9偏振光的观察与研究11
- 格式:doc
- 大小:456.00 KB
- 文档页数:4
偏振光现象的观察和分析偏振光的观察可以通过一些特定的实验装置来实现。
例如,可以使用偏振片和分析器来检测光的偏振状态。
偏振片是一种光学元件,它能够选择性地通过振动方向与特定方向相同的光,而将其他方向的光消除或减弱。
这样,当光通过偏振片时,只有特定方向的光能通过,其他方向的光被过滤掉了。
而分析器是另一种偏振片,在实验中用于检测偏振光。
当通过偏振片的光到达分析器时,如果它们的振动方向相同,那么光将能够通过分析器,我们可以观察到透过分析器的光强度。
如果它们的振动方向不同,那么光将被分析器阻止通过,我们将观察不到通过分析器的光。
通过使用偏振片和分析器的实验装置,可以进行一系列的观察和分析。
首先,我们可以通过调整偏振片和分析器之间的相对角度来观察最大和最小光强的变化。
当振动方向相同时,光强度最大,当振动方向垂直时,光强度最小。
通过这一观察结果,我们可以得出结论,光强度与振动方向之间存在关联。
其次,我们可以观察光的偏振状态的改变。
例如,可以用线性偏振光源辐射出一个固定方向的偏振光,然后通过一系列的偏振片和分析器来调整光的偏振状态。
通过观察光在不同偏振状态下的传播特性,我们可以了解光的偏振性质以及不同偏振状态下光的行为差异。
除了观察外,我们还可以进一步分析偏振光的性质。
例如,通过使用偏振片和分析器,我们可以测量通过透过分析器的光强度,并进一步计算出偏振光的偏振度。
偏振度是一种度量光偏振状态的物理量,它可以用来描述光的偏振程度。
对于完全偏振的光来说,其偏振度为1,而对于完全偏振的光来说,其偏振度为0。
此外,偏振光的观察和分析还可以应用于实际生活中的一些领域。
例如,在电子显示技术中,液晶显示器使用偏振器和光调制器来控制光的偏振状态,从而实现图像的显示和切换。
在光通信中,偏振光也被广泛应用于光纤传输和光信号处理中,以提高传输速率和信号质量。
总之,偏振光现象的观察和分析可以帮助我们更深入地了解光的性质和行为。
通过观察光的光强度变化以及偏振状态的改变,我们可以探索光的偏振性质和对其进行分析。
偏振光现象的观察和分析摘要本实验用半导体激光通过偏振片来产生线偏振光,使其分别通过1/4波片和1/2波片,通过测量不同方向上检偏器透过的光的强度,判断出出射光的偏振态。
并证实了线偏振光通过1/4波片可以产生线偏振光、圆偏振光、椭圆偏振光,通过1/2波片可以产生线偏正光,验证了马吕斯定律。
一、引言振动方向对于传播方向的不对称性叫做偏振,它是横波区别于其他纵波的一个最明显的标志。
只有横波才能产生偏振现象,故光的偏振是光的波动性的又一例证。
在垂直于传播方向的平面内,包含一切可能方向的横振动,且平均说来任一方向上具有相同的振幅,这种横振动对称于传播方向的光称为自然光(非偏振光)。
凡其振动失去这种对称性的光统称偏振光。
偏振光的典型应用是偏光式3D 技术,其普遍用于商业影院和其它高端应用。
二、实验原理1.偏振光的种类光是一种电磁波,由于电磁波对物质的作用主要是电场,故在光学中把电场强度E 称为光矢量。
在垂直于光波传播方向的平面内,光矢量可能有不同的振动方向,通常把光矢量保持一定振动方向上的状态称为偏振态。
如果光在传播过程中,若光矢量保持在固定平面上振动,这种振动状态称为平面振动态,此平面就称为振动面。
图1 电矢量垂直于纸面的偏振光图2 电矢量平行于纸面振光【1】光的五种偏振态:①线偏振光:在光的传播过程中,只包含一种振动,其振动方向始终保持在同一平面内,②部分偏振光:光波包含一切可能方向的横振动,但不同方向上的振幅不等。
③自然光:光波包含一切可能方向的横振动,但不同方向上的振幅相等。
④椭圆偏振光:在光的传播过程中,空间每个点的电矢量均以光线为轴作旋转运动,若它们的频率相同并且有固定的位相差,则该点的合成振动的轨迹一般呈椭圆形。
⑤圆偏振光:旋转电矢量端点描出圆轨迹的光称圆偏振光,是椭圆偏振光的特殊情形。
2.线偏振的产生(1)偏振片利用某些有机化合物的“二向色性”制成,当自然光透过这种偏振片后,光矢量垂直于偏振片方向的分量几乎完全被吸收,而平行方向的分量几乎完全通过,因此透射光基本上为线偏振光。
偏振光的观察与研究实验报告一、实验目的1。
观察光的偏振现象,加深偏振的基本概念.2. 了解偏振光的产生和检验方法。
3。
观测椭圆偏振光和圆偏振光。
二、实验仪器偏振光观察与研究的实验装置包括一下几个部分:光源(可发出多种类型激光),偏振片,波晶片(λ/2 和λ/4 波长),光屏。
1.光源:双击实验桌上光源小图标弹出光源的调节窗体.单击调节窗体的光源开关可以切换光源开关状态;可以选择光源发出光的类型,包括自然光、椭圆偏振光、圆偏振光、线偏振光、部分偏振光。
光源默认发出是自然光.2.偏振片:双击桌面上偏振片小图标,弹出偏振片的调节窗体。
初始化时偏振片的旋转角度是随机的,用户使用时需要手动去校准。
最大旋转范围为360°,最小刻度为1°。
可以通过点击调节窗体中旋钮来逆时针或顺时针旋转偏振片。
3.波晶片:分为λ/2 和λ/4 波长波片,双击桌面上波晶片小图标,弹出波晶片的调节窗体。
初始化时波晶片的旋转角度是随机的,用户使用时需要手动去校准.最大旋转范围为360°,最小刻度为1°。
三、实验原理1。
偏振光的概念和产生:光的偏振是指光的振动方向不变,或光矢量末端在垂直于传播方向的平面上的轨迹呈椭圆或圆的现象。
光有五种偏振态:自然光(非偏振光),线偏振光,部分偏振光,圆偏振光,椭圆偏振光.反射光中的垂直于入射面的光振动(称s分量)多于平行于入射面的光振动(称p 分量);而透射光则正好相反。
在改变入射角的时候,出现了一个特殊的现象,即入射角为一特定值时,反射光成为完全线偏振光(s分量)。
折射光为部分偏振光,而且此时的反射光线和折射光线垂直。
2. 改变偏振态的方法和器件:①光学棱镜:如尼科耳棱镜、格兰棱镜等,利用光学双折射的原理制成的;②偏振片:它是利用聚乙烯醇塑胶膜制成,它具有梳状长链形结构分子,这些分子平行排列在同一方向上,此时胶膜只允许垂直于排列方向的光振动通过,因而产生线偏振光。
偏振光的观察与研究实验原理
偏振光是光学中的一个重要概念,它涉及到光的振动方向和传播方向的不对称性。
以下是偏振光的观察与研究实验原理:
1. 偏振光的定义:偏振光是指光的振动方向相对于传播方向具有不对称性。
只有横波才能产生偏振现象,而光波是一种电磁波,因此具有偏振性质。
2. 偏振光的分类:根据振动方向与传播方向的关系,偏振光可以分为自然光、线偏振光、局部偏振光、圆偏振光和椭圆偏振光五种。
3. 产生偏振光的方法:
利用光的反射和折射:当光在界面上反射或折射时,光的振动方向会发生变化。
通过调整入射角,可以在特定条件下获得线偏振光。
当入射角为布雷斯特角时,反射光成为完全线偏振光。
利用光学棱镜:尼科尔棱镜和格兰棱镜等光学棱镜可以将自然光转化为线偏振光。
利用偏振片:偏振片可以由自然光得到线偏振光,通过改变偏振片的放置角度,可以得到不同偏振态的光。
4. 改变光的偏振态的元件:波晶片。
平而偏振光垂直入射晶片,如果光轴平行于晶片表而,会产生双折射现象。
利用此特性,可以通过改变波晶片的放置角度来改变出射光的偏振态。
在实验中,通常会使用各种设备来观察和研究偏振光,例如偏振分束器、检偏器等。
通过调整这些设备的参数和角度,可以观察到不同偏振态的光的特性,进一步了解光的偏振性质。
总之,偏振光的观察与研究实验主要涉及光的反射、折
射、通过光学棱镜和偏振片产生偏振光的方法,以及利用波晶片改变光的偏振态的原理。
通过这些实验,可以深入了解光的偏振性质及其在光学中的应用。
偏振光的观察与研究一、实验简介光的偏振是指光的振动方向不变,或电矢量末端在垂直于传播方向的平面上的轨迹呈椭圆或圆的现象。
光的偏振最早是牛顿在1704~1706年间引入光学的;光的偏振这一术语是马吕斯在1809年首先提出的,并在实验室发现了光的偏振现象;麦克斯韦在1865~1873年间建立了光的电磁理论,从本质上说明了光的偏振现象。
按电磁波理论,光是横波,它的振动方向和光的传播方向垂直.自然光是各方向的振幅相同的光,对自然光而言,它的振动方向在垂直于光的传播方向的平面内可取所有可能的方向,没有一个方向占有优势。
若把所有方向的光振动都分解到相互垂直的两个方向上,则在这两个方向上的振动能量和振幅都相等.线偏振光是在垂直于传播方向的平面内,光矢量只沿一个固定方向振动。
部分偏振光可以看作自然光和线偏振光混合而成,即它有某个方向的振幅占优势。
圆偏振光和椭圆偏振光是光矢量末端在垂直于传播方向的平面上的轨迹呈圆或椭圆。
起偏器是将非偏振光变成线偏振光的器件;检偏器是用于鉴别光的偏振光状态的器件。
利用光的偏振现象在物理学方面可测量材料的厚度和折射率,可以了解材料的微观结构。
利用偏振光的干涉现象在力学上检测材料压力分布,应用于建筑工程学方面可以检测桥梁和水坝的安全度。
二、实验原理1.偏振光的概念和产生:2.改变偏振态的方法和器件:常见的起偏或检偏的元件构成有两种:1.光学棱镜。
如尼科耳棱镜、格兰棱镜等,它是利用光学双折射的原理制成的;2.偏振片。
它是利用聚乙烯醇塑胶膜制成,它具有梳状长链形结构分子,这些分子平行排列在同一方向上,此时胶膜只允许垂直于排列方向的光振动通过,因而产生线偏振光.马吕斯定律:马吕斯在1809年发现,完全线偏振光通过检偏器后的光强可表示为I1 = I0 cos2α,其中的 是检偏器的偏振方向和入射线偏振光的光矢量振动方向的夹角:波晶片:又称位相延迟片,是从单轴晶体中切割下来的平行平面板,由于波晶片内的速度v o ,v e不同,所以造成o光和e光通过波晶片的光程也不同.当两光束通过波晶片后o光的位相相对于e光多延迟了Δ=2π(n0-n1)d/λ,若满足(n e-n o)d=±λ/4,即Δ=±π/2我们称之为λ/4片,若满足(n e-n o)d=±λ/2,即Δ=±π,我们称之为λ/2片,若满足(n e-n o)d=±λ,即Δ=2π我们称之为全波片。
实验报告课程名称:大学物理实验(一)实验名称:偏振光的观察与研究振现象在生活和生产中有广泛应用,比如利用偏振眼镜可以观看立体电影,用偏振片可以突出蓝天中的白云,在液晶显示器中可以控制字符显示,在显微镜中可用来检测样品的各向异性和双折射性,检测材料的结构、厚度、折射率和应力分布等。
光的偏振在建筑工程学方面可以检测桥梁和水坝的安全度。
起偏器和检偏器根据光学元件在实验中的作用,分为起偏器和检偏器。
起偏器是将自然光变成线偏振光的元件,检偏器是用于鉴别光的偏振态的元件。
产生偏振光的方式:1.光在界面的反射和透射:根据布儒斯特定律,入射角为一特定值时,反射光为完全线偏振光,折射光为部分偏振光。
2.光学棱镜:利于晶体的双折射原理得到的o光和e光是完全偏振光。
3.偏振片:利于有机分子(如聚乙烯醇)的平行排列,只允许垂直于排列方向的光振动通过,可以产生线偏振光。
该方法因工艺简单且价格便宜得到广泛应用,本实验中采用偏振片作为起偏器和检偏器。
马吕斯定律偏振光的研究从马吕斯定律开始,马吕斯定律也是最基本和最重要的偏振定律。
马吕斯于1809年发现,完全线偏振光通过检偏器后的光强可表示为:其中是检偏器的偏振方向和起偏器偏振方向的夹角。
波晶片波晶片又称位相延迟片,是改变光的偏振态的元件。
它是利用不同偏振方向的光在晶体中的传播速度不同来产生相位延迟的,传播速度较大()的振动方向成为快轴,传播速度较小()的振动方向称为慢轴。
设快轴和慢轴对应的折射率分别为,波片的厚度为,则光束通过波片后的光程差为:对应的相位差为•若光程差满足即相位差,我们称之波片。
•若光程差满足即相位差,我们称之2波片。
图5,波片的o轴与偏振方向平行图6,波片旋转图7,波片旋转上图坐标轴表示波晶片,o轴和e轴表示波片的快轴和慢轴方向,o和e轴相互垂直。
红色箭头表示自然光经过检偏器后的电矢量方向,实验中起偏器的设置始终不变。
绿色箭头表示偏振光经过波片后的偏振状态。
偏振光现象的观察和分析偏振光现象的观察和分析引⾔:光的偏振现象有法国⼯程师马吕斯⾸先发现。
对光偏振现象的研究清楚地显⽰了光的横波性,加深了⼈们对光传播规律的认识。
近年来光的偏振特性在光调制器、光开关、光学计量、应⼒分析、光信息处理、光通信、激光、光电⼦器件中都有⼴泛应⽤。
本实验利⽤偏振⽚和1/4波⽚观察光的偏振现象,并分析和研究各种偏振光。
从⽽了解1/4波⽚和1/2波⽚的作⽤及应⽤,加深对光偏振性质的认识。
实验原理1、偏振光的种类。
光可按光适量的不同振动状态分为五类:(1)线偏振光(2)⾃然光(3)部分偏振光(4)园偏振光(5)椭圆偏振光使⾃然光变成偏振光的装置称为起偏器,⽤来检验偏振光的装置称为检偏器。
2、线偏振光的产⽣。
(1)反射和折射产⽣偏振⾃然光以 i B =arc tan n 的⼊射⾓从空⽓⼊射⾄折射率为n 的介质表⾯上时,反射光为线偏振光。
以 i B ⼊射到⼀叠平⾏玻璃堆上的⾃然光,透射出来后也为线偏振光。
(2)偏振⽚。
利⽤某些晶体的⼆向⾊性可使通过他的⾃然光变成线偏振光。
(3)双折射产⽣偏振。
⾃然光⼊射到双折射晶体后,出射的o 光和e 光都为线偏振光。
3、波晶⽚4、线偏振光通过各种波⽚后偏振态的改变。
在光波的波⾯中取⼀直⾓坐标系,将电⽮量E 分解为两个分量E X 和E y ,他们频率相同都为ω,设E y 相对E X 的相位差为?φ,即有E X =A x cos ωt (2)E y =A y cos(ωt +?φ) (3)由(2)、(3)两式得,对于⼀般情况,两垂直振动的合成为: e 轴O 轴θ光轴图 1E x2 A x2+ E y2A y22 E x2 E y2A x2A y2cos?φ=sin2?φ(4)注意对于线偏振光通过波⽚的情况?φ取决于o光和e光⼊射时的相位差和由波晶⽚引起的相位差δ之和;⽽ E X为线偏振光振幅E在o轴的分量, E y为e轴的分量。
从上⾯垂直振动合成的⼀般情况出发可以得出以下结论:(1)线偏振光的振动⽅向与波⽚的光轴夹⾓为θ或π/2,或者通过1/2波⽚仍为线偏振光。
偏振光的观察和应用偏振光是指光波中的电矢量在特定方向上振动的光线。
在自然界中,大部分光波都是无偏振的,电矢量在所有方向都振动。
然而,通过使用适当的装置,可以将自然光转化为偏振光,并对其进行观察和应用。
观察偏振光最常见的方法是使用偏振片。
偏振片是一种具有特殊结构的光学材料,它可以选择性地透过一些方向的偏振光,同时阻挡其他方向的偏振光。
偏振片的制作是通过将一些光通过一系列的偏振器或滤光片来实现的。
这些滤光片的结构是由一些具有各向异性的材料制成的。
当自然光通过这些片时,它们会选择性地通过特定方向上的光线,抑制其他方向上的光线。
通过观察偏振光,可以进行一系列的实验和研究。
其中一个重要的应用领域是材料表征。
偏振光能够揭示材料中的结构和性质。
例如,通过研究偏振光在材料中的传播和反射,可以得到关于材料的折射率、密度、厚度和透明度等信息。
这对于材料的研究和应用具有重要意义,比如在光学和光电子器件的设计和制造中。
另一个应用偏振光的领域是显微镜观察。
透过偏振片装置,可以观察到样品中的偏振光现象。
这对于材料的质量检测、晶体学和生物学研究等领域非常有用。
例如,在矿物学中,可以通过偏振显微镜观察到岩石和矿物样品中的偏光现象,进而推断它们的组成和结构。
偏振光还有广泛的应用于光通信和光存储技术中。
在光通信中,偏振光可以用来传输信息。
光纤传输的光可以通过调整电矢量的方向来表示“0”和“1”的二进制位。
这种技术被称为偏振分束多路复用(Polarization Division Multiplexing),可以大大提高光纤通信的传输容量。
此外,在光存储技术中,利用了偏振光读写媒介,通过调整光的偏振方向来存储和读取信息。
在生物医学领域,偏振光也有重要的应用。
通过观察和分析组织和细胞样品中的偏振光,可以获得关于它们的形态、分子构成和变化的信息。
这对于疾病的早期诊断和治疗具有重要意义。
例如,在癌症诊断中,偏振光显微镜可以检测到组织和细胞中的异常现象,从而帮助医生做出准确的诊断。
偏振光的观察与分析实验报告实验目的:通过对偏振光的观察与分析,加深对光的性质的认识,掌握偏振光的基本概念及其实验方法。
实验原理:偏振光是指只在一个方向上振动的光,它的光场只能偏振在一个平面内,并且在许多情况下,它可以作为沿一个方向运动的电磁波表示。
偏振光的产生有很多方法,包括自然偏振、偏振器制备和偏振器过滤等。
实验步骤:1.用偏振片观察自然光;2.将两个偏振片平行摆放,观察光透过后的亮度和颜色;3.将两个偏振片垂直摆放,观察光透过后的亮度和颜色;4.调节两个偏振片的夹角,观察光透过后的亮度和颜色变化;5.用光强计分析不同情况下透过的光强;6.观察偏振光与自然光波形的差异;7.使用磷酸二氧铬振荡镜测定光波的振荡方向;实验结果:经过实验,我们得到了以下结论:1.如果将两个偏振片平行放置,则完全透过的光强最大,这是因为平行摆放的偏振片可以让所有光线的振动方向与偏振片的传播方向相同。
2.如果将两个偏振片垂直放置,光完全被吸收,这是因为两个方向相互垂直的偏振片会阻挡所有光线。
3.找到适当的偏振片夹角可以改变透过的光强,因为当两个偏振片的传输方向不同时,只有振动方向与传播方向夹角为45°时,才能最大化透过的光强。
4.偏振光的波形在形状和方向上都有所不同于自然光,因为偏振光中只有一个振动方向的光波,而自然光包含了多个方向的光波。
5.使用磷酸二氧铬振荡镜可以精确测定光波的振荡方向,因为只有振荡方向与磷酸二氧铬振荡镜的分子排列方向相同时,才能通过。
结论:本实验通过对偏振光的观察和分析,加深了我们对光的性质的认识,掌握了偏振光的基本概念和实验方法,为我们今后的学习和研究打下了基础。
偏振光的观察与研究实验报告数据偏振光指的是只在一个平面上振动的光,它的传播方式与普通光有所不同。
由于其具有特殊的偏振状态,因此可以在各个领域中发挥重要作用。
在本次实验中,我们对偏振光的观察与研究进行了探究。
一、实验目的1. 学习偏振光的概念及其传播方式。
2. 观察线偏振器和波片对偏振光的影响。
3. 研究偏振光的干涉现象。
二、实验仪器及材料1. 两个偏光片2. 一块玻璃板3. 一块亚克力板4. 一束激光光源5. 一个手机屏幕三、实验步骤1. 将一块玻璃板和一块亚克力板插入两个偏光片之间,调整偏光片的方向,观察得到的光的强度变化。
2. 将一个偏光片放置在激光器前,记录得到的光的强度值,并将其称为“I”。
然后将另一个偏光片放在激光光路中,并逐渐旋转它的方向。
记录得到的光的强度值,并将其称为“T”。
3. 将一个手机屏幕放置在两个偏光片之间,逐渐旋转其中一个偏光片的方向。
观察手机屏幕的显示情况。
4. 在两个偏光片之间插入一块玻璃板,然后将其中一个偏光片旋转一定的角度,并记录得到光的强度值。
四、实验结果1. 调整偏光片的方向之后,得到的光的强度会发生变化,实验表明,当两个偏光片的方向垂直时,通过的光线最弱,当两个偏光片的方向相同时,通过光线最强。
2. 在实验过程中,我们发现,当两个偏光片的方向偏离90度时,通过的光线几乎消失。
这说明当光的振动方向被偏振后,只有振动方向与偏振方向一致的光才能通过。
3. 在手机屏幕的观察实验中,我们发现当两个偏光片的方向相同时,手机屏幕显示为亮屏,而当两个偏光片的方向垂直时,手机屏幕显示为黑屏。
这说明手机屏幕与偏振光的作用原理是相似的。
4. 在偏振光的干涉实验中,我们发现,在通过玻璃板的偏振光中,存在两个方向的振动状态,这两个方向的振动状态会互相干涉,导致光线强度的变化。
五、实验结论本次实验通过观察偏振光的传播方式,观察了线偏振器和波片对偏振光的影响,以及研究了偏振光的干涉现象。
偏振光的观察与研究
什么是偏振光?
偏振光(polarized light)是一种由一定角度的线性电场改变方向的平面电磁波,
具有波动不同方向的一组特定的交叉电磁场,每对电磁场的矢量都可以通过单独的圆柱坐
标表示。
在空间里,由两个有偏振性的矢量交叉形成的波析出了偏振电磁波,形成一组相离、有序及同方向性的点阵模式,这就是“偏振性”。
由于水平方向(0°)与垂直方向(90°)的矢量构成了偏振光,并被描述为偏振状态,了解这类光及其波动使用偏振角(angle of polarization)是很重要的。
因此,观
察和研究这类光的手段,就是用偏振滤片,根据其波的方向,经特别设计的物理装置进行
分类处理,从而实现偏振光的观察与研究。
关于偏振光的观察与研究,以偏振仪(Polarimeter)为基础的实验仪器技术具有很
大的潜力,可以用于测量被测样品的偏振性质,以细微构成偏振光变化和极性等各种物质。
例如,偏振仪常用于测量一种物质如果影响该物质的偏振特征,以及这种物质在不同
相应偏振仪条件下的变化情况;偏振仪可以测量细微的极性变化,用以分析构成偏振光的
微小事件;偏振仪也可以用来表征物质的半导体折射率等性质。
此外,偏振仪还可以用于
偏振光学显微镜(Polarized Light Microscope)、偏振干涉仪(Polarized Interference)等应用中。
因此,观察与研究偏振光是十分必要的,通过偏振仪,我们可以深入了解光在特定环
境中偏振性质,以及光在不同环境下发生的变化,从而进行有效的研究。
实验十一偏振现象的观察与分析光波是电磁波,其电矢量的振动方向垂直于传播方向,是横波.由于普通光源各原子分子发光的随机和无序性,光波电矢量的分布(方向和大小)对传播方向来说是对称的,反应不出横波特点,这种光称为自然光.如果限制了某振动方向的光而使光线的电矢量分布对其传播方向不再对称时,这种光称为偏振光.对于偏振现象的研究在光学发展史中有很重要的地位,光的偏振使人们对光的传播(反射、折射、吸收和散射)规律有了更透彻的认识,本实验将对光偏振的基本性质进行观察、分析和研究.·实验目的1.观察光的偏振现象,掌握产生和检验偏振光的原理和方法,学会确定偏振片的透振方向,验证马吕斯定律;2.用反射起偏法测量平面玻璃的布儒斯特角,求得玻璃的折射率;3.了解λ/4波片、λ/2波片的工作原理和作用(任选其中部分内容);·实验仪器光具座,He—Ne激光器,光点检流计,光电转换装置,GPS-Ⅱ型偏振光实验仪(包括偏振片×2,λ/4波片×2,λ/2波片×2,背面涂黑的玻璃片及刻度支架,小孔光阑,白屏).图1 实验仪器(重拍)偏振片及刻度旋转装置:由直径为2cm的偏振片固定在转盘上制成,转盘上指针的位置不一定是偏振片的透振方向.波片及刻度旋转装置:由直径为2cm的波片固定在转盘上制成,转盘上指针的位置不一定是波片的快轴或慢轴的位置.·实验原理从自然光获得偏振光的办法有3种,即利用二向色性的材料制作的偏振片;利用晶体的双折射性质做成的偏振棱镜;利用光学各向同性的两介质分界面上的反射和折射.本实验中所用的偏振片是利用二向色性的材料制作的.一、起偏、检偏与马吕斯定律将自然光变成偏振光的过程称为起偏,检查偏振光的装置称为检偏.按照马吕斯定律,强度为I 0的线偏振光通过检偏器后,透射光的强度为:20cos I I θ= (12-1)式中I 0为入射线偏光的光强,θ为入射光偏振方向与检偏器透振轴之间的夹角.显然,当以光线传播方向为轴转动检偏器时,透射光强度I 将发生周期性变化.当θ=00时,透射光强度最大;当θ=090时,透射光强度最小(消光状态);当00<θ<090时,透射光强度介于最大值和最小之间.因此,根据透射光强度变化的情况,可以区别光的不同偏振状态.实验中让入射光共轴依次通过两个偏振片,旋转检偏器,读出不同θ角下出射光的强度,验证马吕斯定律.二、布儒斯特定律和反射光的偏振当自然光在空气中以某角度入射至折射率为n 的透明介质表面时,若反射线与折射线垂直,则其反射光为完全的线偏振光,振动方向垂直于入射面;而透射光为部分偏振光.此规律称为布儒斯特定律,入射角称为布儒斯特角,如图11-2所示.arctgn i b = (12-2)实验中可通过用振动方向垂直于入射面的线偏光入射,再用检偏器检查反射光是否消光来确定布儒斯特角,求出玻璃材料的折射率n.图11-2 布儒斯特定律示意图三、λ/4波片与λ/2波片波片是从单轴晶体中切割下来的平行平面板,其表面平行于光轴.当一束单色平行自然光正入射到波片上时,光在晶体内部便分解为o 光与e 光.o 光电矢量垂直于光轴;e 光电矢量平行于光轴.而o 光和e 光的传播方向不变,仍都与表面垂直.但o 光在晶体内的速度为0v ,e 光的为e v ,即相应的折射率0n 、e n 不同.设晶片的厚度为l ,则两束光通过晶体后就有位相差()r n n e o -=∆λπϕ2 (12-3)()l n n e -=0λπσ (12-4)式中λ为光波在真空中的波长.πσk 2=的晶片,称为全波片;ππσ±=k 2的称为半波片(λ/2波片);22ππσ±=k 为λ/4片,上面的k 都是任意整数.不论全波片,半波片或λ/4片都是对一定波长而言.在直角坐标系下,以e 光振动方向为横轴,o 光振动方向为纵轴,则沿任意方向振动的平行光,正入射到波片的表面后,其振动便按此坐标系分解为e 分量和o 分量.透过晶片,二者间产生一附加位相差σ,离开晶片时合成光波的偏振性质,决定于σ及入射光的性质.1.偏振态不变的情形:(1)自然光通过任何波片,仍为自然光;(2)若入射光为线偏振光,其电矢量E 平行e 轴(或o 轴),则任何波长片对它都不起作用,出射光仍为原来的线偏振光.2.λ/2波片与偏振光(1)若入射光为线偏振光,且振动方向与晶片光轴成θ角,则经λ/2玻片出射的光仍为线偏振光,但与光轴成负θ角.即线偏振光经λ/2片电矢量振动方向转过了2θ角.(2)若入射光为椭圆偏振光,则经λ/2玻片后,既改变椭圆长(短)轴的取向,也改变椭圆的旋转方向;若入射光为圆偏振光,出射的只是改变了旋转方向的圆偏振光.3.λ/4波片与偏振光(1)若入射光为线偏振光,当θ角为450时,经λ/4波片后的出射光为圆偏振光,其余情况下为椭圆偏振光;(2)若入射光为圆偏振光,则出射光为线偏振光;(3)若入射光为椭圆偏振光,则出射光一般仍为椭圆偏振光,(详见利萨如图11-3).π2图11-3 同频率、振动方向垂直的两振动合成的利萨如图·实验内容与步骤1.定偏振片光轴:把两个偏振片插入光具座,接入光电转换装置及光点检流计,调至共轴.旋转第二个偏振片,使光屏显示消光,此即表示起偏器的透振轴与检偏器的透振轴相互垂直.再从θ=00开始到900每隔100读一个光电流值,用坐标纸作图验证(12-1)式马吕斯定律.2.测量玻璃板的布儒斯特角,求得玻璃的折射率:在上述1的基础上,撤掉检偏器,将装有底座的待测玻璃片插入光具座,共轴调节后,使玻璃板的法线方向与入射光线重合,记录指针的位置.旋转玻璃片所在的平面,用白板跟踪接收反射光.当入射角在某个特定角附近,仔细旋转起偏器,观察接收屏上光强变化,当光强最小时固定起偏器,再微旋玻璃片的方位,找到光强最弱位置;重复上述调整至消光,此时读出光线对玻璃片的入射角即为玻璃板的布儒斯特角;测量5次,根据(12-2)式计算玻璃的折射率.且与标称值作比较,计算标准偏差.3.考察平面偏振光通过λ/2、λ/4波片时的现象:(选做)(1)在两块偏振片之间插入λ/2波片,旋转检偏器一周,观察消光的次数并解释这现象.(2)将λ/2波片转任意角度,这时消光现象被破坏.把检偏器转动一周,观察发生的现象并作出解释.(3)仍使起偏器和检偏器处于正交(即处于消光现象时),插入λ/2波片,使消光,再将转150,破坏其消光.转动检偏器至消光位置,并记录检偏器所转动的角度.(4)继续将λ/2波片转150(即总转动角为30度),记录检偏器达到消光所转总角度.依次使λ/2波片总转角为450,600,750,900,分别记录检偏器消光时所转过的角度.(5)使起偏器和检偏器正交,中间插入λ/4波片,转动λ/4波片使消光.再将λ/4波片转动150,300,450,600,读出相应的光电流,并分析这时从λ/4波片出来光的偏振状态.·实验数据测量1.马吕斯定律的验证0°10°20°30°40°50°60°70°80°90°I2.布儒斯特角度的测定次序 1 2 3 4 5 6 平均入射光方向出射光方向布儒斯特角3.平面偏振光通过λ/2波片时的现象半波片转动角度15°30°45°60°75°90°检偏器转动角度4.平面偏振光通过λ/4波片时的现象λ/4波片转动的角度检偏器转动360度观察到的现象光的偏振性质15°30°45°60°75°90°·实验注意事项1.仔细阅读偏振光实验指导及操作说明书,操作中注意首先做“消除暗电流记录”的测试前准备;每步实验前在光具座上用小孔屏调整光路共轴;2.检测光电流时必须确认表针基本停稳后才可以读数(或指针波动大时估读中间值).·历史渊源与应用前景偏振光最普遍的来源之一是自然光经电介质表面反射这个无所不在的物理过程.人类生活中来自玻璃、水面等所有表面的反射光和散射光,一般都是部分偏振光.这个规律是马吕斯在1808年开始研究的.巴黎科学院悬赏征求双折射的数学理论,马吕斯就着手研究这个问题.一天傍晚,他站在家中的窗户旁边研究方解石晶体.当时夕阳西照,夕阳从离他家不远的卢森堡宫的窗户上反射到他这里来.他拿起了方解石晶体,通过它观察反射来的太阳的像.使他感到意外的是当转动方解石晶体时,双像中的一个像消失了.太阳下山之后,夜里他继续观察从水面上和玻璃面上反射回来的烛光来核实他的实验.≈56°时消光效果最显著.但在近用一支蜡烛和一片玻璃试一试,把玻璃放在θP掠入射时,两个像都很明亮,无论怎样转动晶体,哪个像都不会消失.马吕斯显然很幸运,站在对着宫殿窗户的一个恰当的角度上.致使他发现了偏振光的规律.普通非晶体材料受到应力时变成各向异性,有双折射.用偏振光的干涉条纹分布的疏密和走向来确定材料的内应力大小.电光开关是指电场使某些各向透明的介质变为各向异性,使光产生双折射,称kerr effect,用电信号控制光信号.光电偏振研究在光调制器、光开关、光学计量、光信息处理、光通信、激光和光电子学器件、晶体性质研究和实验应力分析等技术中有广泛的应用.·与中学物理的衔接中学物理课标对偏振及相关内容的要求是:1.通过实验认识光的干涉、衍射、偏振现象以及在生活、生产中的应用;2.用偏振片观察玻璃面反射光、天空散射光的偏振现象;3.用偏振片鉴别普通玻璃和天然水晶,探究这种技术的物理原理.·自主学习本实验的构思亮点:因为不加布儒斯特窗的半导体激光器发出的光其振动方向与自然光相似,细光束的传播方向集中,使实验操作极大简化,物理思路更加清晰;光具座上可供选择的内容开放,可增加学生的动手动脑兴趣.(零点测量法)操作难点:微电流读数受环境和仪器的影响因素较多,难以准确读数,偏振元件旋转角度最小分度1°,组装粗糙,影响了测量精度.1.本实验为什么要用单色光源照明?根据什么选择单色光源的波长?若光波波长范围较宽,会给实验带来什么影响?2.在确定起偏角时,若找不到全消光的位置,根据实验条件分析原因.3 .三块外形相同的偏振片、1/2波片、1/4波片被弄混了,能否把它们区分开来?需要借助什么元件?若能,试写出分析步骤.4. 在透振方向互相垂直的起偏和检偏两片偏振片中插入1/2波片,使光轴和起偏器的透振方向平行,那么透过检偏器的光是亮还是暗?为什么?将检偏器旋转90度,透出的光亮暗是否变化?5.波片加工精度和激光波长漂移会对1/4波片产生的光程差带来误差.试根据波片对线偏振光产生的位相差和光程差公式,对波片厚度和激光波长作一个半定量的估计一般以1/2波长为限.6.已知什么量?哪个是待测量?如何控制变量?关注检流计的量程并做适当调节.按要求处理实验数据,完成实验报告.7.本实验还有哪些操作难点?针对操作难点,摸索并掌握正确的调节的方法.·实验探究与设计尝试设计实验,探究圆偏振光、椭圆偏振光的产生和检验方法,并完成实验.。
偏振现象的观察与分析实验报告偏振现象是光学中一个非常重要的现象,它在生活和科研中都有着广泛的应用。
本次实验旨在通过观察和分析偏振现象,深入理解偏振光的特性和规律。
实验仪器和材料:1. 偏振片。
2. 偏振光源。
3. 旋转台。
4. 偏振光检测仪。
实验步骤:1. 将偏振光源放置在实验台上,并打开电源,使其发出偏振光。
2. 在偏振光源和旋转台之间放置偏振片,调整偏振片的方向,使其与偏振光源的偏振方向垂直。
3. 将偏振光检测仪放置在偏振片的后方,观察偏振光通过偏振片后的光强变化情况。
4. 通过旋转台旋转偏振片,观察偏振光通过偏振片后的光强变化规律。
实验结果:在实验中观察到,当偏振片的方向与偏振光源的偏振方向垂直时,偏振光通过偏振片后的光强最小;而当偏振片的方向与偏振光源的偏振方向平行时,偏振光通过偏振片后的光强最大。
通过旋转偏振片,可以发现光强会随着偏振片旋转角度的变化而周期性地发生变化。
实验分析:这一现象的产生可以通过偏振片的工作原理来解释。
偏振片是一种能够选择性地吸收某一方向光振动分量的光学元件,当偏振片的方向与偏振光源的偏振方向垂直时,偏振片完全吸收了偏振光的振动分量,导致通过偏振片后的光强最小;而当偏振片的方向与偏振光源的偏振方向平行时,偏振片不吸收偏振光的振动分量,通过偏振片后的光强最大。
结论:通过本次实验,我们深入理解了偏振现象的特性和规律。
偏振现象在光学和光电领域有着重要的应用,例如偏振片在液晶显示器中的应用等。
同时,对偏振现象的深入理解也为进一步的光学研究奠定了基础。
在今后的学习和科研中,我们将进一步探索偏振现象的原理和应用,为光学领域的发展贡献自己的一份力量。
偏振光现象的观察与分析光的偏振是指光的振动方向不变,或电矢量末端在垂直于传播方向的平面上的轨迹呈椭圆或圆的现象.光的偏振最早是牛顿在1704~1706年间引入光学的;光的偏振这一术语是马吕斯在1809年首先提出的,并在实验室发现了光的偏振现象;麦克斯韦在1865~1873年间建立了光的电磁理论,从本质上说明了光的偏振现象.按电磁波理论,光是横波,它的振动方向和光的传播方向垂直.自然光是各方向的振幅相同的光,对自然光而言,它的振动方向在垂直于光的传播方向的平面内可取所有可能的方向,没有一个方向占有优势.若把所有方向的光振动都分解到相互垂直的两个方向上,则在这两个方向上的振动能量和振幅都相等.线偏振光是在垂直于传播方向的平面内,光矢量只沿一个固定方向振动。
部分偏振光可以看作自然光和线偏振光混合而成,即它有某个方向的振幅占优势。
圆偏振光和椭圆偏振光是光矢量末端在垂直于传播方向的平面上的轨迹呈圆或椭圆。
起偏器是将非偏振光变成线偏振光的器件;检偏器是用于鉴别光的偏振光状态的器件. 利用光的偏振现象在物理学方面可测量材料的厚度和折射率,可以了解材料的微观结构。
利用偏振光的干涉现象在力学上检测材料压力分布,应用于建筑工程学方面可以检测桥梁和水坝的安全度。
1.主窗口:打开偏振光观察与研究的仿真实验,从实验仪器栏中点击拖拽仪器至实验台上,如下图所示:2.正式开始实验:(1)光源调节双击桌面上光源小图标,弹出光源的调节窗体,可以单击光源的开关按钮,切换光源的开关状态;同时可以点击“选择发出光”按钮来选择光源发出光类型,光源默认发出的是“自然光”。
(2)偏振片调节双击桌面上偏振片小图标,弹出偏振片的调节窗体。
初始化时偏振片的旋转角度是随机的,用户使用时需要手动去校准。
最大旋转范围为360°,最小刻度为1°。
可以通过点击调节窗体中旋钮来逆时针或顺时针旋转偏振片旋转的最小刻度单位为1°。
当鼠标按住选择不放,则偏振片则会不停的旋转,直到鼠标松开。
实验十一偏振现象的观察与分析光波是电磁波,其电矢量的振动方向垂直于传播方向,是横波.由于普通光源各原子分子发光的随机和无序性,光波电矢量的分布(方向和大小)对传播方向来说是对称的,反应不出横波特点,这种光称为自然光.如果限制了某振动方向的光而使光线的电矢量分布对其传播方向不再对称时,这种光称为偏振光.对于偏振现象的研究在光学发展史中有很重要的地位,光的偏振使人们对光的传播(反射、折射、吸收和散射)规律有了更透彻的认识,本实验将对光偏振的基本性质进行观察、分析和研究.·实验目的1.观察光的偏振现象,掌握产生和检验偏振光的原理和方法,学会确定偏振片的透振方向,验证马吕斯定律;2.用反射起偏法测量平面玻璃的布儒斯特角,求得玻璃的折射率;3.了解λ/4波片、λ/2波片的工作原理和作用(任选其中部分内容);·实验仪器光具座,He—Ne激光器,光点检流计,光电转换装置,GPS-Ⅱ型偏振光实验仪(包括偏振片×2,λ/4波片×2,λ/2波片×2,背面涂黑的玻璃片及刻度支架,小孔光阑,白屏).图1 实验仪器(重拍)偏振片及刻度旋转装置:由直径为2cm的偏振片固定在转盘上制成,转盘上指针的位置不一定是偏振片的透振方向.波片及刻度旋转装置:由直径为2cm的波片固定在转盘上制成,转盘上指针的位置不一定是波片的快轴或慢轴的位置.·实验原理从自然光获得偏振光的办法有3种,即利用二向色性的材料制作的偏振片;利用晶体的双折射性质做成的偏振棱镜;利用光学各向同性的两介质分界面上的反射和折射.本实验中所用的偏振片是利用二向色性的材料制作的.一、起偏、检偏与马吕斯定律将自然光变成偏振光的过程称为起偏,检查偏振光的装置称为检偏.按照马吕斯定律,强度为I 0的线偏振光通过检偏器后,透射光的强度为:20cos I I θ= (12-1)式中I 0为入射线偏光的光强,θ为入射光偏振方向与检偏器透振轴之间的夹角.显然,当以光线传播方向为轴转动检偏器时,透射光强度I 将发生周期性变化.当θ=00时,透射光强度最大;当θ=090时,透射光强度最小(消光状态);当00<θ<090时,透射光强度介于最大值和最小之间.因此,根据透射光强度变化的情况,可以区别光的不同偏振状态.实验中让入射光共轴依次通过两个偏振片,旋转检偏器,读出不同θ角下出射光的强度,验证马吕斯定律.二、布儒斯特定律和反射光的偏振当自然光在空气中以某角度入射至折射率为n 的透明介质表面时,若反射线与折射线垂直,则其反射光为完全的线偏振光,振动方向垂直于入射面;而透射光为部分偏振光.此规律称为布儒斯特定律,入射角称为布儒斯特角,如图11-2所示.arctgn i b = (12-2)实验中可通过用振动方向垂直于入射面的线偏光入射,再用检偏器检查反射光是否消光来确定布儒斯特角,求出玻璃材料的折射率n.图11-2 布儒斯特定律示意图三、λ/4波片与λ/2波片波片是从单轴晶体中切割下来的平行平面板,其表面平行于光轴.当一束单色平行自然光正入射到波片上时,光在晶体内部便分解为o 光与e 光.o 光电矢量垂直于光轴;e 光电矢量平行于光轴.而o 光和e 光的传播方向不变,仍都与表面垂直.但o 光在晶体内的速度为0v ,e 光的为e v ,即相应的折射率0n 、e n 不同.设晶片的厚度为l ,则两束光通过晶体后就有位相差()r n n e o -=∆λπϕ2 (12-3)()l n n e -=0λπσ (12-4)式中λ为光波在真空中的波长.πσk 2=的晶片,称为全波片;ππσ±=k 2的称为半波片(λ/2波片);22ππσ±=k 为λ/4片,上面的k 都是任意整数.不论全波片,半波片或λ/4片都是对一定波长而言.在直角坐标系下,以e 光振动方向为横轴,o 光振动方向为纵轴,则沿任意方向振动的平行光,正入射到波片的表面后,其振动便按此坐标系分解为e 分量和o 分量.透过晶片,二者间产生一附加位相差σ,离开晶片时合成光波的偏振性质,决定于σ及入射光的性质.1.偏振态不变的情形:(1)自然光通过任何波片,仍为自然光;(2)若入射光为线偏振光,其电矢量E 平行e 轴(或o 轴),则任何波长片对它都不起作用,出射光仍为原来的线偏振光.2.λ/2波片与偏振光(1)若入射光为线偏振光,且振动方向与晶片光轴成θ角,则经λ/2玻片出射的光仍为线偏振光,但与光轴成负θ角.即线偏振光经λ/2片电矢量振动方向转过了2θ角.(2)若入射光为椭圆偏振光,则经λ/2玻片后,既改变椭圆长(短)轴的取向,也改变椭圆的旋转方向;若入射光为圆偏振光,出射的只是改变了旋转方向的圆偏振光.3.λ/4波片与偏振光(1)若入射光为线偏振光,当θ角为450时,经λ/4波片后的出射光为圆偏振光,其余情况下为椭圆偏振光;(2)若入射光为圆偏振光,则出射光为线偏振光;(3)若入射光为椭圆偏振光,则出射光一般仍为椭圆偏振光,(详见利萨如图11-3).π2图11-3 同频率、振动方向垂直的两振动合成的利萨如图·实验内容与步骤1.定偏振片光轴:把两个偏振片插入光具座,接入光电转换装置及光点检流计,调至共轴.旋转第二个偏振片,使光屏显示消光,此即表示起偏器的透振轴与检偏器的透振轴相互垂直.再从θ=00开始到900每隔100读一个光电流值,用坐标纸作图验证(12-1)式马吕斯定律.2.测量玻璃板的布儒斯特角,求得玻璃的折射率:在上述1的基础上,撤掉检偏器,将装有底座的待测玻璃片插入光具座,共轴调节后,使玻璃板的法线方向与入射光线重合,记录指针的位置.旋转玻璃片所在的平面,用白板跟踪接收反射光.当入射角在某个特定角附近,仔细旋转起偏器,观察接收屏上光强变化,当光强最小时固定起偏器,再微旋玻璃片的方位,找到光强最弱位置;重复上述调整至消光,此时读出光线对玻璃片的入射角即为玻璃板的布儒斯特角;测量5次,根据(12-2)式计算玻璃的折射率.且与标称值作比较,计算标准偏差.3.考察平面偏振光通过λ/2、λ/4波片时的现象:(选做)(1)在两块偏振片之间插入λ/2波片,旋转检偏器一周,观察消光的次数并解释这现象.(2)将λ/2波片转任意角度,这时消光现象被破坏.把检偏器转动一周,观察发生的现象并作出解释.(3)仍使起偏器和检偏器处于正交(即处于消光现象时),插入λ/2波片,使消光,再将转150,破坏其消光.转动检偏器至消光位置,并记录检偏器所转动的角度.(4)继续将λ/2波片转150(即总转动角为30度),记录检偏器达到消光所转总角度.依次使λ/2波片总转角为450,600,750,900,分别记录检偏器消光时所转过的角度.(5)使起偏器和检偏器正交,中间插入λ/4波片,转动λ/4波片使消光.再将λ/4波片转动150,300,450,600,读出相应的光电流,并分析这时从λ/4波片出来光的偏振状态.3.平面偏振光通过λ/2波片时的现象4.平面偏振光通过λ/4波片时的现象1.仔细阅读偏振光实验指导及操作说明书,操作中注意首先做“消除暗电流记录”的测试前准备;每步实验前在光具座上用小孔屏调整光路共轴;2.检测光电流时必须确认表针基本停稳后才可以读数(或指针波动大时估读中间值).偏振光最普遍的来源之一是自然光经电介质表面反射这个无所不在的物理过程.人类生活中来自玻璃、水面等所有表面的反射光和散射光,一般都是部分偏振光.这个规律是马吕斯在1808年开始研究的.巴黎科学院悬赏征求双折射的数学理论,马吕斯就着手研究这个问题.一天傍晚,他站在家中的窗户旁边研究方解石晶体.当时夕阳西照,夕阳从离他家不远的卢森堡宫的窗户上反射到他这里来.他拿起了方解石晶体,通过它观察反射来的太阳的像.使他感到意外的是当转动方解石晶体时,双像中的一个像消失了.太阳下山之后,夜里他继续观察从水面上和玻璃面上反射回来的烛光来核实他的实验.≈56°时消光效果最显著.但在近用一支蜡烛和一片玻璃试一试,把玻璃放在θP掠入射时,两个像都很明亮,无论怎样转动晶体,哪个像都不会消失.马吕斯显然很幸运,站在对着宫殿窗户的一个恰当的角度上.致使他发现了偏振光的规律.普通非晶体材料受到应力时变成各向异性,有双折射.用偏振光的干涉条纹分布的疏密和走向来确定材料的内应力大小.电光开关是指电场使某些各向透明的介质变为各向异性,使光产生双折射,称kerr effect,用电信号控制光信号.光电偏振研究在光调制器、光开关、光学计量、光信息处理、光通信、激光和光电子学器件、晶体性质研究和实验应力分析等技术中有广泛的应用.中学物理课标对偏振及相关内容的要求是:1.通过实验认识光的干涉、衍射、偏振现象以及在生活、生产中的应用;2.用偏振片观察玻璃面反射光、天空散射光的偏振现象;3.用偏振片鉴别普通玻璃和天然水晶,探究这种技术的物理原理.本实验的构思亮点:因为不加布儒斯特窗的半导体激光器发出的光其振动方向与自然光相似,细光束的传播方向集中,使实验操作极大简化,物理思路更加清晰;光具座上可供选择的内容开放,可增加学生的动手动脑兴趣.(零点测量法)操作难点:微电流读数受环境和仪器的影响因素较多,难以准确读数,偏振元件旋转角度最小分度1°,组装粗糙,影响了测量精度.1.本实验为什么要用单色光源照明?根据什么选择单色光源的波长?若光波波长范围较宽,会给实验带来什么影响?2.在确定起偏角时,若找不到全消光的位置,根据实验条件分析原因.3 .三块外形相同的偏振片、1/2波片、1/4波片被弄混了,能否把它们区分开来?需要借助什么元件?若能,试写出分析步骤.4. 在透振方向互相垂直的起偏和检偏两片偏振片中插入1/2波片,使光轴和起偏器的透振方向平行,那么透过检偏器的光是亮还是暗?为什么?将检偏器旋转90度,透出的光亮暗是否变化?5.波片加工精度和激光波长漂移会对1/4波片产生的光程差带来误差.试根据波片对线偏振光产生的位相差和光程差公式,对波片厚度和激光波长作一个半定量的估计一般以1/2波长为限.6.已知什么量?哪个是待测量?如何控制变量?关注检流计的量程并做适当调节.按要求处理实验数据,完成实验报告.7.本实验还有哪些操作难点?针对操作难点,摸索并掌握正确的调节的方法.尝试设计实验,探究圆偏振光、椭圆偏振光的产生和检验方法,并完成实验.。
偏振光的观察与分析实验报告偏振光的观察与分析实验报告引言:偏振光是一种特殊的光,它的光波振动方向在特定平面上进行。
在本次实验中,我们将通过观察和分析偏振光的性质,深入了解它的特点和应用。
实验目的:1. 了解偏振光的基本概念和性质;2. 学习使用偏振片来观察和分析偏振光;3. 探索偏振光在不同材料中的传播和反射规律。
实验材料与装置:1. 偏振片:实验中使用的是线偏振片,它能够通过选择性地吸收光波振动方向,使只有特定方向的光通过;2. 光源:我们选择了一台稳定的白光源,以保证实验的准确性;3. 透明材料:实验中使用了不同材料的透明片,如玻璃、塑料等。
实验步骤:1. 准备工作:将白光源放置在实验台上,并将偏振片放在光源前方;2. 观察现象:逐渐旋转偏振片,观察光的亮度变化;3. 分析结果:记录光的亮度变化情况,并尝试解释其中的原因;4. 材料测试:将透明材料片放置在光源和偏振片之间,观察光的透过情况;5. 分析结果:记录不同材料下的光透过情况,并进行比较和分析。
实验结果与分析:通过观察和分析,我们发现以下几个重要结果:1. 偏振片旋转对光的强度有明显的影响:当偏振片的振动方向与光的振动方向垂直时,光的强度最弱,当二者平行时,光的强度最强;2. 不同材料对光的透过情况不同:玻璃等晶体材料对特定方向的光透过性较好,而塑料等非晶体材料对光的透过性较差;3. 光的偏振性是由光的振动方向决定的:在通过偏振片后,只有与偏振片振动方向平行的光能够透过,垂直方向的光被偏振片吸收。
结论:通过本次实验,我们深入了解了偏振光的观察和分析方法,并得出以下结论:1. 偏振光的强度与偏振片的振动方向有关,旋转偏振片可以改变光的强度;2. 不同材料对偏振光的透过性不同,这种差异与材料的晶体结构有关;3. 偏振片可以选择性地透过特定方向的光,这为光的分析提供了一种有效手段。
实验意义与应用:偏振光的观察与分析在许多领域都有重要的应用价值。
偏振光的观察与研究偏振光是一种在特定方向上有特殊振动性质的光波。
光波是以横波的形式传播的,而在正常情况下,光波在垂直于传播方向的所有方向上均有相同的振动方向。
而偏振光则只在一个特定的方向上有明显的振动。
观察和研究偏振光的性质可以帮助我们深入了解光的本质和光与物质相互作用的规律。
最早对偏振光进行观察和研究的是法国科学家马尔斯埃尔。
他在早年的实验中发现了偏振光的存在,并从而提出了偏振光的假设。
之后,通过进一步的实验和研究,人们逐渐对偏振光有了更深入的认识。
观察偏振光最简单的方式是使用偏振片。
偏振片是一种能够选择或过滤特定振动方向的光的装置。
当偏振片与偏振光相互作用时,只有与偏振片振动方向相同的光能够透过偏振片,其余的光则会被偏振片吸收或散射。
通过观察透过偏振片的光的强度、方向和颜色的变化,可以得到关于偏振光的一些基本信息。
光的偏振性质对于解释一些现象和应用是非常重要的。
例如,光的偏振性质可以帮助我们解释和理解光的反射、折射和散射等现象。
在自然界中,光的偏振性质也可以引起一些有趣的现象,比如琉璃色晕、彩虹等。
偏振光在许多领域有着广泛的应用。
在光学器件的设计和制造中,偏振光的性质可以用于划分光的传播路径和选择特定的光信号。
例如,在液晶显示器中,利用偏振光的性质可以控制液晶分子的取向,从而实现像素点的开关和颜色变化。
在光通信中,偏振光可以用于增强信号传输的速度和质量。
除了在应用领域中的应用,偏振光还可以帮助人们了解有关光的本质和光与物质相互作用的规律。
偏振光与形成光的基本粒子,光子的旋转自旋密切相关,在量子光学中的研究更是对揭示光的粒子性和波动性之间的关系起到了重要的作用。
在进行偏振光的观察和研究时,需要特别注意光的传播路径和光波的振动方向。
一些实验和仪器,如偏振片、偏振镜、偏振分光计等,可以帮助我们直观地观察光的偏振性质。
同时,一些先进的技术和仪器,如偏振光显微镜、偏振拉曼光谱等,可以帮助我们更加深入地研究偏振光的性质和应用。
⼤学物理实验偏振光的观测与研究⼤学物理实验偏振光的观测与研究Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】实验偏振光的观测与研究偏振光的理论意义和价值是,证明了光是横波。
同时,偏振光在很多技术领域得到了⼴泛的应⽤。
如偏振现象应⽤在摄影技术中可⼤⼤减⼩反射光的影响,利⽤电光效应制作电光开关等。
【实验⽬的】1.通过观察光的偏振现象,加深对光波传播规律的认识。
2.掌握偏振光的产⽣和检验⽅法。
3.观察布儒斯特⾓及测定玻璃折射率。
4.观测圆偏振光和椭圆偏振光。
【实验仪器】光具座、激光器、光点检流计、起偏器、检偏器、1/4波⽚、1/2波⽚、光电转换装置、观测布儒斯特⾓装置、带⼩孔光屏、钠光灯。
【实验原理】按照光的电磁理论,光波就是电磁波,电磁波是横波,所以光波也是横波。
在⼤多数情况下,电磁辐射同物质相互作⽤时,起主要作⽤的是电场,因此常以电⽮量作为光波的振动⽮量。
其振动⽅向相对于传播⽅向的⼀种空间取向称为偏振,光的这种偏振现象是横波的特征。
根据偏振的概念,如果电⽮量的振动只限于某⼀确定⽅向的光,图3-26 ⾃然光称为平⾯偏振光,亦称线偏振光;如果电⽮量随时间作有规律的变化,其末端在垂直于传播⽅向的平⾯上的轨迹呈椭圆(或圆),这样的光称为椭圆偏振光(或圆偏振光);若电⽮量的取向与⼤⼩都随时间作⽆规则变化,各⽅向的取向率相同,称为⾃然光,如图3-26所⽰;若电⽮量在某⼀确定的⽅向上最强,且各向的电振动⽆固定相位关系,则称为偏振光。
1.获得偏振光的⽅法(1)⾮⾦属镜⾯的反射,当⾃然光从空⽓照射在折射率为n 的⾮⾦属镜⾯(如玻璃、⽔等)上,反射光与折射光都将成为部分偏振光。
当⼊射⾓增⼤到某⼀特定值φ0时,镜⾯反射光成为完全偏振光,其振动⾯垂直于射⾯,这时⼊射⾓φ称为布儒斯特⾓,也称起偏振⾓,由布儒斯特定律得:0tan n φ= (3-51)其中,n 为折射率。
实验( 9 )偏振光的观察与研究
班级18020S01 学号1802004137
姓名沈豹组别
日期2020-6-5 指导教师
一.实验目的
1.了解光的五种偏振状态。
2.了解偏振光元件和偏振光的检验。
3.掌握马吕斯定律。
二.实验仪器
偏振光观察与研究的实验装置包括以下几个部分:光源(可发出多种类型激光)偏振片、波晶片(λ/2和λ/4波长)、光屏。
三.实验原理
为了研究光的偏振态和利用光的偏振特性进行各种分析和测量工作,需要各种偏振元件:产生偏振光的元件、改变光的偏振态的元件等,下面分类介绍。
1.产生偏振光的元件
在激光器发明之前,一般的自然光源产生的光都是非偏振光,因此要产生偏振光都要使用产生偏振光的元件。
根据这些元件在实验中的作用,分为起偏器和检偏器。
起偏器是将自然光变成线偏振光的元件,检偏器是用于鉴别光的偏振态的元件。
在激光器谐振腔中可以利用布儒斯特角使输出的激光束是线偏振光。
将自然光变成偏振光的方法有很多,一个方法是利用光在界面反射和透射时光的偏振现象。
我们的先人在很早就已经对水平面的反射光有所研究,但定量的研究最早在1815年由布儒斯特完成。
反射光中的垂直于入射面的光振动(称s分量)多于平行于入射面的光振动(称p 分量);而透射光则正好相反。
在改变入射角的时候,出现了一个特殊的现象,即入射角为一特定值时,反射光成为完全线偏振光(s分量)。
折射光为部分偏振光,而且此时的反射光线和折射光线垂直,这种现象称之为布儒斯特定律。
该方法是获得线
偏振光的方法之一。
如图1所示。
因为此时, , ,若=1(为空气的折射率),则
图1 布儒斯特定律原理图
叫做布儒斯特角,所以通过测量布儒斯特角的大小可以测量介质的折射率。
由以上介绍可以知道利用反射可以产生偏振光,同样利用透射(多次透射)也可以
产生偏振光(玻璃堆)。
图2 格兰棱镜起偏、检偏原理
第二种是光学棱镜,如尼科耳棱镜、格兰棱镜等,它是利用晶体的双折射的原理制
成的。
在晶体中存在一个特殊的方向(光轴方向),当光束沿着这个方向传播时,光束不
分裂,光束偏离这个方向传播时,光束将分裂为两束,其中一束光遵守折射定律叫做寻
常光(o光),另一束光一般不遵守折射定律叫做非寻常光(e光)。
o光和e光都是线偏振
光(也叫完全偏振光),两者的光矢量的振动方向(在一般使用状态下)互相垂直。
改变
射向晶体的入射光线的方向可以找到光轴方向,沿着这个方向,o光和e光的传播速度相等,折射率相同。
晶体可以有一个光轴,叫做单轴晶体,如方解石、石英,也可以有两
个光轴,叫双轴晶体,如云母、硫磺等。
包含光轴和任一光线的平面叫对应于该光线的
总成绩:
预习操作处理
主平面,o 光电矢量的振动方向垂直于o光主平面,e光电矢量的振动方向平行于e光主平
面。
格兰棱镜由两块方解石直角棱镜构成,两棱镜间有空气间隙,方解石的光轴平行于
棱镜的棱。
自然光垂直于界面射入棱镜后分为o光和e光,o光在空气隙上全反射,只有e
光透过棱镜射出。
第三种是偏振片,它是利用聚乙烯醇塑胶膜制成,它具有梳状长链形结构分子,这
些分子平行排列在同一方向上,此时胶膜只允许垂直于排列方向的光振动通过,因而产
生线偏振光。
它的偏振性能不如格兰棱镜,但价格便宜,且可以得到大面积的应用。
本
实验中采用偏振片作为起偏器和检偏器。
2.波晶片:
又称位相延迟片,是改变光的偏振态的元件。
它是从单轴晶体中切割下来的平行平
面板,由于波晶片内的速度v
o
,v
e
不同(所以折射率也就不同),所以造成o光和e光通过
波晶片的光程也不同。
当两光束通过波晶片后o光的位相相对于e光延迟量为,
若满足,即我们称之为片,若满足
,即,我们称之为片,若满足
,即,我们称之为全波片(m为整数)。
波晶片可以用来检验和改变光的偏振态,如图3所示,在起偏器后加上一个波片,
旋转起偏器或波片就可以得到圆或者椭圆偏振光。
波片是椭偏仪中的重要元件,
而椭偏仪可以精确测量薄膜的厚度和折射率,是材料科学研究中常用的精密仪器。
图3 用波片改变光的偏振态
偏振光的研究从马吕斯定律开始,马吕斯定律也是最基本和最重要的偏振定律。
马
吕斯在1809年发现,完全线偏振光通过检偏器后的光强可表示为
其中的 是检偏器的偏振方向和起偏器偏振方向的夹角。
3.光的五种偏振态
自然光是各方向振幅相同的光,对自然光而言,它的振动方向在垂直于光的传播方
向的平面内可取所有可能的方向,没有一个方向占有优势.若把所有方向的光振动都分解
到相互垂直的两个方向上,则在这两个方向上的振动能量和振幅都相等.线偏振光是在垂
直于传播方向的平面内,光矢量只沿一个固定方向振动.部分偏振光可以看作自然光和线
偏振光混合而成,即它有某个方向的振幅占优势。
圆偏振光和椭圆偏振光是光矢量末端
在垂直于传播方向的平面上的轨迹呈圆或椭圆。
四.实验内容步骤
1.研究λ/4波片对偏振光的影响:
本实验所用仪器有:光源、偏振片(2个)、λ/4波晶片、光屏等。
光路图
(1)按光路图使偏振片A和B 的偏振轴正交(消光)。
然后插入一片λ/4波片C(实际
实验中要使光线尽量穿过元件的中心)。
(2)以光线为轴先转动C使消光,然后使B转过360°观察现象。
(3)再将C从消光位置转过15°、30°、45°、60°、75°、90°,每次都将B转过
360°,观察实验现象。
2.研究λ/2波片对偏振光的影响:
本实验所用仪器有:光源、偏振片(2个)、λ/2波片、光屏等。
光路图
(1)使偏振片A和B的偏振轴正交(消光),并在B和A之间再插入一个λ/2波片C。
(2)以光线为轴将λ/2波片C转动任意角度破坏消光现象,再将B转动360°,观察
消光现象。
五.数据记录
(1)研究1/4波长对偏振片的影响
(2)
与偏振片A的方向的夹角θ15 30 45 60 75 90 120
转动B到消光位置θ’120 150 0 30 60 90 150
线偏振光经1/2λ波晶片后
振动方向转过的角度
30 60 90 120 150 0 60
六.数据处理
(1)1/4波长可将线偏振光变成椭圆偏振光或圆偏振光;反之,它也可将圆偏振光
或椭圆偏振光变成线偏振光。
(2)半波片转动一定角度时,检偏器转动2倍的角度才能消光。
七.实验结果分析
真实可能导致的误差,2偏振片与激光不垂直;激光器发出的光未调成平行光;预热时间不够,激光不稳定;读数误差。