2统计图表、数据的数字特征
- 格式:ppt
- 大小:3.28 MB
- 文档页数:23
高中必修二数学教案《数据的数字特征》教材分析在义务教育阶段,学生已经通过实例,学习了平均数、中位数、众数、极差、方差等,并能解决简单的实际问题。
(由于义务教育阶段《大纲》中对统计部分的要求与《标准》的要求相差较大,若是承接现行《大纲》的话,建议先补充《标准》中第三学段相应部分的内容。
)在这个基础上高中阶段还将进一步学习标准差,并在学习中不断地领悟它们各自的特点,在详尽的问题中依照情况有针对性地选择一些合适的数字特点。
学情分析在选择适当的数来分别表示这两组数据的离散程度时,学生会很自然地想到义务教育阶段时学习过的极差和方差。
在教学时,可以先让学生自主思考,选择适当的数来表示,学生经历分析数据、作出推断的过程,可以进一步体会统计对决策的作用。
教学目标1、通过实例,理解数据的数字特征:最值、平均数、中位数、百分位数、众数,理解不同数字特征的优势与不足。
2、会用求和符号表示平均数,掌握求和符号的性质。
3、能根据现实问题的需要选择适当的数字特征来表达数据信息,体会数字特征在分析数据时的重要作用,培养数学抽象能力、数学运算能力、数据分析素养。
教学重点平均数、中位数、中位数、众数、极差、方差、标准差的计算、意义和作用。
教学难点根据问题的需要,选择适当的数字特征来表达数据的信息。
教学方法讲授法、讨论法、练习法教学过程一、情境导学如下是某学校高一(1)班和高一(2)班某一次期中考试的语文成绩,试从不同的角度对两班成绩进行对比。
在日常生活中,当面对一组数据时,相比每一个观测值,有时我们更关心的是能反映这组数据特征的一些值。
例如,上述情境中的两个班的成绩,我们可以从最值、平均数、中位数、方差等角度进行比较。
二、学习新知1、最值一组数据的最值指的是其中的最大值与最小值,最值反映的是这组数最极端的情况。
一般地,最大值用max表示,最小值用min表示。
日常生活中,有时我们只关心数据的最值。
比如,高考部分科目实行“一年多考”,最终取的是多次考试成绩中的最大值;举重比赛中,选手有三次“试举”机会,其中成绩的最大值将计入总成绩;末位淘汰的比赛中,积分最小值对应的团体或个人将被淘汰出局;等等。
数字特征总结数字特征是指数据集中的数字变量或特征。
在数据分析和机器学习中,数字特征提供了对数据的量化描述,帮助我们理解数据的分布、趋势和关系。
本文将总结数字特征的常见统计量、分布和常见处理方法。
常见统计量均值(Mean)均值是一组数据的平均值,是最常用的统计量之一。
计算均值的公式如下:mean = (x1 + x2 + ... + xn) / n其中,x1, x2, …, xn 为给定的数据,n 为数据的个数。
中位数(Median)中位数是将一组数据从小到大排列后,位于中间位置的数值。
如果数据个数为奇数,则中位数为排序后的中间值;如果数据个数为偶数,则中位数为排序后中间两个数的平均值。
众数(Mode)众数是一组数据中出现次数最多的数值。
一个数据集可能存在多个众数,也可能没有众数。
方差(Variance)方差是一组数据与均值之间的差异程度的度量。
方差越大,数据分散度越大;方差越小,数据分散度越小。
计算方差的公式如下:variance = ((x1 - mean)^2 + (x2 - mean)^2 + ... + (xn - mean)^2) / n 其中,x1, x2, …, xn 为给定的数据,mean 为数据的均值,n 为数据的个数。
标准差(Standard Deviation)标准差是方差的平方根,用于衡量数据的离散程度。
标准差越大,数据越分散;标准差越小,数据越聚集。
计算标准差的公式如下:standard deviation = sqrt(variance)其中,variance 为数据的方差。
常见分布正态分布(Normal Distribution)正态分布是最常见的概率分布之一,具有钟形曲线的形状。
在正态分布中,均值、中位数和众数相等,分布呈对称性。
偏态分布(Skewed Distribution)偏态分布是指分布曲线不对称的概率分布。
正偏态分布的分布曲线右侧较长,左侧较短;负偏态分布的分布曲线左侧较长,右侧较短。
§11.2 统计图表、数据的数字特征、用样本估计总体会这样考 1.考查样本的频率分布(分布表、直方图、茎叶图)中的有关计算,样本特征数(众数、中位数、平均数、标准差)的计算.主要以选择题、填空题为主;2.考查以样本的分布估计总体的分布(以样本的频率估计总体的频率、以样本的特征数估计总体的特征数).1.统计数据(1)众数、中位数、平均数、极差、众数:在一组数据中,出现次数最多的数据叫作这组数据的众数.(可以没有或者多个). 中位数:将一组数据按大小依次排列,处在最中间位置的一个数据(或最中间两个数据的平均数).平均数:样本数据的算术平均数,即x =1n (x 1+x 2+…+x n ).(2)方差、标准差 方差()()()[]2222121x x x x x x nS n -++-+-=标准差S =1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2], 其中x n 是样本数据的第n 项,n 是样本容量,x 是平均数.标准差是反映总体波动大小的特征数,样本方差是标准差的平方.通常用样本方差估计总体方差,当样本容量接近总体容量时,样本方差很接近总体方差. 2.统计图表统计图表是表达和分析数据的重要工具,常用的统计图表有条形统计图、扇形统计图、折线统计图、茎叶图、频率分布直方图等.(1)当样本数据较少时,用茎叶图表示数据的效果较好,它不但可以保留所有信息,而且可以随时记录,给数据的记录和表示都带来方便. (2)在频率分布直方图中:①纵轴表示频率组距,②每小长方形的面积表示该组数据的频率或比例, ③各小长方形的面积之和等于1.3.用样本估计总体(1)通常我们对总体作出的估计一般分成两种,一种是用样本的频率分布估计总体的频率分布,另一种是用样本的数字特征估计总体的数字特征.(2)在频率分布直方图中,按照分组原则,再在左边和右边各加一个区间.从所加的左边区间的中点开始,用线段依次连接各个矩形的顶端中点,直至右边所加区间的中点,就可以得到一条折线,称之为频率折线图.4.利用频率分布直方图估计样本的数字特征(1)众数:最高那组的组中值.(2)平均数:每个小长方形的面积与每个组中值的乘积之和. (3)中位数:等分面积那条线的横坐标. [难点正本 疑点清源] 1.作频率分布直方图的步骤(1)求极差;(2)确定组距和组数;(3)将数据分组;(4)列频率分布表;(5)画频率分布直方图. 频率分布直方图能很容易地表示大量数据,非常直观地表明分布的形状.1.一个容量为20的样本,数据的分组及各组的频数如下:[10,20),2;[20,30),3;[30,40),x ;[40,50),5;[50,60),4;[60,70),2;则x =________;根据样本的频率分布估计,数据落在[10,50)的概率约为________. 答案 4 0.72.某中学为了解学生数学课程的学习情况,在3 000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3 000名学生在该次数学考试中成绩小于60分的学生数是____.答案 6003.如上图所示是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.(注:方差s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n 的平均数)答案 6.84.某雷达测速区规定:凡车速大于或等于70 km/h 的汽车视为“超速”,并将受到处罚,如图是某路段的一个检测点对200辆汽车的车速进行检测所得结果的频率分布直方图,则从上图中可以看出被处罚的汽车大约有的辆数为________. 答案 40题型一 频率分布直方图的绘制与应用例1 (1)某校从参加高一年级期中考试的学生中随机抽出60名学生,将其物理成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图,观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率,并补全这个频率分布直方图; (2)据此估计本次考试中的平均分和中位数(保留整数).思维启迪:利用各小长方形的面积和等于1求分数在[70,80)内的频率,再补齐频率分布直方图. 解 (1)设分数在[70,80)内的频率为x ,根据频率分布直方图,有(0.010+0.015×2+0.025+0.005)×10+x =1,可得x =0.3,所以频率分布直方图如图所示.(2)平均分为x =45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71(分).中位数为73 探究提高 频率分布直方图直观形象地表示了样本的频率分布,从这个直方图上可以求出样本数据在各个组的频率分布.根据频率分布直方图估计样本(或者总体)的平均值时,一般是采取组中值乘以各组的频率的方法.(2)从某小学随机抽取l00名同学,将他们的身高(单位:厘米)数据绘制成频率分布图(如上图).若要从身高在[120,130),[130,140),[l40,150]三组内的学生中,用分层抽样的方法选取30人参加一项活动,则从身高在[120,130)的学生中选取的人数应为 .答案:15题型二 茎叶图的应用例2 (1)甲、乙两名同学在5次数学考试中,成绩统计用茎叶图表示如图所示,若甲、乙两人的平均成绩分别用x 甲、x 乙表示,则下列结论正确的是( )A 、x x <甲乙;乙比甲成绩稳定B 、x x >甲乙;乙比甲成绩稳定C 、x x <甲乙;甲比乙成绩稳定D 、x x >甲乙;甲比乙成绩稳定答案及解析:D(2)某学校从高二甲、乙两个班中各选6名同掌参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如上图,其中甲班学生成绩的中位数数是81,乙班学生成绩的平均分为81,则成绩更稳定的班级为______.答案及解析:乙。
课时教案4课题:数据的数字特征一、教学分析在初中阶段,学生已经学习了平均数、中位数、众数、极差、方差与标准差等概念,它们都是一些统计量,反映了数据的集中趋势与离散程度。
在这个基础上高中阶段还将进一步学习标准差,并在学习中不断地体会它们各自的特点,在具体的问题中根据情况有针对性地选择一些合适的数字特征。
二、教学建议1、本节开始,可结合上一节茎叶图的相关内容,让学生计算初中已经学习过的统计量,让学生复习初中学习的统计量的内容,并能在这个过程中体会用不同的统计量刻画数据集中趋势的不同。
2、在选择适当的数来分别表示这两组数据的离散程度时,学生会很自然地想到义务教育阶段时学习过的极差和方差。
在教学时,可以先让学生自主思考,选择适当的数来表示,在此基础上,再鼓励他们积极交流,并认真观察、比较不同刻画方式之间的异同。
3、作为本节的结束,可安排教材的“动手实践”活动,让学生经历收集数据、整理数据、分析数据、作出推断的过程,进一步体会统计对决策的作用。
三、教学目标1、知识与技能(1)能结合具体情境理解不同数字特征的意义,并能根据问题的需要选择适当的数字特征来表达数据的信息。
(2)通过实例理解数据标准差的意义和作用,学会计算数据的标准差。
2、过程与方法在分析和解决具体实际问题的过程中,学会用恰当的统计量表示数据的方法,并能结合统计量对所给数据的分布情况作出合理的解释。
23、情感态度价值观通过对现实生活和其他学科中统计问题的分析和解决,体会用数学知识解决现实生活及各学科问题的方法,认识数学的重要性。
四、教学重点、难点教学重点:理解各个统计量的意义和作用,学会计算数据的标准差。
教学难点: 根据给定的数据,合理地选择统计量表示数据。
(一)课题引入数据的信息除了通过前面介绍的各种统计图表来加以整理和表达之外,还可以通过一些统计量来表述,也就是将多个数据“加工”为一个数值,使这个数值能够反映这组数据的某些重要的整体特征。
(二)探求新知请大家思考,初中时我们学习了几个统计量?它们在刻画数据时,各有什么样的优点和缺点?请大家结合下面问题的解决,对这个问题进行思考。