典型例子
[例题]如图(a)表示半径为R的放水弧形闸门,可绕图中
左方质点转动,总质量为m,质心在距转轴
7 9
2 处,闸 R 3
门及钢架对质点的总转动惯量为 I mR 2 ,可用钢丝 绳将弧形闸门提起放水,近似认为在开始提升时钢架 部分处于水平,弧形部分的切向加速度为a=0.1g,g为 重力加速度,不计摩擦,不计水浮力.
图(a)
(1)求开始提升时的瞬时,钢丝绳对弧形闸门的拉力 和质点对闸门钢架的支承力. (2)若以同样加速度提升同样重量的平板闸门[图(b)]
需拉力是多少?
FT
W
图(b)
[解](1)以弧形闸门及钢架 为隔离体,受力如图(a)所示. 建立直角坐标系Oxy, 根据质心运动定理 FT FN W mac 向x及y轴投影得
考虑到
t
12v0 dr g 7lg v cos t cos( t) dt 2 24v0 7l
例:圆盘(R,M),人(m)开始静止,人
走一周,求盘相对地转动的角度.
1 I 2 MR 2 2
解: 系统对转轴 角动量守恒
M=0
I11 () I 22 0
I1 mR
2
人— ,盘— (对地的角位移) d d m 1 2 dt dt
I1d I 2 d
1 2 0
2
1 M 2
I d I d
0
2m 2 2m M
例:
圆盘质量M,半径R,J=MR2/2, 转轴光滑,人的质量m,开始时, 两者静止.求:人在盘上沿边 缘走过一周时,盘对地面转过 的角度.
in ex
角动量守恒定律是自然界的一个基本定律.