人教版九年级下数学周练试题(反比例函数和相似)
- 格式:doc
- 大小:214.50 KB
- 文档页数:4
专项训练四 反比例函数一、选择题1.(哈尔滨中考 )点 (2,- 4)在反比例函数 y = kx 的图象上,则下列各点在此函数图象上的是( )A . (2, 4)B . (- 1,- 8)C . (-2,- 4)D . (4,- 2)2.对于双曲线y = 1-m ,当 x > 0 时, y 随 x 的增大而减小,则 m 的取值范围为 ()x A . m > 0B . m >1C .m < 0D . m <1k3.(新疆中考 )已知 A(x 1,y 1),B(x 2,y 2 )是反比例函数 y = x (k ≠ 0)图象上的两个点,当 x 1< x 2 <0时, y 1> y 2,那么一次函数 y = kx - k 的图象不经过 ( )A .第一象限B .第二象限C .第三象限D .第四象限4. (聊城中考 )二次函数 y = ax 2+ bx +c(a , b ,c 为常数且 a ≠ 0)的图象如图所示,则一次函数y= ax +b 与反比例函数 y =cx 的图象可能是 ()5.在同一直角坐标系中,若正比例函数1k 2的图象没有公共点,y = k x 的图象与反比例函数y = x则 ()A . k 1+ k 2<0B .k 1+k 2>0C . k 1k 2<0D . k 1k 2>06.已知点 P(a ,b)是反比例函数1图象上异于点(- 1,- 1)的一个动点,则1 +1的值y = x1+ a 1+ b为 ( )31A . 2B . 1C.21D. 2的图象相交于 A 、 B 两点, BC ⊥ x 轴于点 C ,则7.如图,正比例函数 y = x 与反比例函数 y = x△ ABC 的面积为 ( )35 A . 1B .2C.2D.2k8. (昆明中考 )如图,直线 y =- x + 3 与 y 轴交于点 A ,与反比例函数 y = x (k ≠ 0)的图象交于点C ,过点 C 作 CB ⊥ x 轴于点 B , AO = 3BO ,则反比例函数的解析式为 ( )4 4 22 A . y = x B . y =- x C . y = x D . y =- x二、填空题9. (上海中考)已知反比例函数ky = x(k ≠ 0),如果在 个函数 象所在的每一个象限内,y 的随着x 的 增大而减小,那么k 的取 范 是________ .k10. (淮安中考)若点A(- 2,3)、 B(m ,- 6)都在反比例函数y = x(k ≠ 0)的 象上,m 的 是________.k11. ( 坊中考 )已知反比例函数y = x (k ≠ 0)的 象 点 (3,- 1), 当 1< y < 3 ,自 量 x的取 范 是 __________.12.某 合 路中, 源的 定 , 流I(A) 与 阻 R( Ω)成反比例.如 表示的是路中 流 I 与 阻 R 之 函数关系的 象,当 阻R 6Ω , 流 I ________A.第 12 第 13 第 1413. ( 口中考 )如 ,四 形 ABCD 正方形,点 A 、B 在 y 上,点 C 的坐 (- 3,1),反比例函数 y = k的 象 点 D , k 的 ________.x414.★ ( 水中考 )如 ,一次函数 y =- x + b 与反比例函数y = x (x > 0)的 象交于 A , B 两点, 与 x 、 y 分 交于 C ,D 两点, 接 OA ,OB , A 作 AE ⊥x 于点 E ,交 OB 于点 F , 点 A 的横坐 m.(1)b = ________(用含 m 的代数式表示 );(2)若 S △ OAF + S 四边形 EFBC =4 , m 的 是 ________.三、解答k15. (西宁中考 )如 ,一次函数y = x +m 的 象与反比例函数y =x 的 象交于 A , B 两点,且与 x 交于点 C ,点 A 的坐 (2, 1).(1)求 m 及 k 的 ;0< x + m ≤ k的解集.(2)求点 C 的坐 ,并 合 象写出不等式x16.某数学 外活 小 在做气体 , 得 p(Pa)与体 V(cm 3)之 有下列 数据:p(Pa)⋯ 1 2 3 4 5 ⋯ V(cm 3)⋯6321.51.2⋯根据表中提供的信息,回答下列:(1)猜想 p 与 V 之 的关系,并求出函数关系式; (2)当气体的体 是12cm 3 , 是多少?k 17. ( 阳中考 )如 ,在平面直角坐 系中,菱形 OBCD 的 OB 在 x 上,反比例函数y = x(x > 0)的 象 菱形 角 的交点 A ,且与 BC 交于点 F ,点 A 的坐 (4, 2).(1)求反比例函数的表达式;(2)求点 F 的坐 .k + 118.★如 ,已知直 y = x + k 和双曲 y = x (k 正整数 )交于 A , B 两点.(1)当 k =1 ,求 A , B 两点的坐 ;(2)当 k =2 ,求△ AOB 的面 ;2 ,△ OAB 的面 S ⋯依此 推,当k =n(3)当 k =1 ,△ OAB 的面 S ,当 k =12,△ OAB 的面S n ,若 S 1+ S 2+⋯+ S n =1332,求 n 的 .参考答案1. D 2.D3.B4.C5.C1图象上异于点 (-1,- 1)的一个动点,∴ ab = 1,6. B 解析:∵点 P(a , b)是反比例函数 y = x∴ 1+ 1= 1+ b + 1+ a = 2+a + b =2+ a + b = 1.1+ a 1+ b ( 1+ a )( 1+ b ) ( 1+ a )( 1+ b ) 1+ a +b + ab 2+ a +b7. A 解析:∵正比例函数1的图象相交于A 、B 两点,∴点 A 与点 By = x 与反比例函数 y = x关于原点对称,∴ S △ AOC = S △ BOC .∵ BC ⊥ x 轴,∴ S △ ABC = 2S △ BOC = 2× 1× |1|=1.2 8. B 解析:∵直线 y =- x +3 与 y 轴交于点 A ,∴点 A 的坐标为 (0, 3),即 OA = 3.∵AO = 3BO ,∴ OB = 1,∴点 C 的横坐标为- 1.∵点 C 在直线 y =- x + 3 上,∴点 C 的坐标为 (- 1, 4), ∴反比例函数的解析式为y =- 4.x9. k > 0 10.1 11.- 3<x <- 1 12.1 13.614. (1)m + 4 (2)2 解析: (1) ∵点 A 在反比例函数 4m y = (x > 0)的图象上,且点 A 的横坐标4 4 x为 m ,∴点 A 的纵坐标为 m ,即点 A 的坐标为 m , m .令一次函数 y =- x + b 中 x = m ,则 y =- m + b ,∴- m + b = 4,即 b = m + 4.mm(2)作 AM ⊥OD 于 M ,BN ⊥ OC 于 N.∵反比例函数4,一次函数 y =- x + b 都是关于直线 yy = x= x 对称,∴ AD = BC ,OD = OC ,DM = AM = BN = CN.记△ AOF 的面积为 S ,则△ OEF 的面积为 2- S ,四边形 EFBC 的面积为 4- S ,△ OBC 和△ OAD 的面积都是 6- 2S ,△ ADM 的面积为 6-2S- 2= 4- 2S = 2(2-S),∴ S △ADM = 2S △ OEF ,∴ DM = 2EF ,∴ EF =1BN ,∴ OE = 1ON ,∴点 B 的横坐2 2 2标为 2m.点 B 的坐标为 2m , ,代入直线 y =- x +m + 4 ,得 2=- 2m + m + 4,整理得 m 2= 2.∵ mm mm m > 0,∴ m = 2.15.解: (1) ∵点 A(2,1) 在一次函数 y = x +m 的图象上,∴ 2+m = 1,∴ m =- 1.∵点 A(2, 1) 在反比例函数 y =kx 的图象上,∴ k2= 1,∴ k = 2;(2)∵一次函数解析式为 y =x - 1,令 y = 0,得 x = 1,∴点 C 的坐标是 (1,0).由图象可知不等式组 0< x + m ≤ kx 的解集为 1< x ≤ 2.616.解: (1) p 与 V 成反比例, p =V ;(2)当 V = 12cm 3 时, p = 0.5Pa.k17.解: (1) ∵反比例函数 y = x 的图象经过点 A ,点 A 的坐标为 (4,2),∴ k = 2× 4= 8,∴反比8例函数的解析式为y = ;(2)过点 A 作 AM ⊥ x 轴于点 M ,过点 C 作 CN ⊥ x 轴于点 N ,由题意可知CN = 2AM = 4,ON =2OM = 8,∴点 C 的坐标为 (8 ,4).设 OB =x ,则 BC = x ,BN = 8- x.在 Rt △ CNB 中, x 2- (8- x)2= 42,解得 x =5,∴点 B 的坐标为 (5,0).设直线 BC 的函数表达式为 y = ax + b ,∴ 5a + b = 0, 解4 4 20 8a + b = 4, a = 3, y = 4 x - 20.根据题意得方程组 y = 3x - 3 , 得 ∴直线 BC 的解析式为 解此方程组得20, 3 3 8,b =- 3 y = x x = 6, x =- 1, 44 或∵点 F 在第一象限,∴点 F 的坐标为 F 6, 3 .y = 3y =- 8.18.解:(1) 当 k = 1 ,直 y = x + k 和双曲 y =k +1化 y = x + 1 和 y =2,解方程 y = x +1,2xxy = xx =- 2, x = 1,得∴A 点的坐 (1, 2), B 点的坐 (- 2,- 1) ;y =- 1, y =2,,直 y = x + k 和双曲 y =k + 1化 y = x +2 和 y =3,解方程y = x + 2,(2)当 k =23得xxy = xx =- 3, x = 1,∴ A 点的坐 (1 ,3), B 点的坐 (- 3,- 1).又∵直 AB( y = x + 2)与 yy =- 1, y = 3,11的交点 (0, 2),∴ S △ AOB = 2× 2× 1+ 2× 2× 3= 4;(3)当 k =1 , S 1= 1× 1× (1+2) =3,当 k = 2 , S 2=1× 2× (1+ 3)= 4,⋯当 k = n , S n =12 2 22n(1+ n + 1)=1n 2+ n.∵ S 1+ S 2+⋯+ S n = 133,∴ 1× (12+ 22+ 32+⋯+ n 2)+(1+ 2+ 3+⋯+ n)= 133,2 2 22 整理得 1× n ( n +1)( 2n + 1) + n (n + 1)=133,解得 n = 6.2 6 22。
人教版九年级数学下第二十六章反比例函数检测题含答案解析(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.在下列选项中,是反比例函数关系的为( )A.在直角三角形中,30°角所对的直角边与斜边之间的关系B.在等腰三角形中,顶角与底角之间的关系C.圆的面积与它的直径之间的关系D.面积为20的菱形,其中一条对角线与另一条对角线之间的关系 2.(2014·重庆中考)如图所示,反比例函数6y x=-在第二象限的图象上有两点A 、B ,它们的横坐标分别为-1、-3,直线AB 与x 轴交于点C ,则△AOC 的面积为( ) A.8 B.10 C.12 D.24第2题图3.(2015·乌鲁木齐中考)如图,在直角坐标系分别在x 轴和y 轴上,=,∠AOB 的平分线与OA 的垂直平分线交于点C ,与AB 交于点D ,反比例函数y =(k ≠0)的图象过点C ,当以CD 为边的正方形的面积为时,k 的值是( ) A.2B.3C.5D.74.当k >0,x <0时,反比例函数xk y =的图象在( )A.第一象限B.第二象限C.第三象限D.第四象限 5.(2014·江西中考)已知反比例函数ky x=的图象如图所示,则二次函数2224y kx x k =-+的图象大致为( )第3题图第5题图6.若反比例函数1232)12(---=k kx k y 的图象位于第二、四象限,则k 的值是( )A. 0B.0或1C.0或2D.47.(2015·昆明中考)如图,直线y =-x +3与y 轴交于点A ,与反比例函数(0)ky k x=≠的图象交于点C ,过点C 作CB ⊥x 轴于点B ,AO =3BO ,则反比例函数的解析式为( ) A.4y x = B.4y x =- C.2y x = D.2y x=-第7题图 8.已知点、、都在反比例函数4y x=的图象上,则的大小关系是( )A.B. C.D.9.正比例函数的图象与反比例函数1x的图象相交于A 、C 两点,AB ⊥x 轴于点B ,CD ⊥x 轴于点D (如图所示),则四边形ABCD 的面积为( ) A.1 B.32C.2D.5210.如图所示,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数y=(x >0)的图象与△ABC 有公共点,则k 的取值范围是( ) A.2≤k ≤9 B.2≤k ≤8 C.2≤k ≤5D.5≤k ≤8二、填空题(每小题3分,共24分)11.(2015·湖南益阳中考)已知y 是x 的反比例函数,当x > 0时,y 随x 的增大而减小.请写出一个..满足以上条件的函数解析式 . 12.点P 在反比例函数(k ≠0)的图象上,点Q (2,4)与点P 关于y 轴对称,则反比例函数的解析式为 .13.(2015·河南中考)如图,直线y =kx 与双曲线y =(x >0)交于点A (1,a ),则k = .14.若反比例函数xk y 3-=的图象位于第一、三象限内,正比例函数x k y )92(-=的图象过第二、四象限,则k 的整数值是________. 第13题图 15.现有一批救灾物资要从A 市运往B 市,如果两市的距离为500千米,车速为每小时千米,从A 市到B 市所需时间为小时,那么与之间的函数解析式为_________,是的________函数.16.如图所示,点A 、B 在反比例函数(k >0,x >0)的图象上,过点A 、B 作x 轴的垂线,垂足分别为M 、N ,延长线段AB 交x 轴于点C , 若OM =MN =NC ,△AOC 的面积为6,则k 的值为 . 17.已知反比例函数4y x=,则当函数值时,自变量x 的取值范围是___________.18.在同一直角坐标系中,正比例函数x k y 1=的图象与反比例函数xk y 2=的图象有公共点,则21k k 0(填“>”、“=”或“<”).三、解答题(共46分)19.(6分)已知一次函数kx y =与反比例函数xy 3=的图象都经过点A (m ,1).求: (1)正比例函数的解析式;(2)正比例函数与反比例函数的图象的另一个交点的坐标. 20.(6分)如图所示,正比例函数12y x =的图象与反比例函数ky x=(0)k ≠在第一象限的图象交于点A ,过点A 作x 轴的垂线,垂足为M ,已知△的面积为1.(1)求反比例函数的解析式;(2)如果点B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且点B 的横坐标为1,在x 轴上求一点P ,使PA PB +最小.21.(6分)如图所示是某一蓄水池的排水速度h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的解析式;(3)如果要6 h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量是,那么水池中的水要用多少小时排完?22.(7分)(2015·山东聊城中考)已知反比例函数y =(m为常数,且m5).(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围;(2)若其图象与一次函数y =x+1图象的一个交点的纵坐标是3,求m的值.23.(7分)已知反比例函数y=(k为常数,k≠1).(1)其图象与正比例函数y=x的图象的一个交点为P,若点P的纵坐标是2,求k的值;(2)若在其图象的每一支上,y随x的增大而减小,求k的取值范围;(3)若其图象的一支位于第二象限,在这一支上任取两点A(x1,y1)、B(x2,y2),当y1>y2时,试比较x1与x2的大小.24.(7分)(2015·呼和浩特中考)如图,在平面直角坐标系中A点的坐标为(8,y),AB ⊥x轴于点B,sin∠OAB=,反比例函数y=的图象的一支经过AO的中点C,且与AB交于点D.(1)求反比例函数解析式;(2)若函数y=3x与y=的图象的另一支交于点M,求三角形OMB与四边形OCDB的面积的比. 第24题图25.(7分)制作一种产品,需先将材料加热达到60 ℃后,再进行操作.设该材料温度为y (℃),从加热开始计算的时间为x (min ).据了解,当该材料加热时,温度y 与时间x 成一次函数关系;停止加热进行操作时,温度y 与时间x 成反比例关系(如图所示).已知该材料在操作加热前的温度为15 ℃,加热5 min 后温度达到60 ℃. (1)分别求出将材料加热和停止加热进行操作时,y 与x 的函数解析式;(2)根据工艺要求,当材料的温度低于15 ℃时,须停止操作,那么从开始加热到停止 操作,共经历了多少时间?第二十六章 反比例函数检测题参考答案1.D2.C 解析: ∵ 点A 、B 都在反比例函数的图象上,∴ A (-1,6),B (-3,2).设直线AB 的解析式为0)(y kx b k =+≠,则6,23,k b k b =-+⎧⎨=-+⎩解得2,8,k b =⎧⎨=⎩∴ 直线AB 的解析式为28y x =+,∴ C (-4,0).在△AOC 中,OC =4,OC 边上的高(即点A 到x 轴的距离)为6,∴ △AOC 的面积14612.2=⨯⨯=点拨:在平面直角坐标系中求三角形的面积时,一般要将落在坐标轴上的一边作为底. 3. D 解析:设OA =3a ,则OB =4a ,设直线AB 的解析式是y =mx +n (m ≠0), 根据题意得:解得:则直线AB 的解析式是y =-x +4a .∵ OD 是∠AOB 的平分线,∴直线OD 的解析式是y =x . 根据题意得:解得:则点D 的坐标是 .又OA 的垂直平分线的解析式是x =a ,则点C 的坐标是 .∵ 点C 在反比例函数y =的图象上,∴ k =.∵ 以CD 为边的正方形的面积为,∴ 2=,∴ =,∴ k =×=7. 4.C 解析:当时,反比例函数的图象在第一、三象限.当时,反比例函数的图象在第三象限,所以选C.5.D 解析:由反比例函数的图象可知,当1x =-时,1y >,即1k <-,所以在二次函数2224y kx x k =-+中,20k <,则抛物线开口向下,对称轴为414x k k-=-=,则110k-<<,故选D.6.A 解析:因为反比例函数的图象位于第二、四象限,所以,即.又,所以或(舍去).所以,故选A.7. B 解析:当x =0时,y =-x +3=3,则点A 的坐标为(0,3),所以OA =3,BO =1.当x =-1时,y =-x +3=4,则点C 的坐标为(-1,4),把x =-1,y =4代入ky x=中,求出k =-4,所以反比例函数的解析式是4y x=-. 8.D 解析:因为反比例函数4y x=的图象在第一、三象限, 且在每个象限内y 随x 的增大而减小,所以. 又因为当时,,当时,,所以,,故选D.9.C 解析:联立方程组 得A (1,1),C ().所以,所以.10. A 解析:当反比例函数图象经过点C 时,k =2;当反比例函数图象与直线AB 只有一个交点时,令-x +6=,得x 2-6x +k =0,此时方程有两个相等的实数根,故Δ=36-4k =0,所以k =9,所以k 的取值范围是2≤k ≤9,故选A.11.1y x =(不唯一) 解析:只要使比例系数大于0即可.如1y x =,答案不唯一.12. 8y x=-解析:设点P (x,y ),∵ 点P 与点Q (2,4)关于y 轴对称,∴ P (-2,4), ∴ k=xy=-2×4=-8.∴8y x=-. 13. 2 解析:把点A (1,a )代入y =(x >0)得a =2,再把点A (1,2)代入y =kx 中得k =2.14.4 解析:由反比例函数xk y 3-=的图象位于第一、三象限内,得,即.又正比例函数x k y )92(-=的图象过第二、四象限,所以,所以.所以的整数值是4. 15.反比例16. 4 解析:设点A (x ,),∵ OM =MN =NC ,∴ AM =,OC =3x .由S △AOC =OC ·AM =·3x ·=6,解得k =4. 17.或18.>19.解:(1)因为反比例函数xy 3=的图象经过点A (m ,1),所以将A (m ,1)代入xy 3=中,得m =3.故点A 坐标为(3,1). 将A (3,1)代入kx y =,得31=k ,所以正比例函数的解析式为3x y =. (2)由方程组⎪⎩⎪⎨⎧==,3,3xy x y 解得所以正比例函数与反比例函数的图象的另一个交点的坐标为(-3, -1). 20.解:(1) 设A 点的坐标为(a ,b ),则kb a =.∴ ab k =. ∵ 112ab =,∴ 112k =.∴ 2k =.∴ 反比例函数的解析式为2y x=.(2) 由⎪⎪⎩⎪⎪⎨⎧==x y xy 212, 得或 ∴ A 为.设A 点关于x 轴的对称点为C ,则C 点的坐标为. 如要在x 轴上求一点P ,使P A+PB 最小,即最小,则P 点应为BC 和x 轴的交点,如图所示. 令直线BC 的解析式为y mx n =+. ∵ B 为(1,2),∴2,12.m n m n =+⎧⎨-=+⎩∴3,5.m n =-⎧⎨=⎩∴ BC 的解析式为35y x =-+.当0y =时,53x =.∴ P 点坐标为.21.分析:(1)观察图象易知蓄水池的蓄水量; (2)因为与之间是反比例函数关系,所以可以设,依据图象上点(12,4)的坐标可以求得与之间的函数解析式.(3)求当h时的值.(4)求当h时,t的值.解:(1)蓄水池的蓄水量为12×4=48().(2)函数的解析式为.(3).(4)依题意有,解得(h).所以如果每小时排水量是5 ,那么水池中的水要用9.6 h排完.22. 解:(1)∵在反比例函数y =图象的每个分支上,y随x的增大而增大,∴m5<0,解得m<5.(2)当y=3时,由y=x+1,得3=x+1,解得x= 2.∴反比例函数y =图象与一次函数y =x+1图象的交点坐标是(-2,3), ∴3=,解得m= 1.23.分析:(1)显然P的坐标为(2,2),将P(2,2)代入y=即可.(2)由k-1>0得k>1.(3)利用反比例函数的增减性求解.解:(1)由题意,设点P的坐标为(m,2),∵点P在正比例函数y=x的图象上,∴ 2=m,即m=2.∴点P的坐标为(2,2).∵点P在反比例函数y=的图象上,∴ 2=,解得k=5.(2)∵在反比例函数y=图象的每一支上,y随x的增大而减小,∴k-1>0,解得k>1.(3)∵反比例函数y=图象的一支位于第二象限,∴在该函数图象的每一支上,y随x的增大而增大.∵点A(x1,y1)与点B(x2,y2)在该函数的第二象限的图象上,且y1>y2,∴x1>x2.点拨:反比例函数的图象和性质是解反比例函数题目的基础.24. 解:(1)∵A点的坐标为(8,y),∴OB=8.∵ sin∠OAB =∴OA=10,AB=6.∵C是OA的中点,且在第一象限,∴C(4,3).把点C(4,3)的坐标代入y =,得k=12,∴反比例函数的解析式为y =.(2)解方程组3,,12y xyx==⎧⎪⎨⎪⎩得1212,,6, 6.22x xy y==-==-⎧⎧⎨⎨⎩⎩∵M是直线与双曲线另一支的交点,∴M (2,6).∴=OB|6|=×8×6=24.∵D在反比例函数y =的图象上,且D点的横坐标为8,∴D,即BD =.∴=×8×3+·DB·4=12+××4=12+3=15.∴=.25.解:(1)当时,为一次函数,设一次函数解析式为,由于一次函数图象过点(0,15),(5,60),所以解得所以. 当时,为反比例函数,设函数解析式为,由于图象过点(5,60),所以.综上可知y 与x 的函数解析式为⎪⎩⎪⎨⎧≥<≤+=).5(300),50(159x xx x y (2)当y =15时,,所以从开始加热到停止操作,共经历了20 min.。
初中数学人教版九年级下学期反比例函数练习题一、单选题1.下列各式中不是反比例函数关系的是()A. B. C. () D.2.下列命题正确的是()A. 方程x2-4x+2=0无实数根;B. 两条对角线互相垂直且相等的四边形是正方形C. 甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是D. 若是反比例函数,则k的值为2或-1。
3.在中, 是的( ).A. 一次函数B. 反比例函数C. 正比例函数D. 既不是正比例函数,也不是反比例函数4.下列问题中,两个变量成反比例的是()A. 长方形的周长确定,它的长与宽;B. 长方形的长确定,它的周长与宽;C. 长方形的面积确定,它的长与宽;D. 长方形的长确定,它的面积与宽.5.如图,反比例函数的图象与边长为5的等边△AOB的边OA,AB分别相交于C,D 两点,若OC=2BD,则实数k的值为()A. B. C. D.6.如图,一次函数y1=x-1与反比例函数y= 的图像交于点A(2,1),B(-1,-2),则使y1>y2的x的取值范围是().A. x>2B. x>2或-1<x<0C. -1<x<2D. x>2或x<-17.下列函数中y是x的反比例函数的是()A. y=B. xy=8C. y=D. y=8.若函数y=(m2-3m+2)x|m|-3是反比例函数,则m的值是().A. 1B. -2C. ±2D. 29.若y是x的反比例函数,那么x是y的().A. 正比例函数B. 一次函数C. 反比例函数D. 二次函数10.已知函数y=x-5,令x=,1,,2,,3,,4,,5,可得函数图象上的十个点.在这十个点中随机取两个点P(x1,y1),Q(x2,y2),则P,Q两点在同一反比例函数图象上的概率是()A. B. C. D.11.若反比例函数y=(2m﹣1)的图象在第二,四象限,则m的值是()A. ﹣1或1B. 小于的任意实数C. ﹣1D. 不能确定12.下列哪个等式中的y是x的反比例函数()A. y=﹣B. yx=﹣C. y=5x+6D.13.下列函数中,y与x的反比例函数是()A. x(y-1)=1B. y=C. y=D. y=14.下列函数中,是反比例函数的为()A. y=2x+1B.C.D.15.下列函数中,反比例函数是()A. y=x-1B. y=C. y=x2+3x+1D. y=二、填空题16.下列函数中是反比例函数的有________ (填序号).①y=-;②y=-;③y=;④;⑤y=x﹣1;⑥;⑦y=(k为常数,k≠0)17.请写一个图象在第二、四象限的反比例函数解析式:________ .18.如果函数是反比例函数,那么k=________19.已知y=是反比例函数,那么k的值是________ .20.若y=(m+3)x m﹣5是反比例函数,则m满足的条件是________ .三、解答题21.反比例函数y=(m-2)x2m+1的函数值为3时,求自变量x的值.22.判断函数y=﹣是否属于反比例函数,并说明理由.23.如果函数y=(a﹣1)x a的图象是双曲线,那么其图象位于哪两个象限?24.计划修建铁路1200km,试写出铺轨天数y(d)与每天铺轨量x(km/d)之间的函数关系式,并判断该函数是否是反比例函数.25.计划修建铁路1200km,试写出铺轨天数y(天)与每天铺轨量x(km)之间的函数关系式,并判断该函数是否是反比例函数.答案部分一、单选题1.【答案】D2.【答案】C3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】B8.【答案】B9.【答案】C 10.【答案】B 11.【答案】C 12.【答案】B13.【答案】D 14.【答案】C 15.【答案】D二、填空题16.【答案】②③④⑦ 17.【答案】y=-18.【答案】-2 19.【答案】-2 20.【答案】4三、解答题21.【答案】解答: 由反比例函数y=(m-2)x2m+1,得2m+1=-1.解得m-1,由比例函数y=-3x-1的函数值为3,得-3x-1=3.解得x=-122.【答案】解:函数y=﹣不是反比例函数.理由:∵形如y=(k为常数,k≠0)的函数称为反比例函数,∴函数y=﹣不是反比例函数.23.【答案】解:∵函数y=(a﹣1)x a的图象是双曲线,∴a=﹣1,∴a﹣1=﹣2,∵﹣2<0,∴其图象位于第二、第四两个象限.24.【答案】解:∵铺轨天数=铁路长÷每天铺轨量,∴y=,y是x的反比例函数.25.【答案】,y是x的反比例函数.。
人教版九年级下册数学26.1.1反比例函数同步训练一、单选题1.下列关系式中,y 是x 的反比例函数的是( )A .y =3xB .y =5x +1C .1y x -=-D .y =x 2﹣32.下列函数:①y =﹣2x ;②y =12x -;③y =x ﹣1;④y =5x 2+1,是反比例函数的个数有( ) A .0个 B .1个 C .2个 D .3个3.已知点()5,m -在反比例函数10y x =的图象上,则m 的值是( ) A .50 B .2 C .2- D .50-4.如果一个三角形的面积为10,底边长为x ,底边上的高为y ,则y 与x 的函数表达式为( ) A .y =10xB .y =5xC .y =20xD .y =20x 5.函数()221ay a x -=-是反比例函数,则a 的值是( )A .1-B .1C .±1D .6.若(3)m m y x -=是反比例函数,则m 满足的条件是( ) A .m≠0 B .m=3 C .m=3或m=0 D .m≠3,m≠0 7.反比例函数12y x =-的比例系数是( ) A .-1B .-2C .12-D .12二、填空题 8.如果函数2m y x -=为反比例函数,则m 的值是_____.9.点(2,3)___双曲线6y x =的图象上.(填“在”或“不在”) 10.已知反比例函数k y x=的图像经过点(1,3)-,则k 的值为________. 11.已知关于x 的反比例函数2aa y x =经过点(1,)b ,则b =_______. 12.点(3,)a 在反比例函数6y x=-的图象上,则a 的值为_________. 13.若正比例函数2y kx =与反比例函数()0k y k x =≠的图象交于点(),1A m ,则k 的值是____________. 14.当m =________时,函数231(3)m m y m x +-=+是反比例函数.三、解答题15.下列哪些式子表示y 是x 的反比例函数?为什么?(1)13xy =-; (2)5y x =-; (3)25y x -=; (4)2a y x=(a 为常数,0a ≠).16.已知y 与x 的函数解析式是y =62x -, (1)求当x =4时,函数y 的值;(2)求当y =﹣2时,函数自变量x 的值.17.已知:12y y y =+,1y 与1x +成正比例,2y 与x 成反比例.当1x =时,7y =;当3x =时,4y =.求y 与x 的函数解析式.18.函数y=(m ﹣1)21mm x --是反比例函数(1)求m 的值(2)判断点(12,2)是否在这个函数的图象上.参考答案1.C2.C3.C4.C5.A6.D7.C8.19.在.10.-311.212.2-.13.14.015.(1)(3)(4)是表示y是x的反比例函数,理由见解析16.(1)-3;(2)x=517.y=12(x+1)+6x18.(1) m=0;(2)点(12,2)不在这个函数图象上.答案第1页,共1页。
人教版数学九年级下册 第26章 反比例函数 复习练习题及答案人教版数学九年级下册 第26章 反比例函数 复习练习题1. 如图,过反比例函数y =1x (x >0)的图象上任意两点A ,B 分别作x轴的垂线,垂足分别为C ,D ,连接OA ,OB ,设△AOC 和△BOD 的面积分别是S 1,S 2,比较它们的大小,可得( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .大小关系不能确定2. 若直线y =kx +b 经过第一、二、四象限,则函数y =kb x 的图象在( )A .第一、三象限B . 第一、二象限C .第三、四象限D .第二、四象限3. 已知点(-1,y 1),(2,y 2),(π,y 3)在双曲线y =-k 2+1x 上,则下列关系式正确的是( )A .y 1>y 3>y 2B .y 1>y 2>y 3C .y 2>y 1>y 3D .y 3>y 1>y 24. 下列等式中,____________________是反比例函数(填序号)(1)y =x 3;(2)y =-2x ;(3)xy =21;(4)y =5x +2;(5)y =-32x ; (6)y =1x +3;(7)y =x -4.5. 函数y =-1x +2中,自变量x 的取值范围是________.6. 若函数y =(2m -1)x 与y =3-m x 的图象交于第一、三象限,则m的取值范围是________.7. 反比例函数y =-2x ,当x =-2时,y =________;当x <-2时,y 的取值范围是________;当-2<x <0时,y 的取值范围是________.8. 下列哪个等式中的y 是x 的反比例函数?_________________y =4x ,y x =3,y =6x +1,xy =123.9. 京沈高速公路全长658 km ,汽车沿京沈高速公路从沈阳驶往北京,则汽车行完全程所需的时间t(h )与行驶的平均速度v(km /h )之间的函数关系式为________.10. 已知y 是x 的反比例函数,当x =2时,y =6.写出y 关于x 的函数关系式.求当x =4时,y 的值.11. 当m 取什么值时,函数y =(m -2)x3-m 2是反比例函数?12. 已知y 是x 的反比例函数,并且当x =3时,y =-8.(1)写出y 与x 之间的函数关系式;(2)当y =2时,求x 的值.13. 画出反比例函数y =6x 与y =-6x 的图象.14. 已知反比例函数y =(m -1)xm 2-3的图象在第二、四象限,求m 的值,并指出在每个象限内y 随x 的变化情况.15. 已知反比例函数的图象经过点A(2,6).(1)这个函数的图象分布在哪些象限?随自变量的增大如何变化?(2)点B(3,4),C(-212,-445)和D(2,5)是否在这个函数的图象上?16. 如图是反比例函数y=m-5x的图象的一支.根据图象回答下列问题:(1)图象的另一支在哪个象限?常数m的取值范围是什么?(2)在上图的图象上任取点A(a,b)和点B(a′,b′),如果a>a′,那么b和b′有怎样的大小关系?17. 码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,平均卸货速度v(单位:吨/天)与卸货天数t之间有怎样的函数关系?(2)由于遇到紧急情况,要求船上的货物不超过5天卸载完毕,那么平均每天至少要卸载多少吨?18. 小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1 200 N和0.5 m.(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5 m时,撬动石头至少需要多大的力?(2)若想使动力F不超过题(1)中所用力的一半,则动力臂l至少要加长多少?19. 一个用电器的电阻是可调节的,其范围为110 Ω~220 Ω.已知电压为220 V,这个用电器的电路图如图所示.(1)功率P与电阻R有怎样的函数关系?(2)这个用电器功率的范围是多少?20. 一定质量的氧气,它的密度ρ(kg/m3)是它的体积V(m3)的反比例函数.当V=10 m3时,ρ=1.43 kg/m3.(1)求ρ与V的函数关系式;(2)求当V=2 m3时氧气的密度ρ.21. 市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500 m2,施工队施工时应该向下挖进多深?(3)当施工队按(2)中的计划挖进到地下15 m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15 m,相应的,储存室的底面积应改为多少才能满足需要?(保留两位小数)参考答案:1. B2. D3. A4. (2)(3)(5)5. x ≠-2.6. 12<m <37. 1 y <1 y >18. xy =1239. t =658v10. 解:设y =k x ,因为x =2时,y =6,所以有6=k 2,解得k =12,因此y =12x ,把x =4代入y =12x ,得y =124=3.11. 由题意可知⎩⎪⎨⎪⎧m -2≠0,3-m 2=-1,解得m =-2. 12. (1)y =-24x(2)x =-1213.14. 解:∵y =(m -1)xm 2-3是反比例函数,∴m 2-3=-1,且m-1≠0.又∵图象在第二、四象限,∴m -1<0.解得m =±2,且m <1,则m =- 2.在每个象限内,y 随x 的增大而增大.反比例函数y =k x 的图象,当k >0时,在每一个象限内,y 的值随x值的增大而减小;当k <0时,在每一个象限内,y 的值随x 值的增大而增大.15. 解:(1)设这个反比例函数的解析式为y =k x ,因为它经过点A ,把点A 的坐标(2,6)代入函数解析式,得6=k 2,解得k =12,即这个反比例函数的表达式为y =12x .因为k>0,所以这个函数的图象在第一、三象限内,y 随x 的增大而减小.(2)把点B ,C 和D 的坐标代入y =12x ,可知点B 、点C 的坐标满足函数关系式,点D 的坐标不满足函数关系式,所以点B 、点C 在函数y =12x 的图象上,点D 不在该函数的图象上.16. 解:(1)反比例函数的图象的分布只有两种可能,分布在第一、三象限或者分布在第二、四象限,这个函数的图象的一支在第一象限,则另一支必在第三象限.因此这个函数的图象分布在第一、三象限,所以m -5>0,解得m>5.(2)由函数的图象可知,在双曲线的一支上,y 随x 的增大而减小,因为a>a ′,所以b <b ′.17. 解:(1)设轮船上的货物总量为k 吨,根据已知条件得k =30×8=240,所以v 关于t 的函数解析式为v =240t .(2)把t =5代入v =240t ,得v =2405=48(吨).从结果可以看出,如果全部货物恰好用5天卸载完,那么平均每天卸载48吨.对于函数v =240t ,当t>0时,t 越小,v 越大.这样若货物不超过5天卸载完,则平均每天至少要卸载48吨.18. 解:(1)根据“杠杆原理”,得Fl =1 200×0.5,所以F 关于l 的函数解析式为F =600l .当l =1.5 m 时,F =6001.5=400(N ).对于函数F =600l ,当l =1.5 m 时,F =400 N ,此时杠杆平衡,因此,撬动石头至少需要400 N 的力.(2)对于函数F =600l ,F 随l 的增大而减小.因此,只要求出F =200 N时对应的l 的值,就能确定动力臂l 至少应加长的量.当F =400×12=200时,由200=600l 得l =600200=3(m ),3-1.5=1.5(m ).对于函数F =600l ,当l>0时,l 越大,F 越小.因此,若想用力不超过400 N 的一半,则动力臂至少要加长1.5 m .19. 解:(1)根据电学知识,当U =220时,得P =2202R . ① (2)根据反比例函数的性质可知,电阻越大,功率越小.把电阻的最小值R =110代入①式,得到功率的最大值P =2202110=440(W); 把电阻的最大值R =220代入①式,得到功率的最小值 P =2202220=220(W).因此用电器功率的范围为220W ~440W.20. (1)ρ=mV ,当V =10 m 3时,ρ=1.43 kg/m 3,所以m =ρV =10×1.4=14.3,所以ρ=14.3v ;(2)当V =2 m 3时,ρ=14.32=7.15(kg/m 3). 21. 我们知道圆柱的容积是底面积×高,而现在容积一定为104 m 3,所以S ·d =104.变形就可得到底面积S 与其深度d 的函数关系式,即S =104d ,所以储存室的底面积S 是其深度d 的反比例函数.根据函数S =104d ,我们知道给出一个d 的值就有唯一的S 的值和它相对应,反过来,知道S 的一个值,也可求出d 的值.根据S =104d ,得500=104d ,解得d =20,即施工队施工时应该向下挖进20米.根据S =104d ,把d =15代入此式,得S =10415≈666.67(m 2).当储存室的深为15 m时,储存室的底面积应改为666. 67 m2才能满足需要.人教版九年级数学下册第二十六章 反比例函数 单元测试题一、选择题(本大题共6小题,每小题4分,共24分)1.点(-3,4)在反比例函数y =kx 的图象上,则下列各点中不在此函数图象上的是( )A .(-4,3)B .(3,-4)C .(2,-6)D .(-6,-2)2.已知反比例函数y =-2x ,则下列结论不正确的是( )A .其图象必经过点(-1,2)B .y 随x 的增大而增大C .其图象在第二、四象限内D .若x >1,则-2<y <03.当x >0时,下列四个函数:y =-x ,y =2x +1,y =-1x ,y =2x ,其中y 随x 的增大而增大的有( )A .1个B .2个C .3个D .4个4.二次函数y =ax 2+b (b >0)与反比例函数y =ax 在同一平面直角坐标系中的图象可能是( )图15.已知(x 1,y 1),(x 2,y 2),(x 3,y 3)是反比例函数y =-4x 的图象上的三个点,且x 1<x 2<0,x 3>0,则y 1,y 2,y 3的大小关系是( )A .y 3<y 1<y 2B .y 2<y 1<y 3C .y 1<y 2<y 3D .y 3<y 2<y 16.如图2,在平面直角坐标系中,已知△ABC 为等腰直角三角形,CB =CA =5,点C的坐标为(0,3),点B 在x 轴正半轴上,点A 在第三象限,且在反比例函数y =kx (x <0)的图象上,则k 的值为( )图2A .3B .4C .6D .12二、填空题(本大题共6小题,每小题5分,共30分)7.已知点P (3,-2)在反比例函数y =kx 的图象上,则k =________;在第四象限内,y随x 的增大而________.8.已知反比例函数y =2a -1x的图象有一支位于第一象限,则常数a 的取值范围是________.9.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A)与电阻R (单位:Ω)是反比例函数关系,它的图象如图3所示.如果以此蓄电池为电源的用电器的限制电流不超过12 A ,那么该用电器的可变电阻R 应控制的范围是__________.图310.如图4,点A 在函数y =4x (x >0)的图象上,且OA =4,过点A 作AB ⊥x 轴于点B ,则△ABO 的周长为__________.图411.如图5,直线y =x +4与双曲线y =kx(x <0)相交于A (-1,a ),B 两点,在y 轴上找一点P ,当P A +PB 的值最小时,点P 的坐标为________.图512.如图6,反比例函数y =kx (x >0)的图象经过矩形OABC 对角线的交点M ,与AB ,BC 分别交于点D ,E ,若四边形ODBE 的面积为9,则k 的值为________.图6三、解答题(本大题共4小题,共46分)13.(10分)已知反比例函数y =kx 的图象经过点A (2,3).(1)求这个函数的解析式;(2)判断点B (-1,6),C (3,2)是否在这个函数的图象上,并说明理由; (3)当-3<x <-1时,求y 的取值范围.14.(10分)已知函数y 1=x -1和y 2=6x.(1)在所给的坐标系中画出这两个函数的图象; (2)求这两个函数图象的交点坐标; (3)观察图象,当x 在什么范围内时,y 1>y 2?图715.(12分)如图8,在平面直角坐标系中,直线y =-12x 与反比例函数y =kx 在第二象限内的图象相交于点A (m ,1).(1)求反比例函数的解析式;(2)将直线y =-12x 向上平移后与反比例函数在第二象限内的图象交于点B ,与y 轴交于点C ,且△ABO 的面积为32,求直线BC 的解析式.图816.(14分)试验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=-200x2+400x刻画;1.5小时后(包括1.5小时)y与x的关系可近似地用反比例函数y=kx(k>0)刻画(如图9所示).(1)根据上述数学模型计算:①喝酒后几小时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.图9答案解析1.D [解析] ∵点(-3,4)在反比例函数y =kx 的图象上,∴k =(-3)×4=-12.A 项,∵(-4)×3=-12,∴此点在该反比例函数的图象上,故本选项不符合题意.B 项,∵3×(-4)=-12,∴此点在该反比例函数的图象上,故本选项不符合题意.C 项,∵2×(-6)=-12,∴此点在该反比例函数的图象上,故本选项不符合题意.D 项,∵(-6)×(-2)=12≠-12,∴此点不在该反比例函数的图象上,故本选项符合题意.故选D.2.B3.B [解析] 正比例函数y =-x 中,y 随x 的增大而减小;一次函数y =2x +1中,y 随x 的增大而增大;反比例函数y =-1x 中,k <0,当x >0时,y 随x 的增大而增大;反比例函数y =2x中,k >0,当x >0时,y 随x 的增大而减小.所以符合题意的有2个.故选B.4.B5.A [解析] ∵在反比例函数y =-4x 中,k =-4<0,∴函数图象在第二、四象限,在每一象限内,y 随x 的增大而增大.∵x 1<x 2<0,∴0<y 1<y 2.∵x 3>0,∴y 3<0,∴y 3<y 1<y 2.故选A. 6.A [解析] 过点A 作AH ⊥y 轴于点H . 易证△ACH ≌△CBO ,∴AH =OC ,CH =OB .∵C (0,3),BC =5,∴OC =3,则OB =52-32=4,∴CH =OB =4,AH =OC =3,∴OH =1,∴A (-3,-1).∵点A 在函数y =kx (x <0)的图象上,∴k =3.故选A.7.[答案] -6 增大[解析] ∵点P (3,-2)在反比例函数y =kx 的图象上,∴k =3×(-2)=-6.∵k =-6<0,∴反比例函数y =-6x 的图象在第二、四象限,且在每个象限内,y 随x 的增大而增大,∴在第四象限内,y 随x 的增大而增大.8.[答案] a >12[解析] ∵函数图象有一支位于第一象限, ∴2a -1>0,∴a >12.故答案为a >12.9.[答案] R ≥3 Ω[解析] 由题意可得I =U R .将(9,4)代入I =UR,得U =IR =36.∵以此蓄电池为电源的用电器的限制电流不超过12 A ,∴36R ≤12,解得R ≥3 Ω.10.[答案] 2 6+4[解析] ∵点A 在函数y =4x (x >0)的图象上,∴设点A 的坐标为(n ,4n )(n >0).在Rt △ABO 中,∠ABO =90°,OA =4, ∴OA 2=AB 2+OB 2. 又∵AB ·OB =4n·n =4,∴(AB +OB )2=AB 2+OB 2+2AB ·OB =42+2×4=24, ∴AB +OB =2 6或AB +OB =-2 6(舍去), ∴C △ABO =AB +OB +OA =2 6+4. 11.[答案] (0,52)[解析] 把A (-1,a )代入y =x +4,得-1+4=a ,解得a =3,即A (-1,3). 把A (-1,3)代入y =kx ,得3=-k ,解得k =-3.联立两函数解析式,得⎩⎪⎨⎪⎧y =x +4,y =-3x ,解得⎩⎪⎨⎪⎧x 1=-1,y 1=3,⎩⎪⎨⎪⎧x 2=-3,y 2=1, ∴点B 的坐标为(-3,1).作点A 关于y 轴的对称点C ,连接BC ,与y 轴的交点即为满足要求的点P ,此时P A +PB 的值最小,点C 的坐标为(1,3).设直线BC 的解析式为y =mx +b ,把B ,C 两点的坐标代入y =mx +b , 得⎩⎪⎨⎪⎧-3m +b =1,m +b =3,解得⎩⎨⎧m =12,b =52,∴直线BC 的函数解析式为y =12x +52,它与y 轴的交点坐标为(0,52).12.[答案] 3[解析] 设M (a ,k a ),则AB =2k a ,D (2a ,k2a ).∵S △OBA =S △OBC ,S △ODA =S △OEC ,∴S △OBD=S △OBE =92,∴12OA ·BD =92,即12·2a ·(2k a -k 2a )=92,解得k =3.13.解:(1)∵反比例函数y =kx 的图象经过点A (2,3),把点A 的坐标代入解析式,得3=k 2,解得k =6,∴这个函数的解析式为y =6x. (2)点B 不在这个函数的图象上,点C 在这个函数的图象上. 理由:分别把点B ,C 的坐标代入y =6x,可知点B 的坐标不满足函数解析式,点C 的坐标满足函数解析式, ∴点B 不在这个函数的图象上,点C 在这个函数的图象上. (3)∵当x =-3时,y =-2; 当x =-1时,y =-6.又由k >0,知当x <0时,y 随x 的增大而减小,∴当-3<x <-1时,-6<y <-2. 14.解:(1)函数y 1的自变量的取值范围是全体实数;函数y 2的自变量的取值范围是x ≠0.列表可得:所画图象如图所示.(2)联立两个函数解析式,得⎩⎪⎨⎪⎧y =x -1,y =6x,解得⎩⎪⎨⎪⎧x 1=-2,y 1=-3,⎩⎪⎨⎪⎧x 2=3,y 2=2.∴两函数图象的交点坐标分别为(-2,-3),(3,2). (3)观察图象可得:当-2<x <0或x >3时,y 1>y 2. 15.解:(1)∵点A (m ,1)在直线y =-12x 上,∴m =-2,即A (-2,1).∵点A (-2,1)在函数y =kx (x <0)的图象上,∴k =-2,∴反比例函数的解析式为y =-2x.(2)如图,连接AC ,过点A 作AD ⊥OC 于点D ,则AD =2.∵BC ∥AO ,S △ABO =32,∴S △ACO =S △ABO =32,∴12·AD ·OC =32,∴OC =32,∴直线BC 的解析式为y =-12x +32.16.解:(1)①y =-200x 2+400x =-200(x -1)2+200,∴喝酒后1小时血液中的酒精含量达到最大值,最大值为200毫克/百毫升.②∵当x =5时,y =45,y =kx ,∴k =xy =45×5=225. (2)不能驾车去上班.理由:∵晚上20:00到第二天早上7:00,一共有11小时,将x =11代入y =225x ,得y =22511>20,∴第二天早上7:00不能驾车去上班.人教版九年级下册第二十六章《反比例函数》单元测试(解析版)一、选择题1、如图,点A为函数y=(x>0)图象上的一点,过点A作x轴的平行线交y轴于点B,连接OA,如果△AOB的面积为2,那么k的值为()A.1 B.2 C.3 D.42、反比例函数y=的图象如图所示,则下列结论正确的是()A.常数m<1 B.y随x的增大而增大C.若A(﹣1,h),B(2,k)在图象上,则h<kD.若P(﹣x,y)在图象上,则P′(x,﹣y)也在图象上3、在反比例函数的图象的每一条曲线上,都随的增大而增大,则的值可以是()A.-1B.0C.1D.24、已知一次函数y1=kx+b与反比例函数y2=kx-1在同一直角坐标系中的图象如图所示,则当y1<y2时,x的取值范围是()A.x<﹣1或0<x<3 B.﹣1<x<0或x>3 C.﹣1<x<0 D.x>35、点A(﹣3,y1),B(﹣1,y2),C(1,y3)都在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y36、已知点A(x1,y1),B(x2,y2)是反比例函数y=的图象上的两点,若x1<0<x2,则有()A.y1<0<y2 B.y2<0<y1 C.y1<y2<0 D.y2<y1<07、如图,矩形ABCD的边分别与两坐标轴平行,对角线AC经过坐标原点,点D在反比例函数(x>0)的图象上.若点B的坐标为(﹣4,﹣4),则k的值为()A.2 B.6 C.2或3 D.﹣1或68、如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延长线交y轴负半轴于E,双曲线y=的图象经过点A,若△BEC的面积为6,则k等于()A.3 B.6 C.12 D.249、如图,函数与在同一平面直角坐标系中的图像大致( )10、反比例函数,的图像在( )A.一、二象限 B一、三象限 C.二、三象限 D.二、四象限11、某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.当气球内气体的气压大于150kPa时,气球将爆炸.为了安全,气体体积V应该是()A.小于0.64m3 B.大于0.64m3 C.不小于0.64m3 D.不大于0.64m312、教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()二、填空题13、己知反比例函数的图像经过点,的值为 .14、已知直线与双曲线的一个交点A的坐标为(-1,-2).则=_____;=____;它们的另一个交点坐标是______.15、已知反比例函数,当时,的取值范围是.16、如图,在平面直角坐标系中,点为轴正半轴上一点,过点的直线轴,且直线分别与反比例函数和的图像交于、两点,若,则的值为。
第26章 第一节 反比例函数 同步练习卷一.选择题(共10小题)1.下列式子中表示y 是x 的反比例函数的是( ) A .24y x =- B .25y x =C .21y x =D .13y x=2.若反比例函数22my mx -=的图象在第二、四象限,则m 的值是( )A .1±B .1-C .1D .23.下列函数中,y 的值随着x 逐渐增大而减小的是( ) A .2y x =B .2y x =C .2y x=-D .1y x =-4.已知点(3,4)-在反比例函数ky x=的图象上,则下列各点也在该反比例函数图象上的是() A .(3,4) B .(3,4)-- C .(2,6)- D .(2,6)5.若双曲线3k y x-=在每一个象限内,y 随x 的增大而减小,则k 的取值范围是( ) A .3k ≠B .3k <C .3k …D .3k >6.直线11122y x =--与双曲线2ky x=的交点横坐标分别为3-和2;则不等式120y y <<的解集是( ) A .30x -<< B .31x -<<-C .3x <-D .30x -<<或2x >7.已知反比例函数2y x=-的图象上有三个点1(x ,1)y 、2(x ,2)y 、3(x ,3)y ,若1230x x x >>>,则下列关系是正确的是( ) A .123y y y <<B .213y y y <<C .321y y y <<D .231y y y <<8.如图所示,点A 是反比例函数ky x=的图象上的一点,过点A 作AB x ⊥轴,垂足为B ,点C 为y 轴上的一点,连接AC 、BC .若ABC ∆的面积为5,则k 的值为( )A .5B .5-C .10D .10-9.如图,点P 在函数3(0)y x x =>的图象上,过点P 分别作x 轴,y 轴的平行线,交函数2y x=-的图象于点A ,B ,则PAB ∆的面积等于( )A .52B .12C .14D .25610.如图,在平面直角坐标系xOy 中,已知正比例函数11y k x =的图象与反比例函数22k y x=的图象交于(4,2)A --,(4,2)B 点,当12y y >时,自变量x 的取值范围是( )A .4x >B .40x -<<C .4x <或04x <<D .40x -<<或4x >二.填空题(共10小题) 11.反比例函数ky x=的图象经过点(3,2)-,则k 的值为 . 12.已知反比例函数8k y x-=的图象位于第一、第三象限,则k 的取值范围是 . 13.在反比例函数2y x =-的图象上有两点1(2-,1)y ,2(2,)y -,则1y 2y .(填“>”或“<” )14.已知正比例函数y mx =图象与反比例函数ky x=图象的一个交点是(3,1)A ,则不等式kmx x<的解集是 . 15.已知点(,)A a b 和点(,)B c d 都在反比例函数21k y x +=的图象上,若0a c <<,则b 和d 的大小关系是 .16.反比例函数3y x=-的图象与一次函数5y x =-+的图象相交,其中一个交点坐标为(,)a b ,则11a b+= . 17.如图,一次函数y ax b =+的图象交x 轴于点B ,交y 轴于点A ,交反比例函数k y x=的图象于点C ,若AB BC =,且OBC ∆的面积为2,则k 的值为 .18.反比例函数2y x =和4y x =在第一象限的图象如图所示,点A 在函数4y x=图象上,点B 在函数2y x=图象上,//AB y 轴,点C 是y 轴上的一个动点,则ABC ∆的面积为 .19.如图,在平面直角坐标系中,反比例函数(0)ky x x=>的图象交矩形OABC 的边AB 于点D ,交BC 于点E ,且2CE BE =.若四边形ODBE 的面积为6,则k = .20.如图,正方形ABCD 顶点C 、D 在反比例函数6(0)y x x =>图象上,顶点A 、B 分别在x 轴、y 轴的正半轴上,则点C 的坐标为 .三.解答题(共8小题)21.已知y 是x 的反比例函数,且当2x =-时,14y =, (1)求这个反比例函数关系式和自变量x 的取值范围; (2)求当3x =时函数y 的值.22.如图,在平面直角坐标系中,Rt ABC ∆的边AB x ⊥轴,垂足为A ,C 的坐标为(1,0),反比例函数(0)ky x x=>的图象经过BC 的中点D ,交AB 于点E .已知4AB =,5BC =.求k 的值.23.在平面直角坐标系内,点O 为坐标原点,一次函数y kx b =+的图象与反比例函数my x=的图象交于A ,B 两点,若(4,1)A ,点B 的横坐标为2-. (1)求反比例函数及一次函数的解析式;(2)若一次函数y kx b =+的图象交x 轴于点C ,过C 作x 轴的垂线交反比例函数图象于点D ,连接OA ,OD ,AD ,求AOD ∆的面积.24.如图,点(1,1)A -是反比例函数(0)ky k x=<上一点,过点A 作AC x ⊥轴于点C ,点(1,0)B 为x 轴上一点,连接AB . (1)求反比例函数的解析式; (2)求ABC ∆的面积.25.如图,直线(0)y kx b k =+≠与双曲线(0)m y m x =≠交于点1(2A -,2),(,1)B n -. (1)求直线与双曲线的解析式.(2)点P 在x 轴上,如果3ABP S ∆=,求点P 的坐标.26.如图,已知反比例函数ky x=的图象与一次函数y x b =+的图象交于点(1,4)A ,点(,1)B n -.(1)求n 和b 的值;(2)直接写出一次函数值小于反比例函数值的自变量x 的取值范围.27.如图,一次函数y kx b =+的图象分别交x 轴,y 轴于(4.0)A ,(0,2)B 两点,与反比例函数my x=的图象交于C .D 两点,CE x ⊥轴于点E 且3CE =. (1)求反比例函数与一次函数的解析式;(2)根据图象直接写出:不等式0mkx b x<+<的解集.28.如图,直线1y x b =+交x 轴于点B ,交y 轴于点(0,2)A ,与反比例函数2ky x=的图象交于(1,)C m ,(,1)D n -,连接OC ,OD . (1)求k 的值; (2)求COD ∆的面积.(3)根据图象直接写出12y y <时,x 的取值范围. (4)点M 是反比例函数2ky x=上一点,是否存在点M ,使点M 、C 、D 为顶点的三角形是直角三角形,且CD 为直角边,若存在,请直接写出点M 的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题)1.下列式子中表示y 是x 的反比例函数的是( ) A .24y x =-B .25y x =C .21y x =D .13y x=【解答】解:A 、24y x =-不表示y 是x 的反比例函数,故此选项错误; B 、25y x =不表示y 是x 的反比例函数,故此选项错误; C 、21x不表示y 是x 的反比例函数,故此选项错误; D 、13y x=表示y 是x 的反比例函数,故此选项正确; 故选:D .2.若反比例函数22my mx -=的图象在第二、四象限,则m 的值是( )A .1±B .1-C .1D .2【解答】解:22my mx -=Q 是反比例函数,221m ∴-=-,0m ≠,解得:1m =±, Q 图象在第二、四象限, 0m ∴<, 1m ∴=-,故选:B .3.下列函数中,y 的值随着x 逐渐增大而减小的是( ) A .2y x =B .2y x =C .2y x=-D .1y x =-【解答】解:A 、函数2y x =的图象是y 随着x 增大而增大,故本选项错误; B 、函数2y x =的对称轴为0x =,当0x …时y 随x 增大而减小故本选项错误; C 、函数2y x=-,当0x <或0x >,y 随着x 增大而增大故本选项错误; D 、函数1y x =-的图象是y 随着x 增大而减小,故本选项正确;故选:D .4.已知点(3,4)-在反比例函数ky x=的图象上,则下列各点也在该反比例函数图象上的是( )A .(3,4)B .(3,4)--C .(2,6)-D .(2,6)【解答】解:Q 点(3,4)-在反比例函数ky x=的图象上, 3(4)12k ∴=⨯-=-,而343(4)2612⨯=-⨯-=⨯=,2612-⨯=-, ∴点(2,6)-在该反比例函数图象上.故选:C . 5.若双曲线3k y x-=在每一个象限内,y 随x 的增大而减小,则k 的取值范围是( ) A .3k ≠B .3k <C .3k …D .3k >【解答】解:Q 双曲线3k y x-=在每一个象限内,y 随x 的增大而减小, 30k ∴-> 3k ∴>故选:D .6.直线11122y x =--与双曲线2ky x=的交点横坐标分别为3-和2;则不等式120y y <<的解集是( ) A .30x -<<B .31x -<<-C .3x <-D .30x -<<或2x >【解答】解:在直线11122y x =--中,令0y >,则11022x -->,解得1x <-,由直线11122y x =--可知:直线经过二、三、四象限,Q 直线11122y x =--与双曲线2ky x =的交点横坐标分别为3-和2,∴双曲线2ky x=在二、四象限,如图所示: ∴不等式120y y <<的解集是31x -<<-,故选:B .7.已知反比例函数2y x=-的图象上有三个点1(x ,1)y 、2(x ,2)y 、3(x ,3)y ,若1230x x x >>>,则下列关系是正确的是( ) A .123y y y <<B .213y y y <<C .321y y y <<D .231y y y <<【解答】解:Q 反比例函数2y x=-, ∴函数图象在第二、四象限,且在每个象限内,y 随x 的增大而增大,Q 函数的图象上有三个点1(x ,1)y ,2(x ,2)y 、3(x ,3)y ,且1230x x x >>>, 213y y y ∴<<,故选:B .8.如图所示,点A 是反比例函数ky x=的图象上的一点,过点A 作AB x ⊥轴,垂足为B ,点C 为y 轴上的一点,连接AC 、BC .若ABC ∆的面积为5,则k 的值为( )A .5B .5-C .10D .10-【解答】解:连结OA ,如图, AB x ⊥Q 轴, //OC AB ∴,5OAB ABC S S ∆∆∴==,而1||2OAB S k ∆=, ∴1||52k =, 0k <Q , 10k ∴=-.故选:D .9.如图,点P 在函数3(0)y x x =>的图象上,过点P 分别作x 轴,y 轴的平行线,交函数2y x=-的图象于点A ,B ,则PAB ∆的面积等于( )A .52B .12C .14D .256【解答】解:Q 点P 在函数3(0)y x x =>的图象上,//PA x 轴,//PB y 轴,∴设3(,)P x x,∴点B 的坐标为2(,)x x -,A 点坐标为2(3x -,3)x ,PAB ∴∆的面积123225()()236x x x x =++=. 故选:D .10.如图,在平面直角坐标系xOy 中,已知正比例函数11y k x =的图象与反比例函数22k y x=的图象交于(4,2)A --,(4,2)B 点,当12y y >时,自变量x 的取值范围是( )A .4x >B .40x -<<C .4x <或04x <<D .40x -<<或4x >【解答】解:Q 正比例函数11y k x =的图象与反比例函数22k y x=的图象交于(4,2)A --,(4,2)B 点,∴当12y y >时,自变量x 的取值范围是40x -<<或4x >.故选:D .二.填空题(共10小题) 11.反比例函数ky x=的图象经过点(3,2)-,则k 的值为 6- . 【解答】解:由题意知,326k =-⨯=-. 故答案为:6-. 12.已知反比例函数8k y x-=的图象位于第一、第三象限,则k 的取值范围是 8k > . 【解答】解:Q 反比例函数8k y x-=的图象位于第一、第三象限, 80k ∴->,解得8k >, 故答案为8k >. 13.在反比例函数2y x =-的图象上有两点1(2-,1)y ,2(2,)y -,则1y > 2y .(填“>”或“<” )【解答】解:Q 反比例函数2y x =-的图象上有两点1(2-,1)y ,2(2,)y -, 12412y ∴=-=-,2212y =-=-. 41>Q , 12y y ∴>.故答案为:>.14.已知正比例函数y mx =图象与反比例函数ky x=图象的一个交点是(3,1)A ,则不等式kmx x<的解集是 03x <<或3x <- . 【解答】解:Q 正比例函数y mx =图象与反比例函数ky x=图象的一个交点是(3,1)A , ∴另一交点B 为(3,1)--.观察函数图象,发现:当3x <-或03x <<时,正比例函数图象在反比例函数图象的下方, kmx x∴<的解集是03x <<或3x <- 故答案为03x <<或3x <-.15.已知点(,)A a b 和点(,)B c d 都在反比例函数21k y x +=的图象上,若0a c <<,则b 和d 的大小关系是 b d > . 【解答】解:210k +>Q ,∴反比例函数图象的两个分支在第一三象限,且在每个象限内y 随x 的增大而减小;又Q 点(,)A a b 和点(,)B c d 都在反比例函数21k y x +=的图象上,且0a c <<,b d ∴>;故答案为b d >. 16.反比例函数3y x=-的图象与一次函数5y x =-+的图象相交,其中一个交点坐标为(,)a b ,则11a b += 3. 【解答】解:Q 反比例函数3y x=-的图象与一次函数5y x =-+的图象相交,其中一个交点坐标为(,)a b , 3ab ∴=-,5b a +=,则115533b a a b ab ++===--,故答案为:53-.17.如图,一次函数y ax b =+的图象交x 轴于点B ,交y 轴于点A ,交反比例函数k y x=的图象于点C ,若AB BC =,且OBC ∆的面积为2,则k 的值为 8 .【解答】解:作CD y ⊥轴于D ,则//OB CD , ∴OA ABOD BC=, AB BC =Q , OA OD ∴=,OCD AOC S S ∆∆∴= AB BC =Q ,2AOB OBC S S ∆∆∴==, 4AOC AOB OBC S S S ∆∆∆∴=+=, 4OCD S ∆∴=,Q 反比例函数ky x=的图象经过点C , 1||42OCD S k ∆∴==, Q 在第一象限, 8k ∴=.故答案为8.18.反比例函数2y x =和4y x =在第一象限的图象如图所示,点A 在函数4y x=图象上,点B 在函数2y x=图象上,//AB y 轴,点C 是y 轴上的一个动点,则ABC ∆的面积为 1 .【解答】解:连结OA 、OB ,延长AB ,交x 轴于D ,如图, //AB y Q 轴,AD x ∴⊥轴,//OC AB ,OAB ABC S S ∆∆∴=,而1422OAD S ∆=⨯=,1212OBD S ∆=⨯=, 1OAB OAD OBD S S S ∆∆∆∴=-=, 1ABC S ∆∴=,故答案为1.19.如图,在平面直角坐标系中,反比例函数(0)ky x x=>的图象交矩形OABC 的边AB 于点D ,交BC 于点E ,且2CE BE =.若四边形ODBE 的面积为6,则k = 3 .【解答】解:设CE a =,OC b =,则2BE a =,3BC OA a ==, OAD OCE S S ∆∆=Q ,2OCE OABC OEBD S S S ∆∴=+矩形四边形即:36ab ab =+, 3ab ∴=,即:3k =,故答案为:3.20.如图,正方形ABCD 顶点C 、D 在反比例函数6(0)y x x =>图象上,顶点A 、B 分别在x 轴、y 轴的正半轴上,则点C 的坐标为 (3,23) .【解答】解:如图,过点C 作CE y ⊥轴于E ,过点D 做DF x ⊥轴于F ,设6(,)C a a ,则CE a =,6OE a=,Q 四边形ABCD 为正方形, BC AB AD ∴==,90BEC AOB AFD ∠=∠=∠=︒Q ,90EBC OBA ∴∠+∠=︒,90ECB EBC ∠+∠=︒, ECB OBA ∴∠=∠,同理可得:DAF OBA ∠=∠, Rt BEC Rt AOB Rt DFA ∴∆≅∆≅∆, OB EC AF a ∴===,6OA BE FD a a∴===-, 66OF a a a a∴=+-=, ∴点D 的坐标为6(a ,6)a a-,把点D 的坐标代入6(0)y x x =>,得到66()6a a a -=,解得a =(舍),或a =∴点C 的坐标为,故答案为:,. 三.解答题(共8小题)21.已知y 是x 的反比例函数,且当2x =-时,14y =, (1)求这个反比例函数关系式和自变量x 的取值范围; (2)求当3x =时函数y 的值. 【解答】解:(1)设(0)ky k x=≠, 把2x =-,14y =代入得:142k =-.(1分) 得:12k =-.(1分)∴函数解析式为12y x=-.(1分) 自变量的取值范围是0x ≠.(1分)(2)把3x =代入得11236y =-=-⨯. 22.如图,在平面直角坐标系中,Rt ABC ∆的边AB x ⊥轴,垂足为A ,C 的坐标为(1,0),反比例函数(0)ky x x=>的图象经过BC 的中点D ,交AB 于点E .已知4AB =,5BC =.求k 的值.【解答】解:Q 在Rt ABC ∆中,4AB =,5BC =2225163AC BC AB∴=-=-=Q 点C 坐标(1,0) 1OC ∴=4OA OC AC ∴=+= ∴点A 坐标(4,0) ∴点(4,4)BQ 点(1,0)C ,点(4,4)B BC ∴的中点5(2D ,2)Q 反比例函数(0)ky x x=>的图象经过BC 的中点D 252k ∴=5k ∴=23.在平面直角坐标系内,点O 为坐标原点,一次函数y kx b =+的图象与反比例函数my x=的图象交于A ,B 两点,若(4,1)A ,点B 的横坐标为2-. (1)求反比例函数及一次函数的解析式;(2)若一次函数y kx b =+的图象交x 轴于点C ,过C 作x 轴的垂线交反比例函数图象于点D ,连接OA ,OD ,AD ,求AOD ∆的面积.【解答】解:(1)Q 点(4,1)A 在反比例函数my x=的图象上, 14m∴=, 解得:4m =,∴反比例函数的解析式为:4y x=; Q 点B的横坐标为2-, 422y ∴==--, ∴点(2,2)B --,将点A 与B 代入一次函数解析式,可得:4122k b k b +=⎧⎨-+=-⎩,解得:121k b ⎧=⎪⎨⎪=-⎩,∴一次函数的解析式的解析式为:112y x =-; (2)如图,作AE x ⊥轴于E , (4,1)A Q , 4OE ∴=,1AE =由直线112y x =-得(2,0)C , 把2x =代入4y x =得,422y ==, (2,2)D ∴2OC ∴=,2CD =,()11122212413222AOD AOC AOE ADCE S S S S ∆∆∆∴=+-=⨯⨯++⨯-⨯⨯=梯形.24.如图,点(1,1)A -是反比例函数(0)ky k x=<上一点,过点A 作AC x ⊥轴于点C ,点(1,0)B 为x 轴上一点,连接AB . (1)求反比例函数的解析式; (2)求ABC ∆的面积.【解答】解:(1)Q 点(1,1)A -是反比例函数(0)ky k x=<上一点, 111k ∴=-⨯=-,故反比例函数的解析式为:1y x=-;(2)Q 点(1,1)A -,点(1,0)B ,AC x ⊥轴, 2BC ∴=,1AC =,故ABC ∆的面积为:12112⨯⨯=.25.如图,直线(0)y kx b k =+≠与双曲线(0)m y m x =≠交于点1(2A -,2),(,1)B n -. (1)求直线与双曲线的解析式.(2)点P 在x 轴上,如果3ABP S ∆=,求点P 的坐标.【解答】解:(1)Q 双曲线(0)m y m x =≠经过点1(2A -,2), 1m ∴=-.∴双曲线的表达式为1y x=-.Q 点(,1)B n -在双曲线1y x=-上, ∴点B 的坐标为(1,1)-.Q 直线y kx b =+经过点1(2A -,2),(1,1)B -, ∴1221k b k b ⎧-+=⎪⎨⎪+=-⎩,解得21k b =-⎧⎨=⎩, ∴直线的表达式为21y x =-+;(2)当210y x =-+=时,12x =, ∴点1(2C ,0).设点P 的坐标为(,0)x , 3ABP S ∆=Q ,1(2A -,2),(1,1)B -, ∴113||322x ⨯-=,即1||22x -=, 解得:132x =-,252x =.∴点P 的坐标为3(2-,0)或5(2,0).26.如图,已知反比例函数ky x=的图象与一次函数y x b =+的图象交于点(1,4)A ,点(,1)B n -.(1)求n 和b 的值;(2)直接写出一次函数值小于反比例函数值的自变量x 的取值范围.【解答】解:(1)把A 点(1,4)分别代入反比例函数k y x =,一次函数y x b =+, 得14k =⨯,14b +=,解得4k =,3b =, Q 点(,1)B n -也在反比例函数4y x =的图象上, ∴41,4n n-==-;(2)(4,1)B --Q ,(1,4)A ,∴据图象可知:当4x <-或01x <<时,一次函数值小于反比例函数值.27.如图,一次函数y kx b =+的图象分别交x 轴,y 轴于(4.0)A ,(0,2)B 两点,与反比例函数m y x=的图象交于C .D 两点,CE x ⊥轴于点E 且3CE =. (1)求反比例函数与一次函数的解析式;(2)根据图象直接写出:不等式0m kx b x<+<的解集.【解答】解:(1)根据题意,得402k b b +=⎧⎨=⎩, 解得12k =-,2b =, 所以一次函数的解析式为122y x =-+,由题意可知,点C 的纵坐标为3.把3y =代入122y x =-+,中,得2x =-. 所以点C 坐标为(2,3)-. 把点C 坐标(2,3)-代入m y x =中, 解得6m =-.所以反比例函数的解析式为6y x =-; (2)不等式0m kx b x<+<的解集是:20x -<<. 28.如图,直线1y x b =+交x 轴于点B ,交y 轴于点(0,2)A ,与反比例函数2k y x =的图象交于(1,)C m ,(,1)D n -,连接OC ,OD .(1)求k 的值;(2)求COD ∆的面积.(3)根据图象直接写出12y y <时,x 的取值范围.(4)点M 是反比例函数2k y x =上一点,是否存在点M ,使点M 、C 、D 为顶点的三角形是直角三角形,且CD 为直角边,若存在,请直接写出点M 的坐标;若不存在,请说明理由.【解答】解:(1)把(0,2)A 代入1y x b =+得:2b =,即一次函数的表达式为12y x =+, 把(1,)C m ,(,1)D n -代入得:12m =+,12n -=+, 解得3m =,3n =-, 即(1,3)C ,(3,1)D --, 把C 的坐标代入2k y x =得:31k =, 解得:3k =;(2)由12y x =+可知:(2,0)B -,AOC ∴∆的面积为112321422⨯⨯+⨯⨯=;(3)由图象可知:12y y <时,x 的取值范围是3x <-或01x <<;(4)当M 在第一象限,根据题意MC CD ⊥, Q 直线12y x =+,∴设直线CM 的解析式为1y x b =-+, 代入(1,3)C 得,131b =-+ 解得14b =,∴直线CM 为4y x =-+, 解43y x y x =-+⎧⎪⎨=⎪⎩得1131x y =⎧⎨=⎩,2213x y =⎧⎨=⎩, (3,1)M ∴; 当M 在第三象限,根据题意MD CD ⊥, Q 直线12y x =+,∴设直线DM 的解析式为2y x b =-+, 代入(3,1)D --得,213b -=+解得24b =-, ∴直线DM 为4y x =--, 解43y x y x =--⎧⎪⎨=⎪⎩得13x y =-⎧⎨=-⎩或31x y =-⎧⎨=-⎩, (1,3)M ∴--, 综上,点M 的坐标为(3,1)或(1,3)--.。
九年级下册第26章《反比例函数》单元测试题(满分150分)一、选择题(本题共12小题,每小题3分,共36分) 1.下列函数中,是y 关于x 的反比例函数的是( )A.x(y +1)=1B.y =1x -1 C.y =-1x 2 D.y =12x 2.若反比例函数y =k x 的图象经过点(2,-1),则该反比例函数的图象在( )A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限3.已知点A(2,y 1)、B(4,y 2)都在反比例函数y =k x (k <0)的图象上,则y 1、y 2的大小关系为( )A.y 1>y 2 B.y 1<y 2 C.y 1=y 2 D.无法确定4.张家口某小区要种植一个面积为3500m 2的矩形草坪,设草坪长为ym ,宽为xm ,则y 关于x 的函数解析式为( )A.xy =3500B.x =3500yC.y =3500x D.y =1750x 5.已知反比例函数y =1x ,下列结论中不正确的是( )A.图象经过点(-1,-1)B.图象在第一、三象限C.当x >1时,0<y <1D.当x <0时,y 随着x 的增大而增大6.如果平行四边形的面积为8cm 2,那么它的底边长ycm 与高xcm 之间的函数关系用图象表示大致是( )7.正比例函数y =-2x 与反比例函数y =k x 的图象相交于A(m ,2),B 两点,则点B 的坐标是( )A.(-2,1) B.(1,-2) C.(-1,2) D.(2,-1)8.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(kg/m 3)是体积V(m 3)的反比例函数,它的图象如图所示.当V =10m 3时,气体的密度是( )A.5kg/m 3B.2kg/m 3C.100kg/m 3D.1kg/m 3第8题图 第9题图9.如图,正比例函数y 1=k 1x 的图象与反比例函数y 2=k 2x 的图象相交于A ,B 两点,其中点A 的横坐标为2, 当y 1>y 2时,x 的取值范围是( )A.x <-2或x >2B.x <-2或0<x <2C.-2<x <0或0<x <2D.-2<x <0或x >210.在同一直角坐标系中,函数y =-a x 与y =ax +1(a ≠0)的图象可能是( )11.在平面直角坐标系中,直线y =-x +2与反比例函数y =1x 的图象有唯一公共点,若直线y =-x +b 与反比例函数y =1x的图象有2个公共点,则b 的取值范围是( )A.b >2B.-2<b <2C.b >2或b <-2D.b <-212.如图,A 、B 是双曲线y =k x 上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C.若△ADO 的面积为1,D 为OB 的中点,则k 的值为( ) A.43 B.83 C .3 D .4 第12题图 第15题图 第16题图 第18题图二、填空题(本大题共6小题,每小题4分,共24分)13.双曲线y =m -1x 在每个象限内,函数值y 随x 的增大而增大,则m 的取值范围是 .14.点P 在反比例函数y =k x (k ≠0)的图象上,点Q(2,4)与点P 关于y 轴对称,则反比例函数的解析式为 .15.如图,点A 是反比例函数y =k x 图象上的一个动点,过点A 作AB ⊥x 轴,AC ⊥y 轴,垂足分别为B 、C ,矩形ABOC 的面积为4,则k = .16.在对物体做功一定的情况下,力F(N)与此物体在力的方向上移动的距离s(m)成反比例函数关系,其图象如图所示.点P(4,3)在图象上,则当力达到10N 时,物体在力的方向上移动的距离是 m.17.函数y =1x 与y =x -2的图象的交点的横坐标分别为a 、b ,则1a +1b 的值为 .18.如图,点A 在函数y =4x (x>0)的图象上,且OA =4,过点A 作AB ⊥x 轴于点B ,则△ABO 的周长为 . 三、解答题(本题共8小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)19.(10分)如果函数2m 5y mx -=是一个经过第二、四象限的反比例函数,求m 的值和反比例函数的解析式.20.(10分)反比例函数y =k x 的图象经过点A(2,3).(1)求这个函数的解析式;(2)请判断点B(1,6)是否在这个函数图象上,并说明理由.21.(10分)蓄电池的电压为定值,使用此电源时,电流I(A)是电阻R(Ω)的反比例函数,其图象如图所示.(1)求这个反比例函数的表达式;(2)当R =10Ω时,电流能是4A 吗?为什么?22.(10分)如图,一次函数y1=kx+b的图象与反比例函数y2=6x的图象交于A(m,3),B(-3,n)两点.(1)求一次函数的解析式;(2)观察函数图象,直接写出关于x的不等式6x>kx+b的解集.23.(12分)已知反比例函数y=4x.(1)若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值;(2)如图,反比例函数y=4x(1≤x≤4)的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移到C2处所扫过的面积.24.(12分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.下图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线y=kx的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度为18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少摄氏度?25.(12分)如图,一次函数y=x+b图象与反比例函数y=kx图象相交于A,B两点,且点B的坐标为(-1,-2).(1)求出反比例函数与一次函数的表达式;(2)请写出A点的坐标;(3)连接OA,OB,求△AOB的面积.26.(14分)如图,反比例函数y=kx的图象经过点A(-1,4),直线y=-x+b(b≠0)与双曲线y=kx在第二、四象限分别相交于P,Q两点,与x轴、y轴分别相交于C,D两点.(1)求k的值; (2)当b=-2时,求△OCD的面积;(3)连接OQ,是否存在实数b,使得S△ODQ=S△OCD?若存在,请求出b的值;若不存在,请说明理由.答案解析及评分标准:一、选择题(本题共12小题,每小题3分,共36分) 1.D 2.D 3.B 4.C 5.D 6.C 7.B 8.D 9.D 10.B 11.C 12.B11.解析:解方程组{y =-x +b ,y =1x ,得x 2-bx +1=0,∵直线y =-x +b 与反比例函数y =1x的图象有2个公共点,∴方程x 2-bx +1=0有两个不相等的实数根,∴Δ=b 2-4>0,∴b>2或b<-2.故选C.12.解析:过点B 作BE ⊥x 轴于点E ,∵D 为OB 的中点,∴CD 是△OBE 的中位线,即CD =12BE.设A (x ,k x ),则B (2x ,k 2x ),CD =k 4x ,AD =k x -k 4x.∵△ADO 的面积为1,∴12AD·OC =1,即12(k x -k 4x )·x =1,解得k =83.故选B.二、填空题(本大题共6小题,每小题4分,共24分)13.m <1 14.y =-8x 15.-4 16.1.2 17.-2 18.4+2619.解:∵反比例函数2m 5y mx -=的图象经过第二、四象限,∴m 2-5=-1,且m <0,(5分)解得m =-2.(8分) ∴反比例函数的解析式为y =-2x.(10分)20.解:(1)∵反比例函数y =k x 的图象经过点A(2,3),∴k =2×3=6,∴y =6x;(5分)(2)点B(1,6)在这个函数图象上.(7分)理由如下:在反比例函数y =6x中,当x =1时,y =6,∴点B(1,6)在这个函数图象上.(10分)21.解:(1)依题意设I =U R (U ≠0).(2分)把M(4,9)代入,得U =4×9=36,∴I =36R(R>0);(5分)(2)不能.(7分)理由如下:当R =10Ω时,I =3610=3.6(A),∴当R =10Ω时,电流不可能是4A.(10分)22.解:(1)∵A(m ,3),B(-3,n)两点在反比例函数y 2=6x的图象上,∴m =2,n =-2.∴点A 的坐标为(2,3),点B 的坐标为(-3,-2).(3分)将点A ,B 的坐标代入y 1=kx +b 中,得{2k +b =3,-3k +b =-2,解得{k =1,b =1,∴一次函数的解析式是y 1=x +1;(7分)(2)根据图象得0<x <2或x <-3.(10分)23.解:(1)联立方程组{y =4x,y =kx +4,得kx 2+4x -4=0.(2分)∵反比例函数的图象与直线y =kx +4(k ≠0)只有一个公共点,∴Δ=16+16k =0,∴k =-1;(5分)(2)如图所示,C 1平移至C 2所扫过的面积为2×3=6.(12分)24.解:(1)12-2=10(小时),故恒温系统在这天保持大棚内温度为18℃的时间有10小时;(4分)(2)∵点B(12,18)在双曲线y =k x 上,∴18=k 12,∴k =216;(8分)(3)当x =16时,y =21616=13.5.∴当x =16时,大棚内的温度约为13.5℃.(12分)25.解:(1)将B(-1,-2)代入y =x +b 中,得b =-1.故一次函数的表达式为y =x -1.(2分)将B(-1,-2)代入y =k x 中,得k =2.故反比例函数的表达式为y =2x;(4分)(2)联立方程组{y =x -1,y =2x ,解得{x 1=-1,y 1=-2,{x 2=2,y 2=1.故点A 的坐标为(2,1).(8分)(3)设y =x -1与x 轴的交点为C ,则C(1,0).(10分)故S △AOB =12×1×(1+2)=32.(12分)26.解:(1)∵反比例函数y =k x的图象经过点A(-1,4),∴k =-1×4=-4;(3分)(2)当b =-2时,直线解析式为y =-x -2.当y =0时,-x -2=0,解得x =-2,∴C 点的坐标为(-2,0).当x =0时,y =-x -2=-2,∴D 点的坐标为(0,-2).(6分)∴S △OCD =12×2×2=2;(8分)(3)存在.(9分)理由如下:在y =-x +b 中,当y =0时,-x +b =0,解得x =b ,则C 点的坐标为(b ,0).当b >0时,易知S △ODQ =S △ODC +S △OCQ ,即S △ODQ >S △ODC ,不合题意,故b <0.∵S △ODQ =S △OCD ,∴点Q 和点C 到OD 的距离相等,∵Q 点在第四象限,∴Q 点的横坐标为-b.当x =-b 时,y =-x +b =2b ,则Q 点的坐标为(-b ,2b).(12分)∵点Q 在反比例函数y =-4x的图象上,∴-b·2b =-4,解得b =-2或b =2(舍去),∴存在实数b ,使得S △ODQ =S △OCD ,b 的值为-2.(14分)。
人教版九年级数学下册《26.1.2 反比例函数的图像和性质》练习题-附带有答案一、单选题1.如果点(m,−2m)在双曲线y=kx (k≠0)上,那么双曲线y=kx的图象在()A.第一、二象限B.第三、四象限C.第一、三䱲限D.第二、四象限2.若点A(2,y1),B(3,y2),C(−2,y3)都在反比例函数y=−6x的图象上,则y1,y2,y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y1<y3<y2D.y3<y2<y13.若ab<0,则函数y=ax与y=bx在同一平面直角坐标系中的图象大致是()A.B.C.D.4.如图,A是双曲线y=kx(x>0)上的一点,点C是OA的中点,过点C作y轴的垂线,垂足为D,交双曲线于点B,且△ABD的面积是4,则k=()A.4 B.6 C.8 D.105.如图,在平面直角坐标系中,A是x轴正半轴上的一个定点,点P是反比例函数y=3x(x>0)图象上的一个动点,PB⊥y轴于点B .当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A .逐渐增大B .不变C .逐渐减小D .先增大后减小6.如图,在平面直角坐标系中,O 为□ABCD 的对称中心,点A 的坐标为(-2,-2),AB=5,AB//轴,反比例函数y= kx 的图象经过点D ,将□ABCD 沿y 轴向下平移,使点C 的对应点C ′落在反比例函数的图象上,则平移过程中线段AC 扫过的面积为( )A .10B .18C .20D .24二、填空题7.在反比例函数 y =1−2m x的图象上的图象在二、四象限,则 m 的取值范围是 .8.点 A(x 1,y 1) , B(x 2,y 2) 是反比例函数 y =kx (k ≠0) 图象上两点,当 x 1>x 2>0 时 y 1>y 2 那么一次函数 y =kx −k 的图象不经过第 象限.9.如图,L 1是反比例函数y= kx 在第一象限内的图像,且过点A (2,1),L 2与L 1关于x 轴对称,那么图像L 2的函数解析式为 (x >0).10.如图,已知点A 在反比例函数y=10x (x <0)的图象上,AD ∥x 轴,AB ∥y 轴,点B 在反比例函数y=kx (x<0)的图象上,过点B作BC∥x轴,交y轴于点C,若四边形ABCD的面积为8,则k的值为(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别11.如图所示,点A、B在反比例函数y=kx为M、N,延长线段AB交x轴于点C,若OM=MN=NC,△AOC的面积为6,则k的值为.三、解答题(m≠0)相交于A、B两点,且A点坐标为(1,3),12.已知一次函数y=kx+b(k≠0)与反比例函数y=mxB点的横坐标为-3.(1)求反比例函数和一次函数的解析式.时x的取值范围.(2)根据图象直接写出使得kx+b<mx13.如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=m的x图象经过点E,与AB交于点F .(1)若点B坐标为(−6,0),求m的值及图象经过A、E两点的一次函数的表达式;(2)若AF−AE=2,求反比例函数的表达式.14.如图,等边△ABC放置在平面直角坐标系中,已知A(0,0)、B(2,0),反比例函数的图象经过点C.(1)求点C的坐标及反比例函数的解析式.(2)如果将等边△ABC向上平移n个单位长度,使点B恰好落在双曲线上,求n的值.15.如图矩形OABC中,点B的坐标(a,b);点P为线段BC上的一动点(与点B,点C不重合),过动点的图象交AB于Q,延长PQ交x轴于D.P的反比例函数y=kx(1)求证:四边形ADPC为平行四边形;(2)若a,b是方程3x2﹣28x+64=0的根(a>b),点F在AC上,若四边形AQPF为菱形时,求这个反比例函数的解析式并直接写出点F的坐标.16.如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,对角线OB长为8,且∠COB=30°,D是AB边上的点,将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处.(1)求OE的长;(2)点E在一反比例函数的图象上,那么该函数的解析式;(3)反比例函数与BC交于M点,连接OM,求△OBM的面积.答案1.D 2.B 3.B 4.C 5.C 6.C 7.m > 12 8.三 9.y=﹣ 2x 10.18 11.412.(1)解:将点 A (1,3)代入 解得:m =3.∴反比例函数解析式为y =3x . ∵点 B 的横坐标为-3 ∴点 B 坐标(-3,-1).把 A (1,3),B (-3,-1)代入 y =kx+b 得:{k +b =3−3k +b =−1解得:{k =1b =2∴一次函数的解析式为 y =x+2;(2)解:由图象可知 kx+b <m k 时,x <-3 或 0<113.(1)∵B(−6,0),AD =3,AB =8,E 为 CD 的中点, ∴E(−3,4),A(−6,8) . ∵反比例函数图象过点 E(−3,4) ∴m =−3×4=−12 .设图象经过 A 、 E 两点的一次函数表达式为: y =kx +b ∴{−6k +b =8−3k +b =4解得 :{k =−43b =0 ∴y =−43x .(2)∵AD =3,DE =4 , ∴AE =5 . ∵AF −AE =2 ∴AF =7 ∴BF =1 .设 E 点坐标为 (a ,4) ,则点 F 坐标为 (a −3,1) .∵E ,F 两点在 y =mx 图象上 ∴4a =a −3 解得: a =−1 ∴E(−1,4) ∴m =−4 ∴y =−4x .14.解:(1)过点C 作CD ⊥x 轴,垂足为D ,如图,设反比例函数的解析式为y =kx ∵A (0,0)、B (2,0) ∴AB=2∵△ABC 是等边三角形 ∴AC=AB=2,∠CAB=60° ∴AD=1,CD=ACsin60=2×√32=√3∴点C 坐标为(1,√3) ∵反比例函数的图象经过点C ∴k=1×√3=√3∴反比例函数的解析式y =√3x;(2)∵将等边△ABC 向上平移n 个单位,则平移后B 点坐标为(2,n ),而平移后的点B 恰好落在双曲线上 ∴2n=√3 ∴n=√32.15.(1)证明:∵四边形OABC 是矩形,点B 的坐标(a ,b ) ∴BC ∥OA ,AB ∥OC ∴C (0,b ),A (a ,0)∵点P 为线段BC 上,点P 的反比例函数y =kx 的图象交AB 于Q ∴P (k b ,b ),Q (a ,ka ),k <ab ∴CP=k b ,BP=a -k b ,BQ=b -k a ,AQ=ka ∵BC ∥OA∴∠BPQ=∠ADQ ,∠PBQ=∠DAQ ∴△QBP ∽△QAD ∴AQ BQ =ADBP ,即k ab−ka=AD a−k b解得:AD=kb∴AD=CP ,又CP ∥AD∴四边形ADPC 是平行四边形;(2)解:解方程3x 2﹣28x +64=0得x 1=4,x 2=163 ∵a ,b 是方程3x 2﹣28x +64=0的根(a >b ) ∴a= 163,b=4∴BP= 163-k 4,BQ=4-3k 16,AQ=3k16∵四边形AQPF 为菱形∴PF ∥AQ ∥OC ,PF=PQ=AQ ,即PQ 2=AQ 2∴(163-k4)2+(4-3k16)2=(3k16)2 解得:k=403或k=1603∵k <ab=643 ∴k=403∴反比例函数的解析式为y =403x ;F (103,32). 16.(1)解:∵四边形ABCD 是矩形 ∴∠OCB=90° ∵OB=8,∠COB=30° ∴BC=OA=4由折叠可知:OE=OA=4; (2)解:过E 点作EF ⊥OC 于F∴∠EFO=90° ∴OF=12OE=2 在Rt △EFO 中OF =√OE 2−EF 2=√16−4=2√3∴点E (−2√3,2)设过点E 的反比例函数解析式为y =kx (k ≠0) ∴k =−2√3×2=−4√3 ∴反比例函数解析式为y =−4√3x.(3)解:在Rt △OBC 中,∠COB=30° ∴BC=12OB=4OC=√OB2−BC2=√82−42=4√3∴点C(−4√3,0)当x=−4√3时,y=1∴CM=1∴BM=BC-CM=4-1=3×3×4√3=6√3∴S△OBM=12。
人教版初中数学九年级下册第26章《反比例函数》测试题(含答案)一、选择题1、有下列四个函数,其中不属于反比例函数的是( )A B y=xCD xy=k (k ≠0)2y x=1y x -=2、如图,某反比例函数的图像过点M (-2,1),则此反比例函数表达式为( )A y=x2B y=-x 2 C y=x 21 D y=-x 213、在下图中,反比例函数xy k 12+=的图象大致是( )4、若反比例函数的图像在第二、四象限,则m 的值是( ).22(21)my m x -=-A 1-B 小于21的任意实数 C 1-或1 D 不能确定5、某反比例函数的图象经过点(-1,6),则下列各点中,此函数图象也经过的点是( )A (-3,2)B (3,2)C (-2,-3)D. (6,1)6、在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,其图象如图所示,当310m V =时,气体的密度是( )A 5kg/m 3B 2kg/m 3C 100kg/m 3D 1kg/m 37、在反比例函数的图象中,阴影部分面积不为1的是( ).8、市一小数学课外兴趣小组的同学每人制作一个面积为200cm 2的矩形学具进行展示. 设矩形的宽为x cm ,长为y cm ,那么这些同学所制作的矩形长y (cm )与宽x (cm )之间的函数关系的图象大致是 ( )9、若()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为()A b c =B b c>C b c <D 无法判断10、已知,对于反比例函数,下列说法不正确的是( )22(1)0k a -+-=ky x=A 点(-2,-a )在它的图象上B 它的图象在第一、三象限C .当x >0时,y 随x 的增大而减小D .两个分支关于x 轴成轴对称二、填空题11、请你写出反比例函数图象上一个点的坐标是______6y x=12、已知反比例函数的图象经过点P (a+1,4),则a 的值为_____.8y x=13、有一个面积为120的梯形,其上底是下底长的,若上底长为x ,高为y ,则y 与x 的23函数关系式为________;当高为10时x=________14、已知反比例函数的图象分布在第二、四象限,则在一次函数中,xky =b kx y +=随的增大而(填“增大”或“减小”或“不变”).y x 15、老师给出了一个反比例函数,甲、乙、丙三位学生分别指出了这个函数的一个性质.甲:第一象限内有它的图象;乙:第三象限内有它的图象;丙:在每个象限内,y 随x 的增大而减小.请你写一个满足上述性质的反比例函数的解析式为________16、在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图象如图所示,P(5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是______米.17、若正比例函数y=2x 的图象与反比例函数的图象没有交点,则实数k 的取值范围ky x=是______18、已知一次函数y 1=ax+b 与反比例函数y 2=在同一直角坐标系中的图象如图所示,则kx当y 1<y 2时,x 的取值范围是______19、已知y 1与x 成正比例(比例系数为k 1),y 2与x 成反比例(比例系数为k 2),若函数y=y 1+y 2的图象经过点(1,2),(2,),则8k 1+5k 2的值为____1220、两个反比例函数k y x =和1y x =在第一象限内的图象如图所示,点P 在ky x=的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P 在ky x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;其中一定正确的是______三、解答题21、在某一电路中,保持电压不变,电流I (安培)与电阻R (欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培.(1)求I 与R 之间的函数关系式;(2)当电流I=0.5安培时,求电阻R 的值.22、如图,平面直角坐标系中,直线与轴交于点A ,与双曲线在第一1122y x =+x k y x =象限内交于点B ,BC ⊥轴于点C ,OC=2AO ,求双曲线的解析式.x23、已知图中的曲线是反比例函数(m 为常数)图象的一支.5m y x-=(1)求常数m 的取值范围;(2)若该函数的图象与正比例函数2y x =的图象在第一象限的交点为A (2,n),求点A的坐标及反比例函数的解析式.24、已知y =y 1+y 2, y 1与成正比例,y 2与x 2成反比例.当x =1时,y =-12;当x x =4时,y =7.(1)求y 与x 的函数关系式和x 的取范围;(2)当x =时,求y 41的值。
第二十六章 反比例函数26.1 反比例函数26.1.1 反比例函数基础过关全练知识点1 反比例函数的定义1.【新独家原创】下列函数中,属于反比例函数的是( )A.y =-x2 023 B.y =2 023x -1C.y =-x 2 023D.y =x -2 0232.【新独家原创】若y =m ―2mx 是反比例函数,则m 满足的条件是( )A.m ≠0B.m =2C.m =2或m =0D.m ≠2且m ≠03.在函数y =-2(m +1)x -m 中,y 是x 的反比例函数,则比例系数为( )A.-2B.2C.-4D.04.关于正比例函数y =-13x 和反比例函数y =―13x 的说法,正确的是( )A.自变量x 的指数相同B.比例系数相同C.自变量x 的取值范围相同D.函数值y 的取值范围相同5.下列问题中,两个变量成反比例函数关系的是( )A.矩形面积S 一定,长x 和宽y 的关系B.矩形周长l 一定,长x 和宽y 的关系C.正方形面积S 和边长a 之间的关系D.正方形周长C 和边长a 之间的关系6.【新独家原创】若y 与-x 成反比例,x 与2z 成正比例,则y 与z 成 比例.7.【教材变式·P3T2变式】在下列函数关系式中,x 均表示自变量,那么哪些是关于x 的反比例函数?若是反比例函数,相应的比例系数k 是多少?(1)y =52x ;(2)y =x 2;(3)y =7x -1;(4)xy =2;(5)y =0.4x ―1.知识点2 用反比例函数刻画实际问题中的数量关系8.如果等腰三角形的面积为10,底边长为x ,底边上的高为y ,则y 与x 的函数关系式为( )A.y =10xB.y =5x C.y =20x D.y =x 209.已知每个工人一天能做某种型号的防护服x 件,若该厂接到一个生产10 000件的订单,需要y 名工人5天完成,则y 关于x 的函数解析式为 .10.【新独家原创】计划修建一块面积为40 m 2的菱形试验田,试验田的对角线长分别为x m ,y m ,则y 与x 的函数解析式为 . 11.某公司推出一新款折叠屏手机,该手机功能强大,深受消费者推崇,但价格不菲.某电子商场推出分期付款购买手机的活动,一部售价为17 500元的该款手机,前期付款5 000元,后期每个月付相同的金额(不计算利息),则每个月的付款金额y (元)与付款月数x (x 为正整数)之间的函数关系式是 .知识点3 用待定系数法求反比例函数解析式12.【一题多变】(2022四川成都金牛期中)已知y 与x 成反比例,且当x =-1时,y =2,则反比例函数的表达式为( )A.y =-2xB.y =2x C.y =―12x D.y =12x [变式]在反比例函数y =kx 中,当x =2时,y =3,则当y =12时,x = .13.【教材变式·P3T3变式】已知y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =-1时,y =-4;当x =3时,y =4.(1)求y 关于x 的函数解析式;(2)当x =-2时,求y 的值.能力提升全练14.(2022山东德州陵城期末,2,)下列函数中,y 是x 的反比例函数的是( )A.y =2x 2 B.y =2―xxC.y =-1x +1D.y =-2x -115.【跨学科·物理】(2019浙江温州中考,6,)验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表.根据表中数据,可得y 关于x 的函数表达式为( )近视眼镜的2002504005001 000度数y(度)镜片焦距x(米)0.500.400.250.200.10A.y=100x B.y=x100C.y=400xD.y=x40016.(2021湖南邵阳邵东期末,13,)函数y=(m+1)·x m2―m―3是y关于x的反比例函数,则m= .17.(2022山东潍坊高密期末,13,)已知y与x-2成反比例,且比例系数k≠0,当x=3时,y=4,则k= .素养探究全练18.【推理能力】定义:[a,b]为反比例函数y=abx(ab≠0,a,b为实数)的“关联数”.反比例函数y=k1x 的“关联数”为[m,m+2],反比例函数y=k2x的“关联数”为[m+1,m+3],若m>0,则k1与k2的大小关系为 .19.【模型观念】已知y=(m2+2m)x m2+m―1.(1)当m为何值时,y是x的正比例函数?(2)当m为何值时,y是x的二次函数?(3)当m为何值时,y是x的反比例函数?答案全解全析基础过关全练1.B y=x-2 023即为y=1x2 023,y=2 023x-1即为y=2 023x,根据反比例函数的定义知y=-x2 023,y=-x2 023,y=x-2 023都不是反比例函数,y=2 023x-1是反比例函数.故选B.2.D 由题意得m―2m≠0,解得m≠0且m≠2.故选D.3.C 由题意得m=1,则比例系数为-2×(1+1)=-4.故选C.4.B 两个函数的比例系数都是-13.故选B.5.A 选项A,∵S=xy,∴y=Sx,y是x的反比例函数;选项B,∵l=2(x+y),∴y=l2-x,y是x的一次函数;选项C,∵S=a2,∴S是a的二次函数;选项D,∵C=4a,∴C是a的正比例函数.故选A.6.反解析 ∵y与-x成反比例,∴设y=m―x(m≠0).∵x与2z成正比例,∴设x=n·2z(n≠0),∴y=m―2nz =m―2n·1z,∴y与z成反比例.7.解析 (1)y=52x 是反比例函数,k=52.(2)y=x2不是反比例函数.(3)y=7x-1是反比例函数,k=7.(4)xy=2是反比例函数,k=2.(5)y=0.4x―1不是反比例函数.8.C ∵等腰三角形的面积为10,底边长为x ,底边上的高为y ,∴12xy =10,∴y 与x 的函数关系式为y =20x .故选C .9.y =2 000x解析 由题意得5xy =10 000,∴y =2 000x.10.y =80x解析 由菱形面积公式可得12xy =40,∴y =80x ,即y 与x 的函数解析式为y =80x .11.y =12 500x解析 由题意得y =17 500―5 000x,即y =12 500x.12.A 设y =kx ,根据题意得2=k―1,解得k =-2,∴y 与x 的函数表达式为y =-2x .故选A.[变式]12解析 将x =2,y =3代入反比例函数y =k x ,得k =6,∴y =6x ,当y =12时,12=6x ,解得x =12.13.解析 (1)∵y 1与x 成正比例,∴设y 1=mx (m ≠0),∵y 2与x 成反比例,∴设y 2=nx (n ≠0),∴y =mx +nx ,把x =-1,y =-4及x =3,y =4代入y =mx +nx 得―m ―n =―4,3m +n3=4,解得m =1,n =3.∴y 与x 的函数解析式为y =x +3x .(2)把x =-2代入y =x +3x ,得y =-2+3―2=―72.能力提升全练14.D A 项,y =2x 2,y 不是x 的反比例函数,不合题意;B 项,y =2―xx,y 不是x 的反比例函数,不合题意;C项,y =-1x +1,y不是x 的反比例函数,不合题意;D 项,y =-2x -1,即y =-2x ,y 是x 的反比例函数,符合题意.故选D.15.A 因为200×0.50=250×0.40=400×0.25=500×0.20=1 000×0.10=100,所以y 是x 的反比例函数,且xy =100,所以y 关于x 的函数表达式为y =100x.故选A.16.2解析 ∵函数y =(m +1)·x m 2―m―3是y 关于x 的反比例函数,∴m +1≠0,m 2―m ―3=―1,解得m =2.17.4解析 由题意知y =kx ―2,∵当x =3时,y =4,∴4=k3―2,∴k =4×1=4.素养探究全练18.k 1<k 2解析 根据题意得k 1=mm +2,k 2=m +1m +3,∵m >0,∴k 1-k 2=mm +2―m +1m +3=m 2+3m ―m 2―3m ―2(m +2)(m +3)=-2(m +2)(m +3)<0,∴k 1<k 2.19.解析 (1)根据题意,得m 2+2m≠0,m2+m―1=1,解得m=1,故当m=1时,y是x的正比例函数.(2)根据题意,得m2+2m≠0,m2+m―1=2,解得m=―1±132,故当m=―1±132时,y是x的二次函数.(3)根据题意,得m2+2m≠0,m2+m―1=―1,解得m=-1,故当m=-1时,y是x的反比例函数.。
人教版九年级数学下册第二十六章-反比例函数专项练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知()13,y -,()215,y -,()32,y 在反比例函数2a y x=-上,则1y ,2y ,3y 的大小关系为( ))A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >>2、若反比例函数y =2k x+的图象在其所在的每一象限内,y 随x 的增大而减小,则k 的取值范围是( ) A .k <-2B .k >-2C .k <2D .k >23、若A (a 1,b 1),B (a 2,b 2)是反比例函数y=﹣x图像上的两个点,且a 1<a 2<0,则b 1与b 2的大小关系是( ) A .b 1>b 2B .b 1=b 2C .b 1<b 2D .大小不确定4、已知a 是满足3(2)4112a a a +≥+⎧⎪⎨-<⎪⎩的整数使得反比例函数()0a y a x =≠的图像在每一个象限内y 随着x 的增大而减小的概率是( ) A .14B .12C .32D .15、已知点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都在反比例函数y 21a x+=(a 是常数)的图象上,且y 1<y 2<0<y 3,则x 1,x 2,x 3的大小关系为( ) A .x 2>x 1>x 3B .x 1>x 2>x 3C .x 3>x 2>x 1D .x 3>x 1>x 26、已知函数y =kx (k ≠0)中y 随x 的增大而增大,那么它和函数(0)k y k x=≠在同一直角坐标平面内的大致图象可能是( )A .B .C .D .7、已知点()()121,,2,A y B y --在函数6y x=-的图象上,则12,y y 的大小关系是( )A .12y y <B .12y y >C .12y y =D .不能确定8、如图,函数()20y x x=-<的图象经过Rt ABO △斜边OB 的中点C ,连结AC .如果3AC =,那么ABO 的周长为( ).A .6+B .6+C .6+D .6+9、下列各点中,在反比例函数6y x=图象上的是( ) A .()-2,3B .()-2,-3C .()3,-2D .()1,-610、下列函数中,y 是关于x 的反比例函数的是( ) A .13y x =B .14y x =C .25y x =D .15y x -=第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若点()3,1A -、(),2B m 都在反比例函数()0k y k x=≠的图象上,则m 的值是___________.2、如图,点P 在反比例函数y =1x(x >0)的图象上,且横坐标为2.若将点P 先向右平移2个单位,再向上平移2个单位后所得图象为点P ′.则经过点P ′的反比例函数图象的关系式是 __________________.3、如图,函数11y x =-和函数22y x=的图象相交于点(2,)M m ,(1,)N n -,若12y y >,则x 的取值范围是_____.4、如图,四边形OABC 和四边形BDEF 都是正方形,反比例函数my x=在第一象限的图像经过点E ,若两正方形的面积差为3,则m 的值为______.5、若反比例函数(0)k y k x=≠的图象经过点A (-2,4)和点B (8,a ),则a 的值为________. 三、解答题(5小题,每小题10分,共计50分)1、如图,直线y 1=x +b 交x 轴于点B ,交y 轴于点A (0,2),与反比例函数2k y x=的图象交于C (1,m ),D (n ,-1),连接OC 、OD .(1)求k 的值; (2)求COD 的面积;(3)根据图象直接写出y 1<y 2时,x 的取值范围. 2、如图,点P 是反比例函数()110,0k y k x x=>>图象上一动点,过点P 作x 轴、y 轴的垂线,分别交x 轴、y 轴于A ,B 两点,交反比例函数2k y x=(20k <且21k k >)的图象于E ,F 两点,连接,,OE OF EF . (1)四边形PEOF 的面积1S = (用含12,k k 的式子表示); (2)设P 点坐标为(2,3).①点E 的坐标是( , ),点F 的坐标是( , )(用含2k 的式子表示); ②若OEF 的面积为154,求反比例函数2ky x =的解析式.3、如图,在平面直角坐标系中,一次函数y 1=kx +b (k ≠0)的图象与反比例函数y 2m x=(m ≠0)的图象相交于第一、三象限内的A (3,5),B (a ,﹣3)两点,与x 轴交于点C . (1)求该反比例函数和一次函数的解析式;(2)在y 轴上找一点P 使PB ﹣PC 最大,求PB ﹣PC 的最大值及点P 的坐标; (3)直接写出不等式kx +b mx>的解集.4、如图,一次函数1y kx b =+的图象与x 轴、y 轴分别交于点A ,B ,与反比例函数2(0)my m x=>的图象交于点C (1,2),D (2,n ). (1)分别求出两个函数的表达式;(2)结合图象直接写出当12y y <时,x 的取值范围. (3)连接OD ,求△BOD 的面积.5、一次函数5y x =+的图象与反比例函数ky x=的图象相交于()1,A m -,B 两点. (1)求反比例函数的解析式;(2)直接写出5k x x>+时x 的取值范围.---------参考答案----------- 一、单选题 1、A 【分析】先分清各点所在的象限,再利用各自的象限内利用反比例函数的增减性解决问题. 【详解】解:∵2a y x=-,k =−2a <0,∴双曲线在二、四象限,且每个象限内,y 随x 的增大而增大,∵点()13,y -,()215,y -,()32,y 在反比例函数2a y x=-的图象上,∴点()13,y -,()215,y -分布在第二象限, ∵-15<-3, ∴0<y 2<y 1,∵()32,y ,在第四象限, ∴y 3<0, ∴123y y y >>. 故选:A . 【点睛】本题主要考查了反比例函数的性质,正确掌握反比例函数增减性是解题关键,注意:反比例函数的增减性要在各自的象限内. 2、B根据反比例函数的图像在不同象限的增减性,判断出2k +的正负,进而求出k 的取值范围. 【详解】 解: y =2k x+的图象在其所在的每一象限内,y 随x 的增大而减小, 20k ∴+>,解得:2k >-,故选:B . 【点睛】本题主要是考查了反比例函数的图像与性质,熟练掌握k 值的正负与函数在其所在象限的增减性的关系,是求解该题的关键. 3、C 【分析】由0k =<得反比例函数过二四象限,在每个象限内y 随x 的增大而增大,即可得出答案. 【详解】20k =-,∴反比例函数y =过二四象限,在每个象限内y 随x 的增大而增大,120a a <<,12b b ∴<.故选:C . 【点睛】本题考查反比例函数的性质,掌握反比例函数的增减性是解题的关键. 4、B先求出不等式组的解集,再根据题意得出a 的值,最后根据反比例函数的性质求出满足题意的概率. 【详解】解:()324112a a a ⎧+≥+⎪⎨-<⎪⎩,解得:13a -≤<, ∵a 为整数∴a 的值为:-1,0,1,2,共4个整数, ∵0a ≠,且满足y 随着x 的增大而减小, ∴a 的值只能为:1,2,共2个整数, ∴满足题意的a 的值且能使反比例函数()0a y a x=≠满足y 随着x 的增大而减小的概率为2142=,故选:B . 【点睛】本题主要考查了解不等式组以及反比例函数的性质和求概率得相关知识,熟练掌握解不等式组以及反比例函数的性质是解答本题的关键. 5、D 【分析】先判断k =a 2+1>0,可知反比例函数的图象在一、三象限,再利用图象法可得答案. 【详解】 解:∵a 2+1>0,∴反比例函数y =21a x+(a 是常数)的图象在一、三象限,如图所示,当y 1<y 2<0<y 3时,x 3>0>x 1>x 2,故选:D . 【点睛】本题考查了反比例函数的图象和性质,理解“在每个象限内,y 随x 的增大而减小”以及图象法是解决问题的关键. 6、D 【分析】首先由“y =kx (k ≠0)中y 随x 的增大而增大”判定k >0,然后根据k 的符号来判断函数(0)k y k x=≠所在的象限. 【详解】解:∵函数y =kx (k ≠0)中y 随x 的增大而增大, ∴k >0,该函数图象经过第一、三象限; ∴函数(0)k y k x=≠的图象经过第一、三象限; 故选:D . 【点睛】本题考查反比例函数与一次函数的图象特点:①反比例函数ky x=的图象是双曲线;②当k >0时,它的两个分支分别位于第一、三象限;③当k <0时,它的两个分支分别位于第二、四象限. 7、A【分析】根据反比例函数图象上点的坐标特征可分别计算出12y y 、的值,然后比较大小即可.【详解】∵点()()121,,2,A y B y --在函数6y x =-的图象上 ∴1166y -==-,2632y ==-- ∴12y y <故选:A .【点睛】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.8、D【分析】过点C 作CE AO ⊥于E ,由直角三角形的性质可得6BO =,由三角形中位线性质可得2AB CE =,2AO EO =,由勾股定理可求AB AO +,即可求解.【详解】解:如图,过点C 作CE AO ⊥于E ,∵点C 是BO 的中点,∴3AC BC CO ===,∴6BO =,∵CE AO ⊥,AB AO ⊥,∴AB CE ∥,∴CE 是ABO ∆的中位线,∴2AB CE =,2AO EO =,∵点C 在()20y x x=-<上,∴2CE EO ⨯=,∴228AB AO CE EO ⨯=⨯=,∵22236AB AO OB +==,∴()23616AB AO +=+,∴AB AO +=∴ABO 的周长为:6AO BO AB ++=+故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,直角三角形斜边中线的性质,中位线的性质及判断,勾股定理,灵活运用这些性质是解题的关键.9、B【分析】根据反比例函数解析式可得xy =6,然后对各选项分析判断即可得解.【详解】解:∵6y x =,∴xy =6,A 、∵-2×3=-6≠6,∴点(-2,3)不在反比例函数6y x =图象上,故本选项不符合题意; B 、∵-2×(-3)=6,∴点(-2,-3)在反比例函数6y x =图象上,故本选项符合题意; C 、∵3×(-2)=-6≠6,∴点(3,-2)不在反比例函数6y x =图象上,故本选项不合题意; D 、∵1×(-6)=-6≠6,∴点(1,-6)不在反比例函数6y x =图象上,故本选项不合题意. 故选:B .【点睛】本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.10、D【分析】 根据反比例函数的定义,反比例函数解析式的三种形式:k y x =,xy k =,1y kx ,其中0k ≠即可得出答案.【详解】 A. 13y x =为正比例函数,错误; B. 4xy =为正比例函数,错误; C. 25y x =不是反比例函数,错误; D. 15y x -=是反比例函数,正确;故选D.【点睛】本题考查反比例函数的判断,熟练掌握函数解析式的三种形式是本题解题关键.二、填空题1、32-## 1.5-【解析】【分析】将点,A B 的坐标都代入反比例函数的解析式即可得.【详解】 解:点()3,1A -、(),2B m 都在反比例函数()0k y k x =≠的图象上,231k m ∴==-⨯, 解得32m =-, 故答案为:32-.【点睛】本题考查了反比例函数的图象与性质,熟练掌握反比例函数的图象与性质是解题关键.2、y =10x【解析】【分析】先将P 点横坐标代入解析式求出P 点纵坐标,再根据平移规律求出P '的坐标,利用待定系数法即可求出经过点P '的反比例函数图象的解析式.【详解】解:点P 在反比例函数1(0)y x x =>的图象上,且横坐标为2,∴点P 的纵坐标为12y =, P ∴点坐标为1(2,)2; 将点P 先向右平移2个单位,再向上平移2个单位后所得图象为点5(4,)2P '.设经过点P '的反比例函数图象的解析式是k y x =, 把点5(4,)2P '代入得:524k =,10k ∴=.∴反比例函数图象的解析式是10y x=. 故答案为:10y x=. 【点睛】 本题考查了用待定系数法确定反比例函数的解析式,反比例函数图象上点的坐标特征,解题的关键是熟练掌握待定系数法.3、10x -<<或2x >##2x >或10x -<<【解析】【分析】根据12y y >表示的是一次函数的图象位于反比例函数的图象的上方即可得.【详解】解:12y y >表示的是一次函数的图象位于反比例函数的图象的上方,则由函数图象可知,10x -<<或2x >,故答案为:10x -<<或2x >.【点睛】本题考查了一次函数与反比例函数的综合,熟练掌握函数图象法是解题关键.4、3【解析】【分析】设E 点坐标为(a ,b ),正方形OABC 的边长为s ,正方形BDEF 的边长为t ,根据图形可知s t b s t a+=⎧⎨-=⎩,再由两个正方形的面积的差值为3,得到223s t -=,即()()3s t s t +-=,由此求解即可.【详解】解:设E 点坐标为(a ,b ),正方形OABC 的边长为s ,正方形BDEF 的边长为t ,∴s t b s t a +=⎧⎨-=⎩, ∵两个正方形的面积的差值为3,∴223m n -=,∴()()3s t s t +-=,∴3ab =,∵E 在反比例函数m y x=上, ∴3m ab ==,故答案为:3.【点睛】本题主要考查了反比例函数比例系数的几何意义,平方差公式,解题的关键在于能够根据题意得到s t b s t a+=⎧⎨-=⎩. 5、1-【解析】【分析】把A 点坐标代入解析式,然后求8x =时函数值即可.【详解】把A 点坐标(2,4)-代入解析式得:42k =-, 解得:8k =-∴反比例函数8y x=-, ()8,B a 在反比例函数8y x =-上, ∴881a =-=-.故答案为:1-.【点睛】本题主要考查求反比例函数解析式,和函数值,解题的关键是熟知待定系数法确定函数关系式.三、解答题1、(1)3k =;(2)4;(3)3x <-或01x <<【分析】(1)把A 点坐标代入1y x b =+中,即求出b 的值,即可得出一次函数的表达式.再把C (1,m )、D (n ,-1)代入一次函数表达式,即求出C 、D 的坐标,最后把C 点坐标代入2ky x =,求出k 即可;(2)直接利用1122COD AOD AOC D C S S S OA x OA x =+=⋅+⋅△△△,即可求出结果; (3)根据反比例函数图象在一次函数图象上方时,12y y <,再结合点C 、点D 的坐标和图象即可得出结果.【详解】解:(1)∵点(02)A ,在直线1y x b =+上, ∴20b =+,即2b =,∴直线的解析式为12y x =+.∵点()1C m ,和点()1D n -,在直线12y x =+上, ∴123m =+=,12n -=+,解得:3m =,3n =-,∴()13C ,,()31D --,, 又∵()13C ,在反比例函数2ky x=上, ∴31k =,解得:3k =.(2)∵()02A ,, ∴2OA =, ∴1111232142222COD AOD AOC D C S S S OA x OA x =+=⋅+⋅=⨯⨯+⨯⨯=△△△. (3)要使12y y <,即反比例函数图象在一次函数图象上方即可,即3x <-或01x <<时.【点睛】此题考查用待定系数法求一次函数和反比例函数的解析式,函数图象上点的坐标特征,函数的图象和性质的应用.利用数形结合的思想是解题的关键.2、(1)k 1-k 2;(2)①2,22k ;23k ,3;②9y x =- 【分析】(1)根据反比例函数中比例系数k 的几何意义即可解答;(2)①根据PE ⊥x 轴,PF ⊥y 轴可知,P 、E 两点的横坐标相同,P 、F 两点的纵坐标相同,分别把P 点的横纵坐标代入反比例函数y =2k x 即可求出E 、F 两点的坐标; ②先根据P 点的坐标求出k 1的值,再由E 、F 两点的坐标用k 2表示出PE 、PF 的长,再用k 2表示出△PEF 的面积,把(1)的结论代入求解即可.【详解】解:(1)∵P 是点P 是反比例函数y =1k x (k 1>0,x >0)图象上一动点, ∴S 矩形PBOA =k 1,∵E 、F 分别是反比例函数y =2k x (k 2<0且|k 2|<k 1)的图象上两点, ∴S △OBF =S △AOE =12|k 2|,∴四边形PEOF 的面积S 1=S 矩形PBOA +S △OBF +S △AOE =k 1+|k 2|,∵k 2<0,∴四边形PEOF 的面积S 1=S 矩形PBOA +S △OBF +S △AOE =k 1+|k 2|=k 1-k 2.故答案为:k 1-k 2;(2)①∵PE ⊥x 轴,PF ⊥y 轴可知,P 、E 两点的横坐标相同,P 、F 两点的纵坐标相同,∴E 、F 两点的坐标分别为E (2,22k ),F (23k ,3);故答案为:2,22k ;23k ,3; ②∵P (2,3)在函数y =1k x的图象上, ∴k 1=6, ∵E 、F 两点的坐标分别为E (2,22k ),F (23k ,3); ∴PE =3-22k ,PF =2-23k , ∴S △PEF =2222(6)1(3)(2)22312k k k ---=, ∴S △OEF =()222221(6)151212436k k k k ----==, ∴2281k =,∵k 2<0,∴k 2=-9.∴反比例函数y =2k x 的解析式为9y x =-. 【点睛】本题考查了反比例函数综合题,涉及到反比例函数系数k 的几何意义及三角形的面积公式、两点间的距离公式,涉及面较广,难度较大.3、(1)y 1=x +2,y 215x =;(2)最大值P (0,2);(3)﹣5<x <0或x >3 【分析】(1)利用待定系数法即可解决问题;(2)求得直线y 1与y 轴的交点即为P 点,此时,PB ﹣PC =BC 最大,利用勾股定理即可求得最大值;(3)根据图象即可求得.【详解】解:(1)把A(3,5)代入y2mx=(m≠0),可得m=3×5=15,∴反比例函数的解析式为y215x =,把点B(a,﹣3)代入,可得a=﹣5,∴B(﹣5,﹣3).把A(3,5),B(﹣5,﹣3)代入y1=kx+b,可得3553k bk b⎧⎨-⎩+=+=,解得12kb⎧⎨⎩==,∴一次函数的解析式为y1=x+2;(2)一次函数的解析式为y1=x+2,令x=0,则y=2,∴一次函数与y轴的交点为P(0,2),此时,PB﹣PC=BC最大,P即为所求,令y=0,则x=﹣2,∴C(﹣2,0),过B点向x轴作垂线,由勾股定理可得:BC=(3)∵A(3,5),B(﹣5,﹣3)∴根据函数图象可知,当y1>y2时,﹣5<x<0或x>3.即kx+bmx>的解集为:﹣5<x<0或x>3.【点睛】本题考查了反比例函数与一次函数综合,待定系数法求解析式,数形结合是解题的关键.4、(1)一次函数解析式为13y x =-+,反比例函数解析式为22y x =;(2)01x <<或2x >;(3)3【分析】(1)先根据一次函数1y kx b =+与反比例函数2m y x =的图象交于点C (1,2),D (2,n ),求出2m =,则反比例函数解析式为22y x =,由此即可得到1n =,然后把C 、D 坐标代入一次函数解析式进行求解即可;(2)根据当12y y <时,即求此时一次函数图像在反比例函数图像的下方的自变量的取值范围,进行求解即可;(3)先求出B 点坐标,得到OB 的长,再由1=2BOD D S OB x ⋅△进行求解即可.【详解】解:(1)∵一次函数1y kx b =+与反比例函数2m y x =的图象交于点C (1,2),D (2,n ), ∴21m =, ∴2m =, ∴反比例函数解析式为22y x =, ∴212n ==,∴点D 的坐标为(2,1),∴221k b k b +=⎧⎨+=⎩, ∴13k b =-⎧⎨=⎩, ∴一次函数解析式为13y x =-+;(2)由函数图像可知当12y y <时,即求此时一次函数图像在反比例函数图像的下方的自变量的取值范围,∴当12y y <时,01x <<或2x >;(3)∵B 是一次函数13y x =-+与y 轴的交点,∴B 点坐标为(0,3),∴OB =3, ∴1=32BOD D S OB x ⋅=△.【点睛】本题主要考查了一次函数与反比例函数综合,一次函数与坐标轴交点问题,三角形面积,解题的关键在于能够熟练掌握待定系数法求函数解析式.5、(1)4y x -=;(2)4x <-或10x -<< 【分析】(1)由题意根据一次函数y =x +5的图象与反比例函数k y x =(k 为常数且k ≠0)的图象相交于A (-1,m ),可得m =4,进而可求反比例函数的表达式;(2)根据题意先求出B 的坐标,然后根据图象可以直接得出结论.【详解】解:(1)由题意,将点()1,A m -代入一次函数5y x =+得154m =-+=所以()1,4A -将()1,4A -代入ky x = 得41k ,解得4k =- 则反比例函数的解析式为4y x-=; (2)由题意联立方程组54y x y x =+⎧⎪-⎨=⎪⎩, 解得:1141x y =-⎧⎨=⎩或2214x y =-⎧⎨=⎩, ∴B (-4,1),由图可知,在B 的左侧和A 的右侧,y 轴的左侧之间,k y x =的图象在y =x +5的图象的上方, 所以k x >x +5时x 的取值范围为:4x <-或10x -<<.【点睛】本题考查反比例函数与一次函数的交点问题及函数图象与不等式之间的关系,解决本题的关键是掌握反比例函数与一次函数的性质.。
反比例函数练习一、选择题1.点(−1,4)在反比例函数y =kx 的图象上,则下列各点在此函数图象上的是( )A. (4,−1)B. (−14,1)C. (−4,−1)D. (14,2)2.在同一平面直角坐标系中,函数y =−x +k 与y =kx (k 为常数,且k ≠0)的图象大致是( )A. B. C. D.3.如图,在平面直角坐标系上,△ABC 的顶点A 和C 分别在x 轴、y 轴的正半轴上,且AB//y 轴,点B(1,3),将△ABC 以点B 为旋转中心顺时针方向旋转90°得到△DBE ,恰好有一反比例函数y =kx 图象恰好过点D ,则k 的值为( )A. 6B. −6C. 9D. −94.如图,正方形ABCD 的边长为10,点A 的坐标为(0,−8),点B 在x 轴上,若反比例函数y =kx (k ≠0)的图象过点C ,则该反比例函数的表达式为( )A. y =6xB. y =−12x C. y =10xD. y =−10x5.如图,点A在双曲线y=kx的图象上,AB⊥x轴于点B,且△AOB的面积为2,则k的值为()A. 4B. −4C. 2D. −26.若点A(−1,y1),B(2,y2),C(3,y3)在反比例函数y=6x的图象上,则y1,y2,y3的大小关系是( )A. y3<y2<y1B. y2<y1<y3C. y1<y3<y2D. y1<y2<y37.如下图,点A,P在函数y=kx(x<0)的图象上,AB⊥x轴,则▵ABO的面积为()A. 1B. 2C. 3D. 48.若点A(a,m)和点B(b,n)均在反比例函数y=7x的图象上,且a<b,则()A. m>nB. m<nC. m=nD. m,n的大小无法确定9.已知反比例函数的图象经过点(2, −1),则它的解析式是()A. y=−2xB. y=2xC. y=2x D. y=−2x10.如图,在平而直角坐标系中,一次函数y=−4x+4的图象与x轴、y轴分别交于A、B两点.正方形ABCD的项点C、D在第一象限,顶点D在反比例函数y=kx(k≠0)的图象上.若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图象上,则n的值是( )A. 2B. 3C. 4.D. 511.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=6(x>0)的图象x上,则经过点B的反比例函数解析式为( )A. y=−6xB. y=−4xC. y=−2xD. y=2x(x>0)的图象位于( )12.反比例函数y=−4xA. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题(k是常数,k≠1)的图象有一支在第二象限,那么k的取13.已知反比例函数y=k−1x值范围是______.在第一象限的图象如图所示,点A在其14.已知反比例函数y=6x图象上,点B为x轴正半轴上一点,连接OA,AB,且=________.AO=AB,则S△AOB的图象有一个交点P(2,m),则正比例15.已知,正比例函数y=kx与反比例函数y=6x函数y=kx的解析式为______.上,则m2+n2的值为16.已知:点P(m,n)在直线y=−x+2上,也在双曲线y=−1x______。
第 26 章反比例函数专项训练反比例函数与几何的综合应用名师点金:解反比例函数与几何图形的综合题,一般先设出几何图形中的未知数,然后结合函数的图象用含未知数的式子表示出几何图形与图象的交点坐标,再由函数解析式及几何图形的性质写出含未知数及待求字母系数的方程( 组) ,解方程 ( 组) 即可得所求几何图形中的未知量或函数解析式中待定字母的值.反比例函数与三角形的综合61.如图,一次函数 y=kx+ b 与反比例函数 y=x(x>0) 的图象交于 A(m,6) ,B(3, n) 两点.(1)求一次函数的解析式;6(2)根据图象直接写出使 kx+ b<x成立的 x 的取值范围;(3)求△ AOB的面积.(第1题)2.如图,点 A,B 分别在 x 轴、 y 轴上,点 D 在第一象限内, DC⊥ x 轴于点kC,AO=CD= 2, AB=DA=5,反比例函数 y=x(k >0) 的图象过 CD的中点 E.(1)求证:△ AOB≌△ DCA;(2)求 k 的值;(3) △BFG和△ DCA关于某点成中心对称,其中点 F 在 y 轴上,试判断点 G 是否在反比例函数的图象上,并说明理由.(第2题)反比例函数与四边形的综合类型 1:反比例函数与平行四边形的综合63.如图,过反比例函数y=x(x >0) 的图象上一点 A 作 x 轴的平行线,交双33曲线 y=-x(x <0) 于点 B,过 B 作 BC∥OA交双曲线 y=-x(x <0) 于点 D,交 x 轴于点 C,连接 AD交 y 轴于点 E,若 OC=3,求 OE的长.(第3题)类型 2:反比例函数与矩形的综合4.如图,矩形 OABC的顶点 A,C的坐标分别是 (4 , 0) 和(0 ,2) ,反比例函k数 y=x(x>0) 的图象过对角线的交点P 并且与 AB,(第4题)BC分别交于 D,E 两点,连接 OD, OE,DE,则△ ODE的面积为 ________.5.如图,在平面直角坐标系中,矩形OABC的对角线 OB,AC相交于点 D,且 BE∥ AC,AE∥ OB.(1)求证:四边形 AEBD是菱形;(2)如果 OA=3,OC=2,求出经过点 E 的双曲线对应的函数解析式.(第5题)类型 3:反比例函数与菱形的综合6.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边 BC与 x 轴平3行, A,B 两点的纵坐标分别为3,1,反比例函数 y=x的图象(第6题)经过 A,B 两点,则菱形 ABCD的面积为 ()A.2B. 4C.22D.4 27.如图,在平面直角坐标系中,菱形ABCD的顶点 C 与原点 O 重合,点 Bk在 y 轴的正半轴上,点 A 在反比例函数y=x(k>0 ,x>0) 的图象上,点 D 的坐标为(4 ,3) .(1)求 k 的值;(2)若将菱形 ABCD沿 x 轴正方向平移,当菱形的顶点 D落在反比例函数 y=kx(k>0 ,x>0) 的图象上时,求菱形ABCD沿 x 轴正方向平移的距离.(第7题)类型 4:反比例函数与正方形的综合8.如图,在平面直角坐标系中,点O为坐标原点,正方形OABC的边 OA,kOC分别在 x 轴, y 轴上,点 B 的坐标为 (2 , 2) ,反比例函数 y=x(x >0,k≠0)的图象经过线段BC的中点 D(1)求 k 的值;(2)若点 P(x ,y) 在该反比例函数的图象上运动 ( 不与点 D 重合 ) ,过点 P 作PR⊥y 轴于点 R,作 PQ⊥ BC 所在直线于点 Q,记四边形 CQPR的面积为 S,求 S关于 x 的函数解析式并写出x 的取值范围.(第8题)反比例函数与圆的综合(第9题)k9.如图,双曲线 y=x(k>0) 与⊙ O在第一象限内交于P,Q两点,分别过 P,Q两点向 x 轴和 y 轴作垂线,已知点P 的坐标为 (1 ,3) ,则图中阴影部分的面积为 ________.k10.如图,反比例函数y=x(k <0) 的图象与⊙ O相交.某同学在⊙ O内做随机扎针试验,求针头落在阴影区域内的概率.(第 10题)答案61.解: (1) ∵A(m,6) , B(3,n) 两点在反比例函数y=x(x>0) 的图象上,∴m=1,n=2,即 A(1 ,6) ,B(3,2) .又∵ A(1,6) ,B(3, 2) 在一次函数 y=kx+b 的图象上,∴6= k+ b,k=- 2,解得b= 8,2= 3k+b,即一次函数解析式为y=- 2x+8.(第1题)6(2)根据图象可知使 kx +b<x成立的 x 的取值范围是 0<x<1 或 x>3.(3)如图,分别过点 A,B 作 AE⊥x 轴, BC⊥ x 轴,垂足分别为 E,C,设直线AB交 x 轴于 D点.令- 2x+8=0,得 x= 4,即 D(4, 0) .∵A(1, 6) ,B(3,2) ,∴ AE=6,BC= 2.11∴S△AOB=S△AOD-S△ODB=2×4×6-2×4×2=8.2.(1) 证明:∵点 A,B 分别在 x 轴, y 轴上,点 D 在第一象限内, DC⊥x 轴于点 C,∴∠ AOB=∠ DCA=90°.AO=DC,∴Rt△ AOB≌Rt△ DCA.在 Rt△AOB和 Rt△ DCA中,∵AB=DA,(2)解:在 Rt△ ACD中,∵ CD= 2, DA= 5,22∴AC=DA-CD= 1. ∴OC=OA+ AC=2+1=3.∴D点坐标为 (3 ,2) .∵点 E 为 CD的中点,∴点 E 的坐标为 (3 ,1) .∴ k=3×1=3.(3)解:点 G在反比例函数的图象上.理由如下:∵△ BFG和△ DCA关于某点成中心对称,∴△ BFG≌△ DCA.∴FG=CA= 1,BF=DC= 2,∠ BFG=∠ DCA=90°.∵OB=AC= 1,∴ OF=OB+BF= 1+ 2= 3. ∴G点坐标为 (1 ,3) .∵1×3=3,∴点 G(1,3) 在反比例函数的图象上.3.解: ∵BC ∥OA ,AB ∥ x 轴,∴四边形 ABCO 为平行四边形. ∴AB =OC = 3.66设 A a , a ,则 B a -3,a ,6∴ (a -3) · a =- 3. ∴a =2.∴ A (2,3) ,B(-1,3) .∵OC =3,C 在 x 轴负半轴上,∴ C(-3,0) , 设直线 BC 对应的函数解析式为 y =kx + b ,3-3k + b = 0,k =2, 则 解得9 -k +b =3,b =2.3 9∴直线 BC 对应的函数解析式为 y =2x + 2.391=- , x 2=- 2,y =2x + 2,x3 解方程组得3y 1=3,y 2=2. y =- x ,3∴D -2,2 .设直线 AD 对应的函数解析式为 y =mx + n ,2m +n = 3,3m = 8, 则 3 解得- 2m +n = ,92n = 4.∴直线 AD 对应的函数解析式为y =38x + 94.∴E 0, 9 ∴= 94.OE 4.154. 4点拨:因为 C(0,2) ,A(4,0) ,由矩形的性质可得 P(2,1) ,把 P2点坐标代入反比例函数解析式可得k =2,所以反比例函数解析式为 y = x . 因为 D点的横坐标为2124,所以 AD== . 因为点 E 的纵坐标为 2,所以 2=,所以 CE 42CE915=1,则 BE=3. 所以 S△ODE= S 矩形OABC- S△OCE-S△BED-S△OAD= 8- 1-4-1=4 .5.(1) 证明:∵BE∥ AC,AE∥OB,∴四边形 AEBD是平行四边形.11∵四边形 OABC是矩形,∴ DA=2AC,DB=2OB,AC=OB.∴DA=DB.∴四边形 AEBD是菱形.(2)解:如图,连接 DE,交 AB于 F,∵四边形 AEBD是菱形,1319∴DF=EF=2OA=2, AF=2AB= 1. ∴E 2,1 .k设所求反比例函数解析式为y=x,把点9E 2,1的坐标代入得k1=9,解得9k=2.29∴所求反比例函数解析式为y=2x.(第5题)(第7题)6.D7.解: (1) 如图,过点 D 作 x 轴的垂线,垂足为 F.∵点 D 的坐标为 (4 , 3) ,∴ OF=4,DF=3. ∴ OD=5.∴AD=5. ∴点 A 的坐标为 (4 ,8) .∴ k=xy= 4×8=32.(2) 将菱形ABCD沿x 轴正方向平移,使得点 D 落在函数32y= x (x>0)的图象上点 D′处,过点 D′作 x 轴的垂线,垂足为F′.∵DF=3,∴ D′F′= 3. ∴点 D′的纵坐标为 3.323232∵点 D′在 y=x的图象上,∴ 3=x,解得 x=3,323220即 OF′=3 . ∴FF′=3-4=3 .20∴菱形 ABCD沿 x 轴正方向平移的距离为 3 .8.解: (1) ∵正方形 OABC的边 OA,OC分别在 x 轴, y 轴上,点 B 的坐标为 (2 ,2) ,∴ C(0,2) .k∵D是 BC的中点,∴ D(1,2) .∵反比例函数 y=x(x >0,k≠ 0) 的图象经过点 D,∴ k=2.(2)当 P 在直线 BC的上方,即 0<x<1 时,2∵点 P(x ,y) 在该反比例函数的图象上运动,∴y=x.∴S 四边形 CQPR=· =·2-2=-2x;当P在直线BC的下方,即x>1 CQ PQ x x2时,同理求出S 四边形 CQPR=· =·2-2=2x-2,综上,S=CQ PQ x x2x- 2(x>1),2-2x(0<x<1).9.410.解:∵反比例函数的图象关于原点对称,圆也关于原点对称,故阴影部11分的面积占⊙ O面积的4,则针头落在阴影区域内的概率为4.。
人教版九年级数学下册第二十六章《反比例函数——反比例函数》同步检测8附答案一、选择题(本大题8个小题,每小题4分,共32分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个答案是正确的,请选出填在本大题后的表格内。
1、下列函数是反比例函数的是( )A 、y=3xB 、y=x 36C 、y=x 2D 、y=4x+8 2、如图,这是( )个函数的大致图像。
A 、y=-5xB 、y=2x+8C 、y=5x D 、y=-3x 3、函数x y 1-=的图象上有两点),(11y x A 、),(22y x B 且21x x <,那么下列结论正确的是( )A.21y y <B.21y y >C.21y y =D.1y 与2y 之间的大小关系不能确定4、若y 与x 成正比,y 与z 的倒数成反比,则z 是x 的( )A.正比例函数B.反比例函数C.二次函数D.z 随x 增大而增大5、下列函数中y 既不是x 的正比例函数,也不是反比例函数的是( )A.y=-x 91B.10=-x :5yC.y=421x D. 51xy=-2 6、在第三象限中,下列函数,y 随x 的增大而减小的有( )。
①、y=-3x ②、y=x8 ③、y=-2x+5 ④、y=-5x-6 A 、1个 B 、2个 C 、3个 D 、4个※7、函数y kx =-与y kx =(k ≠0)的图象的交点个数是( )A. 2B.1C. 0D.不确定※8、若点(3,4)是反比例函数xm m y 122++=图象上一点,则此函数图象必经过点( ) A.(3,-4) B.(2,-6) C.(4,-3) D. (2,6)二、填空题(本大题6个小题,每小题3分,共18分)每小题中,请将答案直接写在题后横线上。
9、一般地,函数 是反比例函数,其图象是 ,当k <0时,图象两支在 象限内。
10、反比例函数y=x2,当y=6时,x =_________。
人教版九年级下第二十六章反比例函数测试卷含答案第二十六章 反比例函数单元测试卷一.选择题:(每题3分,共21分)1.下列函数中,变量y 是x 的反比例函数的是( ).A . 21xy =B .1--=x y C .32+=x y D .11-=x y 2.在物理学中压力F ,压强p 与受力面积S 的关系是:SFp =则下列描述中正确的是( ).A 当压力F 一定时,压强p 是受力面积S 的正比例函数;B 当压强p 一定时,压力F 是受力面积S 的反比例函数;C 当受力面积S 一定时,压强p 是压力F 的反比例函数;D 当压力F 一定时,压强p 是受力面积S 的反比例函数3.反比例函数xy 6=与一次函数1+=x y 的图象交于点)3,2(A ,利用图象的对称性可知它们的另一个交点是( ).A )2,3(B )2,3(--C )3.2(--D )3,2(-4.若r 为圆柱底面的半径,h 为圆柱的高.当圆柱的侧面积一定时,则h 与r 之间函数关系的图象大致是( ).5.某气球内充满了一定质量的气体,当温度不变时,气球 内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图 象如图所示.当气球内的气压大于140kPa 时,气球将爆炸,为了安全起见,气体体积应( ). (13题图) A .不大于3m 3524;B .不小于3m 3524;C .不大于3m 3724;D .不小于3m 37246.如图,正比例函数k 1-( ). A B C DA .B .C .D .7.正方形ABCD 的顶点A (2,2),B(-2,2)C(-2,-2),反比例函数xy 2=与x y 2-=的图象均与正方形ABCD的边相交,如图,则图中的阴影部分的面积是( ) . A 、2 B 、4 C 、8 D 、6二.填空题:(每题3分,共24分)8.函数13--=x y 的自变量的取值范围是 . 9.反比例函数xy 6=当自变量2-=x 时,函数值是 .10.图象经过点)4,2(--A 的反比例函数的解析式为 . 11.当0<x 时,反比例函数xy 3-=中,变量y 随x 的增大而 . 12.函数2||)1(--=k x k y 是y 关于x 反比例函数,则它的图象不经过 的象限.13.反比例函数x ky =与一次函数2+=x y 图象的交于点),1(a A -,则=k . 14.反比例函数xk y 1+=的图象经过),(11y x A ,),(22y x B 两点,其中021<<x x 且21y y >,则k 的范围是 .15.已知:点A 在反比例函数图象上,B x AB 轴于点⊥, 点C (0,1),且AB C ∆的面积是3,如图,则反比 例函数的解析式为 . 三.解答题:(共55分) 16、(9分)函数12)1(---=m m xm y 是反比例函数,(1)求 m 的值;(2)指出该函数图象所在的象限,在每个象限内,y 随x 的增大如何变化?;(3)判断点(12 ,2)是否在这个函数的图象上.17、(9分)如图,一次函数b kx y +=的图像与反比例函数xmy =的图像相交于A 、B 两点,(1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图像写出使一次函数的值大于反比例函数的值的x18.(10分)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面时,面条的总长度y (m )是面条的粗细(横截面积)S 2其图象如图所示.⑴写出y (m )与S (mm 2)的函数关系式;⑵求当面条粗1.6 mm 2时,面条的总长度是多少米?19.(10分)如图,正方形ABCD 的边长是2,E ,F 分别在BC ,CD 两边上,且E ,F 与BC ,CD 两边的端点不重合,AEF ∆的面积是1,设BE=x ,DF=y.(1)求y 关于x 函数的解析式;(2) 判断在(1)中,y 关于x 的函数是什么函数? (3)写出此函数自变量x 的范围.20.(7分)已知:反比例函数的图象经过)2,1(a a A )1,12(aaa a B ---两点, 〈1〉 求反比例函数解析式;〈2〉 若点C )1,(m 在此函数图象上,则ABC ∆的面积是 .(填空)21.(10分)如图,已知直线m x y +=1与x 轴,y 轴分别交于点A 、B ,与双曲线xky =2(x <0)分别交于点C 、D ,且点C 的坐标为(-1,2). ⑴ 分别求出直线及双曲线的解析式;⑵利用图象直接写出,当x 在什么范围内取值时,21y y >.xyD CBAO答案:一、选择题:1.B ;2.D ;3.B ;4.B ;5.B ;6.D ;7.C 二.填空题:8.1≠x ;9.3-=y ;10.xy 8=;11.增大;12.第一、三象限;13. ,1- 14.1->k 15.xy 6=; 三.解答题:16.解:(1)m 2-m-1=-1,m=0或m=1.因为m-1≠0,所以m=0.(2)所以解析式为x y 1-=,在每个象限内y 随x 的增大而增大;(3)将x=21代入得:y=-2. 17.(1)将A(-2,1)代入y=x m 得:m=-2.所以反比例函数y=x2-,将(1,n )代入反比例函数得:n=-2.将(-2,1),(1,-2)代入y=kx+b 中,得k=-1,b=-1,所以y=-x-1.(2)x<-2或0<x<1.18(1) xy 128= (2)80m ; 19.(1)3+=x y xy 2-=(2)12-<<-x20.<1>x y 2=,<2> 3 21.(1)xy 2=(2)反比例函数(3)20<≤x。
人教版九年级数学下册《26.1反比例函数》练习题(含答案)一、选择题1.下列函数是反比例函数的是( )A .B .y=x 2+xC .y=3xD .y=4x+82.已知变量y 与x 成反比例,当x =4时,8y =-;则当y =4时,x 的值是 ( )A .8B .-8C .12D .-12 3.函数k y x =的图象经过点()2,3,那么k 等于( ) A .6 B .16 C .23 D .324.已知反比例函数2k y x -=,其图象在第二、四象限内,则k 的值可为( ) A .0 B .2 C .3 D .55.点()13,A y -,()21,B y ,()33,C y 在反比例函数3y x -=的图象上,则1y ,2y ,3y 的大小关系是( )A .231y y y >>B .132y y y >>C .221y y y >>D .312y y y >> 6.在平面直角坐标系xOy 中,若函数)(0k y x x =<的函数值y 随着自变量x 的增大而增大,则函数)(0k y x x=<的图象所在的象限为( ) A .第一象限 B .第二象限C .第三象限D .第四象限 7.下列坐标是反比例函数3y x =图象上的一个点的坐标是( )A.(1,3) B .(3,1)- C .(3,1)- D .(8.对于反比例函数y =4x,下列说法不正确的是( ) A .这个函数的图象分布在第一、三象限B .点(1,4)在这个函数图象上C .这个函数的图象既是轴对称图形又是中心对称图形D .当x >0时,y 随x 的增大而增大9.如图,反比例函数a y x=-与6y x =的图像上分别有一点A ,B ,且AB x ∥轴,AD x ⊥轴于D ,BC x ⊥轴于C ,若矩形ABCD 的面积为8,则=a ( )A .-2B .-6C .2D .610.如图,已知反比例函数()>0k y x x=的图象上有一点P ,PA x ⊥轴于点A ,点B 在y 轴上,PAB △的面积为3,则k 的值为( )A .6B .12C .3-D .6-二、填空题11.正比例函数与反比例函数的一个交点为 123⎛⎫- ⎪⎝⎭,,当正比例函数的图像在反比例函数图像的上方时,则 x 的取值范围是_____________12.如图,四边形ABCD 为矩形,E 为对角线AC 的中点,A 、B 在x 轴上.若函数y =4x (x >0)的图像过D 、E 两点,则矩形ABCD 的面积为_______________13.如图,直线AB 与x 轴交于点()2,0A -,与x 轴夹角为30°,将ABO 沿直线AB 翻折,点O 的对应点C 恰好落在双曲线()0k y k x=≠上,则k 的值为______.14.如图,已知()11,A y ,()22,B y 是反比例函数2y x=图象上的两点,动点(),0P x 在x 轴正半轴上运动,当AP BP -达到最大时,点P 的坐标是______.15.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =k x(x <0)的图象上,则k 的值为______.三、解答题16.若函数y=(m+1)231m m x ++是反比例函数,求m 的值17.(1)已知y 与x ﹣2成反比例,当x =4时,y =3,求y 关于x 的解析式;(2)在平面直角坐标系中,点O 为坐标原点,直线l 与抛物线2y mx nx =+相交于A (1,,B (4,0)两点.求出抛物线的解析式.18.已知反比例函数y =8m x-(m 为常数) (1)若函数图象经过点A (-1,6),求m 的值:(2)若函数图象在第二、四象限,求m 的取值范围.19.如图,已知函数1k y x=的图象与一次函数222y x =+的图象交于点(),4A m 和点B .(1)求反比例函数的关系式;(2)如果点C 与点A 关于x 轴对称,求ABC 的面积.20.如图,在平面直角坐标系中,正比例函数y kx =的图象1L 与反比例函数6k y x-=的图象2L 的两个交点分别为()1,A a ,(),B m n . (1)则=a ______________,m =______________,n =______________;(2)求双曲线2L 的函数表达式;(3)若()3,C c 在双曲线2L 上,过点C 作CD x ⊥轴,垂足为D .求四边形AODC 的面积; (4)若6k kx x->,请根据图象,直接写出x 的取值范围.21.如图一次函数113y k x =+的图象与坐标轴相交于点()2,0A -和点B ,与反比例函数22(0)k y x x=>的图象相交于点()2,C m .(1)求出一次函数与反比例函数的解析式;(2)若点P 是反比例函数图象上的一点,连接CP 并延长,交x 轴正半轴于点D ,若:1:2PD CP =时,求COP 的面积;(3)在(2)的条件下,在y 轴上是否存在点Q ,使PQ CQ +的值最小,若存在请直接写出PQ CQ +的最小值,若不存在请说明理由.22.如图(1),一次函数y =ax +b 的图象与反比例函数k y x=的图象交于A (4,4),B (m ,﹣2)两点.(1)求反比例函数与一次函数的关系式.(2)C (0,n )为y 轴负半轴上一动点,作CD AB 与x 轴交于点D ,交反比例函数于点E . ①如图(1),当D 为CE 的中点时,求n 的值.①如图(2),过点E 作y 轴的垂线,交直线AB 于点F ,若48EF <≤,请直接写出n 的取值范围.23.如图,在平面直角坐标系xOy 中,正方形ABCD 的边AB 在x 轴的正半轴上,顶点C ,D 在第一象限内,正比例函数y 1=3x 的图象经过点D ,反比例函数2(0)k y x x =>的图象经过点D ,且与边BC 交于点E ,连接OE ,已知AB =3.(1)点D 的坐标是 ;(2)求tan ①EOB 的值;(3)观察图象,请直接写出满足y 2>3的x 的取值范围;(4)连接DE ,在x 轴上取一点P ,使98DPE S =,过点P 作PQ 垂直x 轴,交双曲线于点Q ,请直接写出线段PQ 的长.【参考答案】1.A 2.B 3.A 4.A 5.B 6.B 7.A 8.D 9.C 10.D 11.2x <-或02x <<12.813.14.3,015.6-16.m 的值是﹣2.17.(1)62y x =-(2)2y =+ 18.(1)2;(2)8m <19.(1)反比例函数表达式为4y x =;(2)12ABC S = 20.(1)3,-1,-3;(2)3y x =;(3)112;(4)-1<x <0或x >121.(1)212(0)y x x =>;(2)S ①OPC = 16;(3) 22.(1)y =16x;y =12x +2;(2)①n =2±;①20n -≤<. 23.(1)(1,3);(2)316;(3)01x <<;(4)12或34。
九年级下周练数学试卷
一.选择题(每小题3分,共30分) 1.已知反比例函数的图象经过点(2,3),则它的图象一定也经过( ) A .(-2,-3) B .(2,-3) C .(-2,3) D .(0,0) 2.在同一坐标系内,函数k
y x
=
与3y kx =+的图象大致是( )
3.如图,已知△ABC ,D ,E 分别是AB ,AC 边上的点.AD=3cm ,AB=8cm ,AC=•10cm . 若△ADE ∽△ABC ,则AE 的值为( )cm
A .
415 B.154 C.512 D. 12
5 4. 已知反比例函数y =
,当1<x <2时,y 的取值范围是( )
A . 0<y <5
B . 1<y <2
C . 5<y <10
D . y >10
第3题图 第5题图
5.如图,在△ABC 中,点D 、E 、F 分别在AB 、AC 、BC 上,且DE ∥BC ,EF ∥AB ,若AD=2BD,则
CF
BF
的值是:( ) A. 3
1 B 、1
2 C 、14 D 、23
6.一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图的扇形的圆心角是( )
A .120°
B .180°
C .240°
D .300° 7.如图,△ABC 中,D 是AB 上的点,不能判定△ACD ∽△ABC 的 是以下条件中的( )
A 、∠ACD=∠
B B、∠ADC=∠ACB
C 、AC 2=AD·AB
D 、AD ∶AC =CD ∶BC
8.如图,在平行四边形ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,DF :FB=2:5,则DE :EC=( ) A . 2:5 B . 2:3 C . 3:5 D . 3:2
A .
x
y
O B . x
y
O
C . x
y
O
D . x
y
O
D
C
B
A
F
E
D C
B A
9.圆中内接正三角形的边长是半径的()倍
A.1
B.
2
3
C. 3
D. 3
2
10.如图,AB是半圆O的直径,射线AM、BN为半圆的切线.在AM上
取一点C,连接BC交半圆于点D,连接AD.过O点作BC的垂线ON,
与BN相交于点N.过C点做半圆的切线CE,切点为E,与BN相交
于点F.当C在AM上移动时(A点除外),设n
BN
BF
=,则n的值
为
A.
2
1
=
n B.
4
3
0≤
<n C.1
2
1
<
≤n D.无法确定
二、填空题(每小题4分,共24分)
11. 如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,
在第一象限内将线段AB缩小为原来的
2
1
后得到线段CD,则端点C的坐标为是
12已知扇形的弧长为12π,半径是6,则它的圆心角是.
13.如图,E为平行四边形ABCD内一点,且EA=EB=EC,若∠D=50°,则∠AEC的度数是.
14. 如图,A、B两点在双曲线y=
x
4
上,分别经过A、B两点向轴作垂线段,已知S阴影=1,
则S1+S2=
15.如图,已知梯形ABCO的底边AO在x轴上,BC∥AO,AB⊥AO,过点C的双曲线y=
k
x交
OB于点D,且OD∶DB=1∶2,若△OBC的面积等于4,则k的值为______.
16.如图,已知等腰Rt△ABC中,AC=BC=4,∠ACB=90°,点D为边AC的中点,点P,
Q为边AB上的动点,且PQ=2
2, 当PQ在边AB上运动时,四边形PQCD的周长的最
小值是.
F
E
N
D
O
C
A
M
B
Q
P
D
C B
A
三.解答题(共7小题,共66分)
17(本题8分)将油箱注满k 升油后,轿车可行驶的总路程S (单位:千米)与平均耗油量a (单位:升/千米)之间是反比例函数关系S =(k 是常数,k ≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.
(1)求该轿车可行驶的总路程S 与平均耗油量a 之间的函数解析式(关系式); (2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米? 18.(本题8分)如图,已知直线1y x m =+与x 轴、
y 轴分别交于点A 、B ,与双曲线2k
y x
=分别交
于点C 、D ,且C 的坐标为(1-,2).
(1)分别求出直线AB 及双曲线的解析式; (2)求出点D 的坐标; (3)不等式m x
k
x +<
的解集是 。
19.(本题8分)如图,E 、F 分别是△ABC 的边BC 上的三等分点,DE ∥AB,DF ∥AC ,
(1)求证:△ABC ∽△DEF. (2)若4=∆DEF S ,求=∆ABC S ?
20.(本题8分)如图,D 是BC 边上的中点,且AD=AC ,DE ⊥BC ,DE 与BA 相交于点E ,EC 与AD 相交于点F (1)求证:△ABC ∽△FCD
(2)若△ABC 的面积为20,BC=10,求DE 的长
21.(本题10分)如图,△ABC 内接于⊙O ,且AB 为⊙O 的直径,∠ACB 的平分线交⊙O 于点D ,过点D 作⊙O 的切线PD 交CA 的延长线于点P . (1)求证:D P ∥AB ;
(2)若AC =6,BC =8,求线段PD 的长.
A
C
O
x y
B
D A B
C
D
E F
P O
A C
F E
D
C
A
B
22.(本题满分12分)如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC
上的一个动点,连接DE,交AC于点F.
(1)如图①,当
3
1
=
EB
CE
时,则
DF
EF
= ;
(2)如图②,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:2CG= BG;
(3)如图③当DE平分∠CDB时,求证:AF=2OA.
23.(本题12分)如图,抛物线4
)1
(2+
-
=x
a
y与x轴交于A、B两点,抛物线与y轴交
于C点,已知)0,1
(-
A.
(1)求抛物线解析式;
(2)已知)0
2,
(
D,点M是抛物线上的点,当DCO
MCO∠
=
∠2时,求M点横坐标;
(3)如图,将原抛物线绕着某点旋转180o,得到的新抛物线的顶点为坐标原点,点P是y
轴负半轴上一动点,过P点的直线PF与新抛物线在第二象限有唯一公共点F,过F作FG
⊥PF交y轴与G ,试证明:△PFG的外心恒为y
P
F
x
o
y
G。