A.都是关于y轴对称B.顶点都在原点C.都是抛物线开口向上D.以上都不对5.y=3(x﹣1)2+2与y轴的交点坐标是()A.(0,2)B.(0,5)C.(2,0)D.(5,0)6.在学校运动会上,初三(5)班的运动员掷铅球,铅球的高y(m)与水平距离x(m)之间函数关系式为y=﹣0.2x2+1.6x+1.8,则此运动员的成绩是()A.10m B.4m C.5m D.9m7.抛物线y=2(x﹣3)(x﹣5)的对称轴是直线()A.x=3B.x=5C.x=4D.x=88.在同一坐标系中一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A.B.C.D.9.二次函数y=ax2+bx+c的图象如图所示,且P=|a﹣b+c|+|2a+b|,Q=|a+b+c|+|2a﹣b|,则P、Q的大小关系是()A.P>Q B.P<Q C.P=Q D.无法确定10.已知如图在边长为2的正方形OABC中,直线m始终沿着与OB垂直的方向从点O平移到点B停止,速度是1,记直线m在正方形中扫过的区域面积为y,直线运动的时间为x,下列正确的反映y与x函数关系的图象是()A.B.C.D.二、填空题(本大题共4小题,共20分)11.二次函数y=x2+4x﹣1的最小值是.12.已知抛物线y=(x﹣1)2+1向右平移2个单位,再向上平移1个单位得到抛物线.13.若y=(m﹣1)x m2+2m﹣1是二次函数,则m的值是.14.如图,已知点A1,A2,…,A2011在函数y=x2位于第二象限的图象上,点B1,B2,…,B2011在函数y=x2位于第一象限的图象上,点C1,C2,…,C2011在y轴的正半轴上,若四边形OA1C1B1、C1A2C2B2,…,C2010A2011C2011B2011都是正方形,则正方形C2010A2011C2011B2011的边长为.三、解答题(总分90)15.(8分)若二次函数图象经过点A(﹣1,0),B(3,0),C(0,5)三点,求该二次函数解析式.16.(8分)用配方法求出二次函数y=x2﹣x﹣1的顶点坐标.17.(8分)若二次函数y=(m﹣1)x2+2x+1与x轴有交点,求m的取值范围.18.(8分)(1)请在右图的坐标系中画出函数y=x2﹣2x的大致图象;(2)根据图象回答x取何值的时候,y≥0.19.(10分)如图,有长为24米的篱笆,一面利用墙(墙的长度为10米)围成长方形养鸡场.试问:当长方形的长、宽各为多少米时,养鸡场的面积最大,最大面积是多少?20.(10分)已知二次函数y=﹣x2﹣2x+3的图象与x轴相交于A、B两点,与y轴交于C点(如图所示),点D在二次函数的图象上,且D与C关于对称轴对称,一次函数的图象过点B、D;(1)求点D的坐标;(2)求一次函数的解析式;(3)根据图象写出使一次函数值大于二次函数值的x的取值范围.21.(12分)某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商场管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第x天(1≤x≤30且x为整数)的销售量为y件.(1)直接写出y与x的函数关系式;(2)设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?22.(12分)数学活动课上,小君在平面直角坐标系中对二次函数图象的平移进行了研究.图①是二次函数y=(x﹣a)2+(a为常数)当a=﹣1、0、1、2时的图象.当a取不同值时,其图象构成一个“抛物线簇”.小君发现这些二次函数图象的顶点竟然在同一条直线上!(1)小君在图①中发现的“抛物线簇”的顶点所在直线的函数表达式为;(2)如图②,当a=0时,二次函数图象上有一点P(2,4).将此二次函数图象沿着(1)中发现的直线平移,记二次函数图象的顶点O与点P的对应点分别为O1、P1.若点P1到x轴的距离为5,求平移后二次函数图象所对应的函数表达式.23.(14分)如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出点A、B、C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长;②当m为何值时,四边形PEDF为平行四边形?③设△BCF的面积为S,求S与m的函数关系式,S是否有最大值?如果有,请求出;如果没有,说明理由.2018-2019学年安徽省合肥一六八教育集团九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,共40分)1.下列函数不属于二次函数的是()A.y=(x﹣1)(x﹣2)B.y=(x+1)2C.y=2(x+3)2﹣2x2D.y=1﹣x2【分析】首先把每一个函数式整理为一般形式,进而利用二次函数定义分析得出即可.【解答】解:A.y=(x﹣1)(x﹣2)=x2﹣3x+2,是二次函数,不合题意,故此选项错误;B.y=(x+1)2=x2+2x+1,是二次函数,不合题意,故此选项错误;C.y=2(x+3)2﹣2x2=12x+18,是一次函数,符合题意,故此选项正确;D.y=1﹣x2=﹣x2+1,是二次函数,不合题意,故此选项错误.故选:C.【点评】此题主要考查了二次函数的定义,正确把握定义是解题关键.2.抛物线y=3(x+1)2+2的顶点坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,﹣2)D.(﹣1,2)【分析】已知抛物线解析式为顶点式,可直接求顶点坐标.【解答】解:∵y=3(x+1)2+2为抛物线的顶点式,∴抛物线的顶点坐标为(﹣1,2).故选:D.【点评】本题考查了二次函数的性质.抛物线的顶点式y=a(x﹣h)2+k的顶点坐标是(h,k).3.设点(﹣1,y1),(2,y2),(3,y3)是抛物线y=﹣2x2+1上的三点,则y1、y2、y3的大小关系为()A.y3>y2>y1B.y1>y3>y2C.y3>y1>y2D.y1>y2>y3【分析】分别计算自变量为﹣1、2、3对应的函数值,然后比较函数值的大小即可.【解答】解:当x=﹣1时,y1=﹣2x2+1=﹣2×(﹣1)2+1=﹣1,当x=2时,y2=﹣2x2+1=﹣2×22+1=﹣7,当x=3时,y3=﹣2x2+1=﹣2×32+1=﹣17,所以y1>y2>y3.故选:D.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.4.在同一坐标系中,作y=3x2+2,y=﹣3x2﹣1,y=x2的图象,则它们()A.都是关于y轴对称B.顶点都在原点C.都是抛物线开口向上D.以上都不对【分析】从三个二次函数解析式看,它们都缺少一次项,即一次项系数为0,故对称轴x=0,对称轴为y轴.【解答】解:观察三个二次函数解析式可知,一次项系数都为0,故对称轴x=﹣=0,对称轴为y轴,都关于y轴对称.故选:A.【点评】本题考查了二次函数的图象的性质;用到的知识点为:二次函数的一次项系数为0,对称轴是y轴.5.y=3(x﹣1)2+2与y轴的交点坐标是()A.(0,2)B.(0,5)C.(2,0)D.(5,0)【分析】计算出自变量为0对应的函数值可得到抛物线与y轴的交点坐标.【解答】解:当x=0时,y=3(x﹣1)2+2=3(0﹣1)2+2=5,所以抛物线与y轴的交点坐标为(0,5).故选:B.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.6.在学校运动会上,初三(5)班的运动员掷铅球,铅球的高y(m)与水平距离x(m)之间函数关系式为y=﹣0.2x2+1.6x+1.8,则此运动员的成绩是()A.10m B.4m C.5m D.9m【分析】铅球落地才能计算成绩,此时y=0,即y=﹣0.2x2+1.6x+1.8=0,解方程即可.在实际问题中,注意负值舍去.【解答】解:由题意可知,把y=0代入解析式得:y=﹣0.2x2+1.6x+1.8=0,解得x1=9,x2=﹣1(舍去),即该运动员的成绩是9米.故选:D.【点评】本题考查二次函数的实际应用,搞清楚铅球落地时,即y=0,测量运动员成绩,也就是求x的值,此题为数学建模题,借助二次函数解决实际问题.7.抛物线y=2(x﹣3)(x﹣5)的对称轴是直线()A.x=3B.x=5C.x=4D.x=8【分析】根据题目中的函数解析式,可以将该函数解析式化为顶点式,从而可以写出对称轴,本题得以解决.【解答】解:∵抛物线y=2(x﹣3)(x﹣5)=2x2﹣16x+30=2(x﹣4)2﹣2,∴该抛物线的对称轴是直线x=4,故选:C.【点评】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.8.在同一坐标系中一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A.B.C.D.【分析】可先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数y=ax2+bx的图象相比较看是否一致.【解答】解:A、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b <0,正确;B、由抛物线可知,a>0,由直线可知,a<0,错误;C、由抛物线可知,a<0,x=﹣>0,得b>0,由直线可知,a<0,b<0,错误;D、由抛物线可知,a<0,由直线可知,a>0,错误.故选:A.【点评】本题主要考查了二次函数的性质和一次函数的性质,做题时要注意数形结合思想的运用,同学们加强训练即可掌握,属于基础题.9.二次函数y=ax2+bx+c的图象如图所示,且P=|a﹣b+c|+|2a+b|,Q=|a+b+c|+|2a﹣b|,则P、Q的大小关系是()A.P>Q B.P<Q C.P=Q D.无法确定【分析】由函数图象可以得出a<0,b>0,c=0,当x=1时,y=a+b+c>0,x=﹣1时,y=a ﹣b+c<0,由对称轴得出2a+b>0,通过确定绝对值中的数的符号后去掉绝对值再化简就可以求出P、Q的值.【解答】解:∵抛物线的开口向下,∴a<0,∵﹣>0,∴b>0,∵﹣>1,∴b+2a>0,当x=1时,y=a+b+c>0,x=﹣1时,y=a﹣b+c<0.p=﹣a+b﹣c+2a+b=a+2b﹣c.Q=a+b+c+b﹣2a=﹣a+2b+c,∴Q﹣P=﹣2a+2c>0∴P<Q,故选:B.【点评】本题考查了二次函数的图象与系数的关系,去绝对值,二次函数的性质.10.已知如图在边长为2的正方形OABC中,直线m始终沿着与OB垂直的方向从点O平移到点B停止,速度是1,记直线m在正方形中扫过的区域面积为y,直线运动的时间为x,下列正确的反映y与x函数关系的图象是()A.B.C.D.【分析】根据题意可以求得AC的长,从而可以求得各段对应的函数解析式,进而得到相应的函数图象,本题得以解决.【解答】解:∵正方形OABC的边长为2,∴对角线AC的长为4,当直线m从开始运动到与AC重合的过程中,y=(0≤x≤2),当直线m从AC运动到过点B时,y=(2×2)﹣=8﹣(4﹣x)2=﹣(4﹣x)2+8故选:C.【点评】本题考查动点问题的函数图象,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.二、填空题(本大题共4小题,共20分)11.二次函数y=x2+4x﹣1的最小值是﹣5.【分析】将二次函数y=x2+4x﹣1配方,即可得到最小值.【解答】解:y=x2+4x﹣1=x2+4x+4﹣5=(x+2)2﹣5,可见二次函数y=x2+4x﹣1的最小值是﹣5.故答案为:﹣5.【点评】此题考查了二次函数的最值,将一般式化为顶点式,即可直接得出二次函数的最小值.12.已知抛物线y=(x﹣1)2+1向右平移2个单位,再向上平移1个单位得到抛物线y=(x﹣3)2﹣2.【分析】先确定抛物线y=(x﹣1)2+1的顶点坐标为(1,1),再利用点平移的坐标变换规律,把点(1,1)平移后对应点的坐标为(3,2),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=(x﹣1)2+1的顶点坐标为(1,1),把点(1,1)向右平移2个单位,再向上平移1个单位得到对应点的坐标为(3,2),所以平移后的抛物线解析式为y=(x﹣3)2﹣2.故答案为y=(x﹣3)2﹣2.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.若y=(m﹣1)x m2+2m﹣1是二次函数,则m的值是﹣3.【分析】直接利用二次函数的定义分析得出答案.【解答】解:∵y=(m﹣1)x m2+2m﹣1是二次函数,∴m2+2m﹣1=2,m﹣1≠0,解得:m1=1(舍去),m2=﹣3.故答案为:﹣3.【点评】此题主要考查了二次函数的定义,正确把握定义是解题关键.14.如图,已知点A1,A2,…,A2011在函数y=x2位于第二象限的图象上,点B1,B2,…,B2011在函数y=x2位于第一象限的图象上,点C1,C2,…,C2011在y轴的正半轴上,若四边形OA1C1B1、C1A2C2B2,…,C2010A2011C2011B2011都是正方形,则正方形C2010A2011C2011B2011的边长为2011.【分析】根据正方形对角线平分一组对角可得OB1与y轴的夹角为45°,然后表示出OB1的解析式,再与抛物线解析式联立求出点B1的坐标,然后求出OB1的长,再根据正方形的性质求出OC1,表示出C1B2的解析式,与抛物线联立求出B2的坐标,然后求出C1B2的长,再求出C1C2的长,然后表示出C2B3的解析式,与抛物线联立求出B3的坐标,然后求出C2B3的长,从而根据边长的变化规律解答即可.【解答】解:∵OA1C1B1是正方形,∴OB1与y轴的夹角为45°,∴OB1的解析式为y=x联立,解得或,∴点B1(1,1),OB1==,∵OA1C1B1是正方形,∴OC1=OB1=×=2,∵C1A2C2B2是正方形,∴C1B2的解析式为y=x+2,联立,解得,或,∴点B2(2,4),C1B2==2,∵C1A2C2B2是正方形,∴C1C2=C1B2=×2=4,∴C2B3的解析式为y=x+(4+2)=x+6,联立,解得,或,∴点B3(3,9),C2B3==3,…,依此类推,正方形C2010A2011C2011B2011的边长C2010B2011=2011.故答案为:2011.【点评】本题考查了二次函数的对称性,正方形的性质,表示出正方形的边长所在直线的解析式,与抛物线解析式联立求出正方形的顶点的坐标,从而求出边长是解题的关键.三、解答题(总分90)15.(8分)若二次函数图象经过点A(﹣1,0),B(3,0),C(0,5)三点,求该二次函数解析式.【分析】根据A与B坐标设出二次函数解析式,把C坐标代入计算即可求出解析式.【解答】解:设二次函数解析式为y=a(x+1)(x﹣3),把(0,5)代入得:﹣3a=5,解得:a=﹣,则二次函数解析式为y=﹣(x+1)(x﹣3)=﹣x2+x+5.【点评】此题考查了待定系数法求二次函数解析式,以及二次函数的图象与性质,熟练掌握待定系数法是解本题的关键.16.(8分)用配方法求出二次函数y=x2﹣x﹣1的顶点坐标.【分析】根据配方法可以将题目中的函数解析式化为顶点式,从而可以解答本题.【解答】解:∵二次函数y=x2﹣x﹣1=,∴该函数的顶点坐标是:(1,﹣).【点评】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.17.(8分)若二次函数y=(m﹣1)x2+2x+1与x轴有交点,求m的取值范围.【分析】根据题意可以得到关于m的不等式组,从而可以求得m的取值范围,注意二次项系数m﹣1≠0.【解答】解:∵二次函数y=(m﹣1)x2+2x+1与x轴有交点,∴,解得,m≤2且m≠1,即m的取值范围是m≤2且m≠1.【点评】本题考查二次函数图象与系数的关系、抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质和不等式的性质解答.18.(8分)(1)请在右图的坐标系中画出函数y=x2﹣2x的大致图象;(2)根据图象回答x取何值的时候,y≥0.【分析】(1)根据二次函数图象的画法画出图象;(2)根据二次函数图象可直接求得.【解答】解:(1)(2)由二次函数图象可得:当x≥2,或x≤0时,y≥0.【点评】本题考查了抛物线与x轴的交点,利用二次函数的性质解决问题是本题的关键.19.(10分)如图,有长为24米的篱笆,一面利用墙(墙的长度为10米)围成长方形养鸡场.试问:当长方形的长、宽各为多少米时,养鸡场的面积最大,最大面积是多少?【分析】根据题意表示出长方形的长与宽,进而得出y与x的函数关系,再利用二次函数增减性得出答案.【解答】解:由题意可得:BC=xm,AB=m,则y=x×=﹣x2+12x=﹣(x2﹣24x)=﹣(x﹣12)2+72,∵墙长为10m,∴0<x≤10,∵a=﹣,∴x<12时,y随x的增大而增大,m2),故当x=10m时,y最大=70(此时AB=CD=7m.答:当长方形的长为10m、宽为7m时,养鸡场的面积最大,最大面积是70m2.【点评】此题主要考查了二次函数的应用,利用二次函数增减性得出其最值是解题关键.20.(10分)已知二次函数y=﹣x2﹣2x+3的图象与x轴相交于A、B两点,与y轴交于C 点(如图所示),点D在二次函数的图象上,且D与C关于对称轴对称,一次函数的图象过点B、D;(1)求点D的坐标;(2)求一次函数的解析式;(3)根据图象写出使一次函数值大于二次函数值的x的取值范围.【分析】根据二次函数的特点求出点C的坐标,再根据对称轴为x=﹣1,由抛物线的对称性得到点D的坐标;根据一次函数的特点列出方程组求出解析式.【解答】解:(1)由y=﹣x2﹣2x+3得到C(0,3),而对称轴为x=﹣1,由抛物线的对称性知:D(﹣2,3);(2)设过点B(1,0)、D(﹣2,3)的一次函数为y=kx+b∴⇒,∴一次函数的解析式为:y=﹣x+1.(3)当x<﹣2或x>1时,一次函数值大于二次函数值.【点评】本题综合考查一次函数与二次函数的图象的特点.利用待定系数法求出解析式.21.(12分)某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商场管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第x天(1≤x≤30且x为整数)的销售量为y件.(1)直接写出y与x的函数关系式;(2)设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?【分析】(1)根据销量=原价的销量+增加的销量即可得到y与x的函数关系式;(2)根据每天售出的件数×每件盈利=利润即可得到的W与x之间的函数关系式,即可得出结论.【解答】解:(1)由题意可知y=2x+40;(2)根据题意可得:w=(145﹣x﹣80﹣5)(2x+40),=﹣2x2+80x+2400,=﹣2(x﹣20)2+3200,∵a=﹣2<0,∴函数有最大值,∴当x=20时,w有最大值为3200元,∴第20天的利润最大,最大利润是3200元.【点评】此题主要考查了二次函数的应用,此题找到关键描述语,找到等量关系准确的列出方程或函数关系式是解决问题的关键.22.(12分)数学活动课上,小君在平面直角坐标系中对二次函数图象的平移进行了研究.图①是二次函数y=(x﹣a)2+(a为常数)当a=﹣1、0、1、2时的图象.当a取不同值时,其图象构成一个“抛物线簇”.小君发现这些二次函数图象的顶点竟然在同一条直线上!(1)小君在图①中发现的“抛物线簇”的顶点所在直线的函数表达式为y=x;(2)如图②,当a=0时,二次函数图象上有一点P(2,4).将此二次函数图象沿着(1)中发现的直线平移,记二次函数图象的顶点O与点P的对应点分别为O1、P1.若点P1到x轴的距离为5,求平移后二次函数图象所对应的函数表达式.【分析】(1)根据题意得出抛物线的顶点坐标,根据待定系数法即可求得;(2)根据平移的规律得出点O1的坐标为(3,1)或(﹣27,﹣9),从而求得解析式.【解答】解:(1)∵当a=﹣1时,抛物线的顶点为(﹣1,﹣),当a=0时,抛物线的顶点为(0,0),∴设直线为y=kx,代入(﹣1,﹣)得,﹣=﹣k,解得k=,∴“抛物线簇”的顶点所在直线的函数表达式为y=x,故答案为y=x.(2)由题意得:点P1的纵坐标为5或﹣5,∴抛物线沿着直线向上平移了1个单位或向下平移了9个单位,∴此时点O1的纵坐标为1或﹣9,代入直线y=x求得横坐标为3或﹣27,∴点O1的坐标为(3,1)或(﹣27,﹣9),∴平移后的二次函数的表达式为y=(x﹣3)2+1或y=(x+27)2﹣9.【点评】本题考查了待定系数法求一次函数的解析式,二次函数的图象与几何变换,求得平移后O1的顶点坐标是解题的关键.23.(14分)如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出点A、B、C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长;②当m为何值时,四边形PEDF为平行四边形?③设△BCF的面积为S,求S与m的函数关系式,S是否有最大值?如果有,请求出;如果没有,说明理由.【分析】(1)已知了抛物线的解析式,当y=0时可求出A,B两点的坐标,当x=0时,可求出C点的坐标.根据对称轴x=﹣可得出对称轴的解析式.(2)①PF的长就是当x=m时,抛物线的值与直线BC所在一次函数的值的差.可先根据B,C的坐标求出BC所在直线的解析式,然后将m分别代入直线BC和抛物线的解析式中,得出两函数的值的差就是PF的长;②根据直线BC的解析式,可得出E点的坐标,根据抛物线的解析式可求出D点的坐标,然后根据坐标系中两点的距离公式,可求出DE的长,然后让PF=DE,即可求出此时m的值;③利用S=S△BPF +S△CPF,进而结合二次函数最值求法得出答案.【解答】解:(1)令y=0,则﹣x2+2x+3=﹣(x+1)(x﹣3)=0,解得x=﹣1或x=3,则A(﹣1,0),B(3,0).抛物线的对称轴是:直线x=1.令x=0,则y=0,则C(0,3).综上所述,A(﹣1,0),B(3,0),C(0,3),抛物线的对称轴是x=1;(2)①设直线BC的函数关系式为:y=kx+b.把B(3,0),C(0,3)分别代入得:,解得:.所以直线BC的函数关系式为:y=﹣x+3.当x=1时,y=﹣1+3=2,∴E(1,2).当x=m时,y=﹣m+3,∴P(m,﹣m+3).在y=﹣x2+2x+3中,当x=1时,y=4.∴D(1,4)当x=m时,y=﹣m2+2m+3,∴F(m,﹣m2+2m+3)∴线段DE=4﹣2=2,线段PF=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m;②∵PF∥DE,∴当PF=ED时,四边形PEDF为平行四边形,由﹣m2+3m=2,解得:m1=2,m2=1(不合题意,舍去),因此,当m=2时,四边形PEDF为平行四边形;③设直线PF与x轴交于点M,由B(3,0),O(0,0),可得:OB=OM+MB=3,∵S=S△BPF +S△CPF即S=PF•BM+PF•OM=PF•(BM+OM)=PF•OB,∴S=×3(﹣m2+3m)=﹣m2+m=﹣(m2﹣3m)=﹣(m﹣)2+(0≤m≤3),故m=时,S有最大值为:.【点评】本题主要考查了二次函数的综合应用以及平行四边形的判定与性质、待定系数法求一次函数解析式等知识,根据二次函数解析式得出相关点的坐标和对称轴的解析式是解题的基础.。
2018—2019学年度第一学期第一次学科检测
九年级数学2018-10
(时间:120分钟总分:150分)
(注意:请在答题卷上答题,答在试卷上无效!)
第一部分基础题(100分)
一.选择题(每题3分,共12分)
1. (午练11T1变式) 一组数据-3,3,2,0,3,1的众数是()
A.-3 B.2 C.0 D.3
2. (午练10T2变式)一组数据3,5,7,m,n的平均数是7,则m,n的平均数是()
A.6 B.7 C.8 D.10
3. (午练7T2变式)如图,AB是⊙O的直径,点P是⊙O外一点,PO交⊙O于点C,连接BC、PA.若∠P=
36°,PA与⊙O相切,则∠B等于()
A.20°B.27°C.36°D.42°
第3题图第4题图第8题图第10题图
CB上任意一4.(课本P61T4变式)如图,AB是⊙O的直径,弦CD⊥AB,P是⌒
BD的度数是50°,则∠CPA的度数是()点(不与点C、D重合),若⌒
A.65°B.50°C.130°D.100°
二.填空题(每题3分,共18分)
5.(午练11T5变式) 已知一组由小到大排列的数据3、a、4、6的中位数为4,则a= .
6.(课本P102习题T1变式)某校九年级甲班40 名学生中,5 人13 岁,30 人
7. (课本P87练习T2变式) 用半径为18,圆心角为120 º的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为_________.
8.(课本P61T5变式)如图,AB是⊙O的直径,CD是⊙ O的弦,∠DCB=32°.则
9.(午练12T6)已知一组数据10,15,10,x,18,20的平均数为15,则这组数据的方差为.
10.(午练9T9变式) 如图,△ABC中,AC=AB=9,∠C=65°,以点A为圆心,AB
DE,若∠1=∠2,则⌒
DE的长(结果保留π)为.
长为半径画⌒
三.解答题(共70分)
11. (8分) (午练10T9变式)某射击队为了解运动员的年龄情况,作了一次年龄调查,根据射击运动员的年龄(单位:岁),绘制出如图的统计图.
(1)求m的值;
(3)求该射击队运动员的平均年龄;
(4)若该射击队有13岁运动员2人,则该射击队中14岁运动员有几人?
12.(8分)(午练3T12变式)如图,在平面直角坐标系中,A(0,4)、B(4,4)、C(6,2).
(1)点M的坐标为;
(2)判断点D(4,﹣3)与⊙M的位置关系.
14. (10分) (课本P87T3变式)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.
(1)以直线BC为轴,把△ABC旋转一周,求所得圆锥的底面圆周长.
(2)以直线AC为轴,把△ABC旋转一周,求所得圆锥的侧面积;
15. (10分) (午练12T10变式)在小明、小红两名同学中选拔一人参加2018年张家界市“经典诗词朗诵”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:
小明:80,85,82,85,83 小红:88,79,90,81,72.
回答下列问题:
(1)求小明和小红测试的平均成绩;(2)求小明和小红五次测试成绩的方差.
16. (12分) (午练7T12变式)如图,AB是⊙O的直径,AC为弦,∠BAC的平分线交⊙O于点D,过点D的切线交AC的延长线于点G.
求证:(1)DG⊥AG;
(2)AG+CG=AB.
17. (12分) (午练9T12变式) 如图,半圆O的直径AB=18,将半圆O绕点B 顺针旋转45°得到半圆O′,与AB交于点P.
(1)求AP的长.(2)求图中阴影部分的面积(结果保留π)
第二部分提高题(50分)
一.选择题(每题3分,共6分)
18.下列说法:(1)长度相等的弧是等弧,(2)相等的圆心角所对的弧相等,
(3)劣弧一定比优弧短,(4)半径是圆中最长的弦.其中正确的有()
A.1 个 B.2个C.3个D.4个19.若一组数据x1+1,x2+1,x3+1…x n+1的平均数为18,方差为2,则数据x1+2,x2+2,x3+2……,x n+2的平均数和方差分别是()
A.18,2 B.19,3 C.19, 2
D
.20,4
二.填空题(每题3分,共12分)
20.小明某学期的数学平时成绩80分,期中考试80分,期
末考试90分.若这学期数学成绩将平时、期中、期末成绩按3:3:4计入总
21.若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则
22.如图,⊙O经过五边形OABCD的四个顶点,若∠AOD=150°,∠A=65°,∠D=60°,则∠C= .
23.如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C 的坐标为.
三.解答题(共32分)
24.(10分) 如图,在⊙O中,点C是优弧ACB的中点,D、E分别是OA、OB 上的点,且AD=BE,弦CM、CN分别过点D、E.
(1)求证:CD=CE.
(2)求证:⌒
AM=⌒
BN
25. (12分)如图,△ABC内接于⊙O,CD是⊙O的直径,AB与CD交于点E,点P是CD延长线上的一点,AP=AC,且∠B=2∠P.
(1)求证:∠B=2∠PCA.
(2)求证:PA是⊙O的切线;
(3)若点B位于直径CD的下方,且CD平分∠ACB,试判断此时AE与BE的大小关系,并说明由.
备用图
26. (10分) 如图,在△ABC中,∠ACB=90°,经过点C的⊙O与斜边AB 相切于点P,AC=8,BC=6.
(1)当点O在AC上时,求证:2∠ACP=∠B;
(2)在(1)的条件下,求⊙O的半径.
(3)若圆心O在△ABC之外,则CP的变化范围是.
备用图。