医用化学重点复习
- 格式:docx
- 大小:21.73 KB
- 文档页数:5
349#《医用化学》作业1复习资料一、 名词解释1、 脱羧反应2、 苷3、 缩二脲反应4、 渗透浓度5、物质量的浓度 二、填充题:1、产生渗透现象的必备条件是 和 。
2、脑磷脂完全水解可得到 、 、 与 。
3、糖类是 、 和 及其缩合物。
4、将红细胞放入5g/LNaCl 溶液中,红细胞会发生 ;临床上规定渗透浓度为 的溶液是等渗溶液。
5、医学上把 、 和 总称为酮体。
6、配位化合物[Co(NH 3)4(H 2O)2]Cl 3 的名称是 ,配位原子是 ,中心原子的氧化值是 配位体 。
7、人体必需的脂肪酸有 、 和花生四烯酸等。
三、写出下列化合物的名称或构造式1、乙酰水杨酸2、甘露醇3、 β-D-葡萄糖 (哈沃式)4、5、五、是非判断题1、具有烃基测链的芳香烃都可以氧化成羧酸2、当浓度不同的两种溶液用半透膜隔开时,水从渗透压力大的一侧向渗透压力小的一侧渗透。
3、生物碱是存在于生物体内的一类具有碱性和明显生理活性的含氮有机化合物。
是中草药的重要有效成分。
4、油脂在空气中放置过久,会逐渐变质,颜色变深,并产生异味、异嗅,这种现象叫油脂的酸败,俗称“变哈”。
5、蛋白质分子是由很多个氨基酸分子通过肽键依次连接而成的多肽链,多肽链是蛋白质的基本结构。
6、催化剂能改变化学反应速率,所以也能改变平衡常数。
7、把红细胞放入NaCl 水溶液中,发现红细胞邹缩,可知该NaCl 溶液相对于红细胞内液来说是低渗溶液。
8、电对的电极电势越小,该电对中还原型物质的还原能力越弱。
CHOH HOHOCH 2NHCH 39、100ml 溶液中含8.0mgCa 2+,则Ca 2+的物质的量浓度是8mmol/l.10、溶胶的分散相粒子是分子、离子的聚集体,而高分子溶液的分散相粒子是单个分子或离子。
六、计算1、医学临床上静脉注射用KCl 溶液的极限质量浓度是2.7g/L ,如果在250毫升葡萄糖溶液中加入1安瓿(10ml )100g/LKCl 溶液,所得混合溶液中KCl 的质量浓度是不超过了极限?(5分)2、某患者需补充0.050molNa+,应补充NaCl 的质量为多少?如果采用生理氯化钠溶液(质量浓度为9g/L )进行补充,需要生理氯化钠溶液的体积为多少? (5分)七、完成下列化学反应1.3.4.2. +Cl5.CH COOHOHO )CH 3HOCH 3O OHH OH CH 2OHOHOHHOPO 3H 2+CH 3CH 2COOH O脱羧酶H 2NC O CH 2CH 2N(C 2H 5)2+O水解O参考资料:一、名词解释5、 脱羧反应----羧酸中的羧基放出二氧化碳脱去羧基的反应。
医用化学小知识点总结一、药物的化学成分1. 药物的化学结构药物的化学结构是指药物分子中各个原子的排列和成键方式。
药物的化学结构决定了药物的物理化学性质、药代动力学和药效学特性。
通过研究药物的化学结构,可以揭示药物的作用机理,为药物设计和合成提供理论依据。
2. 药物的药物成分药物的药物成分是指药物中起主要药理作用的化学成分。
药物中的活性成分可以是单一的化合物,也可以是多种化合物的混合物。
研究药物的药物成分有助于理解药物的药效学特性,为临床应用提供科学依据。
二、药物的作用机理1. 药物的靶点药物的作用机理通常是通过与生物体内的靶点相互作用实现的。
靶点可以是蛋白质、核酸、酶类等生物大分子,也可以是病原体、癌细胞等特定的靶标。
研究药物的靶点有助于理解药物的作用机理,为药物设计和开发提供指导。
2. 药物的活性位点药物的活性位点是指药物分子与靶点分子之间相互作用的具体位置。
通过研究药物的活性位点,可以揭示药物与靶点的相互作用方式和作用机制,为药物设计和改良提供理论基础。
三、药物的合成1. 药物的合成路线药物的合成路线是指从原料化学品到最终药物的合成过程和方法。
研究药物的合成路线有助于提高药物的产率和纯度,降低生产成本,促进药物的工业化生产。
2. 药物的结构改良药物的结构改良是指通过对药物分子结构的调整和改进,提高药物的活性、选择性和生物利用度。
结构改良可以通过合成新的类似物、修饰已有结构等方式实现。
研究药物的结构改良有助于开发新的药物,改良现有药物,提高药物的药效和安全性。
四、药物的质量控制1. 药物的质量标准药物的质量标准是指药物在生产、贮藏、输送和使用过程中应符合的一系列物理化学性质、药理学特性和微生物指标等指标要求。
研究药物的质量标准有助于建立科学的质量控制体系,保证药物的质量和安全性。
2. 药物的检测方法药物的检测方法是指对药物质量标准中的各项指标进行检验和分析的方法和技术。
研究药物的检测方法有助于建立准确、敏感、快速的检测手段,保证药物的质量和安全性。
医用化学大一知识点总结导言:医用化学作为医学专业的重要学科之一,主要研究医药领域中的化学原理、方法和应用。
本文将对医用化学大一的基础知识点进行总结,包括有机化学、生物化学和药物化学等方面的内容。
一、有机化学有机化学是医用化学的基础,它研究碳元素及其化合物的性质、结构以及变化规律。
1. 碳元素的性质和特点碳元素是有机化合物的基本元素,具有四个简并的价电子,可形成共价键。
碳的四个键位构成了四面体结构,使得碳能够形成多种化学键,形成无限多的有机化合物。
2. 化学键的种类有机化合物中常见的化学键有单键、双键和三键。
键的类型决定了有机化合物的性质和反应活性。
3. 碳骨架的分类有机化合物的碳骨架可以分为直链、分支链和环状结构。
碳骨架的不同决定了有机分子的结构和性质。
4. 有机化合物的命名有机化合物的命名使用一定的命名规则,包括碳链命名法、官能团命名法等。
正确命名有机化合物是理解和研究有机化学的基础。
二、生物化学生物化学研究生物体内的化学成分、结构和功能,并探讨生物体内化学反应的原理和机制。
1. 生物大分子生物体内存在着许多重要的生物大分子,如蛋白质、核酸、多糖和脂质等。
这些生物大分子在维持生命活动中起着重要作用。
2. 氨基酸和蛋白质氨基酸是蛋白质的组成单位,它们由氨基、羧基和侧链组成。
蛋白质通过不同氨基酸的连接而形成多肽链,进一步折叠成特定的三维结构,实现其生物功能。
3. 核酸和遗传信息核酸是遗传信息的载体,包括DNA和RNA。
DNA携带着生命的遗传信息,RNA参与蛋白质的合成。
4. 酶和酶促反应酶是生物体内的催化剂,能够加速化学反应的发生。
酶促反应在新陈代谢和其他生物过程中起着至关重要的作用。
三、药物化学药物化学研究药物的合成、性质、作用机制和应用。
1. 药物的分类药物按其化学结构、作用机制、治疗疾病的方式等进行分类,包括抗生素、抗癌药物、抗高血压药物等。
2. 药物的合成和分析药物的合成是药物化学的核心内容,它涉及到有机合成和无机合成的技术。
护理医用化学知识点总结一、化学基础知识1. 元素和化合物元素是由原子组成的物质,具有特定的化学性质。
常见的元素包括氧、碳、氢、氮、钠、钾、钙等。
化合物是由两种或两种以上的元素通过化学键结合而成的物质,具有独特的化学性质。
常见的化合物包括水、盐酸、氨气等。
2. 原子和分子原子是构成物质的最小单位,由原子核和电子组成。
分子是由两个或两个以上的原子通过共价键结合而成的物质,具有特定的化学性质。
3. 化学键化学键是由原子之间的电子互相作用而形成的连接。
常见的化学键包括离子键、共价键和金属键。
4. 化学反应化学反应是指原子或分子之间发生重新排列,形成新物质的过程。
化学反应包括合成反应、分解反应、置换反应和氧化还原反应等。
5. pH值pH值是表示溶液酸碱性强弱的指标。
pH值小于7的溶液为酸性溶液,pH值大于7的溶液为碱性溶液,pH值等于7的溶液为中性溶液。
二、生物分子化学1. 蛋白质蛋白质是由氨基酸通过肽键连接而成的大分子化合物,是生物体内重要的结构和功能分子。
蛋白质包括结构蛋白质、酶、激素和抗体等。
2. 碳水化合物碳水化合物是由碳、氢和氧元素组成的化合物,包括单糖、双糖和多糖等。
碳水化合物是生物体内储存和释放能量的重要分子。
3. 脂类脂类是由甘油和脂肪酸组成的生物大分子化合物,包括甘油三酯、磷脂和类固醇等。
脂类在生物体内起着能量储存、细胞膜组成和信号传导等重要作用。
4. 核酸核酸是由核苷酸组成的生物大分子化合物,包括DNA和RNA。
核酸是生物体内遗传信息的储存和传递分子。
三、化学药物1. 药物分类化学药物可以根据其化学结构、治疗作用或来源等不同标准进行分类。
常见的药物分类包括抗生素、抗肿瘤药、抗病毒药、抗生素和激素等。
2. 药物代谢药物在体内经过吸收、分布、代谢和排泄等过程,形成一系列代谢产物。
药物代谢对药物的治疗效果和毒副作用具有重要影响。
3. 药物作用机制药物通过与生物分子发生相互作用,改变生物体内生理和病理过程,从而产生治疗作用。
医用化学课本复习题答案1. 描述医用化学中酸碱平衡的基本原理。
答案:医用化学中酸碱平衡的基本原理涉及体液中酸性和碱性物质的相互作用,以及它们如何通过缓冲系统维持pH值的稳定。
缓冲系统由弱酸及其共轭碱或弱碱及其共轭酸组成,它们能够中和额外的酸或碱,从而防止pH值的剧烈变化。
2. 解释什么是缓冲溶液,并给出一个医用化学中常见的缓冲溶液的例子。
答案:缓冲溶液是一种能够抵抗pH变化的溶液,它由弱酸及其共轭碱或弱碱及其共轭酸组成。
在医用化学中,一个常见的缓冲溶液例子是碳酸氢盐缓冲系统,它在维持血液pH值中起着关键作用。
3. 列出医用化学中常用的几种有机溶剂,并简述它们的特点。
答案:医用化学中常用的有机溶剂包括乙醇、丙酮、氯仿和二甲基亚砜。
乙醇是一种极性溶剂,常用于消毒和作为药物的溶剂。
丙酮是一种非极性溶剂,挥发性强,常用于溶解脂溶性物质。
氯仿是一种非极性溶剂,具有较高的沸点,常用于脂质的提取。
二甲基亚砜是一种极性溶剂,能够穿透生物膜,常用于药物的溶解和细胞的渗透。
4. 描述医用化学中如何测定溶液的渗透压,并解释其在医学上的应用。
答案:医用化学中测定溶液的渗透压通常通过测量溶液与纯水之间的压力差来进行。
渗透压的测定对于了解溶液中溶质的浓度、评估细胞内外环境的平衡以及指导临床治疗(如脱水、水肿等)具有重要意义。
5. 简述医用化学中药物代谢的基本概念及其对药物疗效的影响。
答案:药物代谢是指药物在体内通过酶促反应转化为活性代谢物或非活性代谢物的过程。
这一过程对药物的疗效有重要影响,因为代谢产物可能具有药理活性,也可能影响原药的活性。
药物代谢的速率和途径决定了药物在体内的浓度和作用时间,进而影响治疗效果和副作用的发生。
6. 列举医用化学中常见的几种药物相互作用,并解释它们可能产生的影响。
答案:医用化学中常见的药物相互作用包括酶抑制、酶诱导、药物竞争性结合和药物代谢产物的相互作用。
酶抑制可能导致药物代谢减慢,增加药物浓度和潜在毒性。
溶胶:以多个分子、原子或离子的聚集体为分散相所形成的胶体分散系。
特性:丁铎尔效应(当聚光光束通过暗处的溶胶时,从侧面可以看到一条明亮的光柱)布朗运动(胶体粒子作不规则运动)电泳现象(带电粒子在电场作用下向相反电极方向移动的现象)缓冲溶液的组成:缓冲溶液由一堆物质组成,其中一种为抗酸成分,另一种为抗碱成分。
构成抗酸和抗碱成分的往往是弱酸及其对应的盐(醋酸/醋酸钠、碳酸/碳酸氢钠)、弱碱及其对应的盐(氨水/氯化铵、苯胺/盐酸苯胺)、多元酸的酸式盐及其对应的次级盐(磷酸二氢钠/磷酸氢二钾、碳酸氢钠/碳酸钠)。
特性:可以抵抗外加的少量强酸或强碱,是溶液中的H+和OH-不发生明显变化,具有缓冲作用,但缓冲能力有一定的限度。
等渗溶液:渗透压在275~310mOsm/L范围内的溶液,如生理盐水(9g/L的NaCl溶液)、50g/L 的葡萄糖溶液等。
红细胞皱缩:大量输入高渗溶液,血浆渗透压高于红细胞内液的渗透压,红细胞内的水分透过细胞膜进入血浆。
溶血现象:大量输入低渗溶液,血浆渗透压低于红细胞內液的渗透压,血浆中的水分向红细胞渗透,使红细胞膨胀甚至破裂。
共价键的类型:头碰头和肩并肩。
断裂:均裂(共价键断裂后,两个键合原子共用的一堆电子由两个原子个保留一个),异裂(共价键断裂后,两个键合原子共用电子对完全被其中一个原子所占有)D/L标记构型:将单糖分子中离醛基或羰基最远的手性碳原子与甘油醛的C-2进行比较,规定与D-甘油醛一致的单糖为D-构型,即-OH在右侧,与L-甘油醛一致的单糖为L-构型,即-OH在左侧。
α-或β-构型:葡萄糖成环后C-1从非手性碳原子转变为手性碳原子,出现两种环式异构体。
呼吸分析仪:乙醇遇到重铬酸钾溶液后,能使橙色溶液变为绿色,可用于酒精检测。
诊断急性肝炎:利用含有羰基的丙酮酸与羰基试剂2,4-二硝基苯肼作用,在碱性条件下生成红棕色的苯腙。
糖的定义:一类多羟基醛或多羟基酮,或水解后能产生多羟基醛或多羟基酮的化合物糖的分类:单糖(根据碳原子数目:丙糖、丁糖、戊糖、己糖;根据羰基特点:醛糖、酮糖)、寡糖/低聚糖(双糖:麦芽糖有还原性、蔗糖无还原性、乳糖有还原性)、多糖(同多糖:淀粉、糖原、纤维素、右旋糖酐;杂多糖:透明质酸、硫酸软骨素、肝素)乳糖不耐受症:指一部分人因体内缺乏乳糖酶,不能很好地吸收乳糖,甚至在食用乳糖后出现腹胀、腹痛、恶心等症状的现象。
医用化学知识点总结一、化学基础知识1. 元素周期表:元素周期表是元素按原子序数排列的表格,元素的物理和化学性质都随原子序数的增加而呈周期性变化。
2. 原子结构:原子由原子核和绕核运动的电子组成,原子核由质子和中子组成,电子围绕原子核运动。
3. 分子结构:分子是由原子结合而成的,分子的结构和化学键类型决定了分子的性质。
4. 化学键:化学键是化学元素之间通过电子共享或转移而形成的连接。
5. 反应热力学:包括热力学第一定律、第二定律和化学反应的热力学方程。
6. 化学平衡:化学平衡是指化学反应达到动态平衡状态的情况,平衡常数描述了化学反应的平衡状态。
二、药物分子结构与性质1. 药物分子的立体结构:药物分子的立体结构决定了药物的生物活性和药效。
2. 药物的结构与活性关系:结构活性关系研究了药物分子结构和生物活性之间的定量关系,有助于设计新的药物分子。
3. 极性与非极性药物:极性和非极性药物在体内的吸收、分布、代谢和排泄等方面有不同特点。
4. 药物分子的溶解度:药物分子的溶解度直接影响了其生物利用度和药效。
5. 药物分子的稳定性:药物分子的稳定性与其在贮存和使用过程中的效力和安全性有关。
三、药物化学1. 药物分类:按照药物的化学结构、作用方式、治疗疾病等不同标准进行分类。
2. 药物合成与分离:药物合成是指合成新的药物分子或者合成药物原料,药物分离是指从天然产物中分离出有用的化合物。
3. 药物设计:药物设计是指研究药物分子结构与生物活性、药效、毒性之间的关系,将这些关系应用于设计新的药物。
4. 药物分析:药物分析是指对药物品质、成分和含量进行分析鉴定,包括定性和定量分析。
5. 药物代谢:药物在体内的代谢过程包括吸收、分布、代谢和排泄等过程。
6. 药物毒性:药物的毒性是指药物在一定条件下对生物体产生的有害效应。
四、药物作用机制1. 药物与靶点结合:药物通过与生物分子靶点结合发挥药效。
2. 药物的途径与生物利用度:药物在体内的吸收、分布、代谢和排泄过程决定了其在体内的药效。
医用化学考试重点归纳
医用化学考试的重点主要分为以下几个方面:
1. 药物化学:了解药物的化学特性、结构与作用机制,包括药物的分类、命名规则、药物的构成元素、功能基团等。
2. 药物代谢与药物动力学:掌握药物在体内的代谢过程,包括吸收、分布、代谢和排泄等。
了解药物的半衰期、体内清除率等参数。
3. 药物与生物分子的相互作用:包括药物与受体的结合、药物与酶的相互作用等。
了解药物的亲和性、选择性等参数。
4. 药物分析:掌握一些重要的药物分析方法,如色谱法、光谱法等。
了解药物分析的原理、操作方法及注意事项。
5. 药物剂型学:了解常见的药物剂型及其制备方法,包括固体剂型、液体剂型和半固体剂型等。
6. 药物合成:了解一些常用的药物合成方法,包括各种有机合成反应、合成路线等。
在备考过程中,建议多进行习题练习、阅读相关教材和参考书籍,并注重对重点知识的理解和记忆。
同时,可以参加模拟考试以提高应试能力。
医用化学重点知识归纳一、药物的分类和性质1. 药物的分类:根据药物的来源、化学结构和药理作用等方面,药物可以分为天然药物、合成药物和半合成药物等不同类型。
2. 药物的性质:药物的性质包括溶解度、稳定性、吸收性、分布性、代谢性和排泄性等多个方面,这些性质直接影响药物的治疗效果和安全性。
二、药物的吸收、分布、代谢和排泄1. 药物的吸收:药物在人体内的吸收过程涉及到口服吸收、肌肉注射吸收、皮肤吸收等不同途径,吸收速度和程度对药物的疗效有重要影响。
2. 药物的分布:药物在人体内的分布受到血液循环、组织亲和性和蛋白结合等因素的影响,不同药物的分布特点也有所不同。
3. 药物的代谢:药物在人体内经过代谢作用转化为代谢产物,主要通过肝脏中的酶系统进行代谢,代谢产物可能具有相似或不同的药理作用。
4. 药物的排泄:药物在人体内通过肾脏、肠道、呼吸道和皮肤等途径进行排泄,其中肾脏排泄是最主要的途径。
三、药物的作用机制和药理学1. 药物的作用机制:药物通过与人体内的靶点相互作用,改变靶点的功能从而产生药理效应。
常见的作用机制包括激动剂、抑制剂、拮抗剂和调节剂等。
2. 药物的药理学:药理学研究药物对人体的作用机制和生物学效应,包括药物的吸收、分布、代谢、排泄以及药物的药效学和药物动力学等方面。
四、药物的毒理学和药物剂量1. 药物的毒理学:药物的毒理学研究药物对人体的有害效应,包括急性毒性、亚急性毒性和慢性毒性等不同类型的毒性。
2. 药物剂量:药物剂量是指使用药物的剂量大小和给药途径等方面的规定,剂量的合理选择对于药物的治疗效果和安全性具有重要影响。
五、药物质量控制和药物研发1. 药物质量控制:药物质量控制是指通过对药物的原材料、生产工艺和成品进行检验和监控,确保药物的质量符合规定的标准。
2. 药物研发:药物研发是指通过药物的发现、设计、合成和评价等一系列过程,开发新的药物或改进现有药物,以满足临床治疗的需求。
六、药物与人体的相互作用1. 药物相互作用:药物与药物之间、药物与食物之间、药物与疾病之间等不同相互作用可能影响药物的吸收、分布、代谢和排泄等过程,从而影响药物的治疗效果和安全性。
溶胶:以多个分子、原子或离子的聚集体为分散相所形成的胶体分散系。
特性:丁铎尔效应(当聚光光束通过暗处的溶胶时,从侧面可以看到一条明亮的光柱)布朗运动(胶体粒子作不规则运动)电泳现象(带电粒子在电场作用下向相反电极方向移动的现象)缓冲溶液的组成:缓冲溶液由一堆物质组成,其中一种为抗酸成分,另一种为抗碱成分。
构成抗酸和抗碱成分的往往是弱酸及其对应的盐(醋酸/醋酸钠、碳酸/碳酸氢钠)、弱碱及其对应的盐(氨水/氯化铵、苯胺/盐酸苯胺)、多元酸的酸式盐及其对应的次级盐(磷酸二氢钠/磷酸氢二钾、碳酸氢钠/碳酸钠)。
特性:可以抵抗外加的少量强酸或强碱,是溶液中的H+和OH-不发生明显变化,具有缓冲作用,但缓冲能力有一定的限度。
等渗溶液:渗透压在275~310mOsm/L范围内的溶液,如生理盐水(9g/L的NaCl溶液)、50g/L 的葡萄糖溶液等。
红细胞皱缩:大量输入高渗溶液,血浆渗透压高于红细胞内液的渗透压,红细胞内的水分透过细胞膜进入血浆。
溶血现象:大量输入低渗溶液,血浆渗透压低于红细胞內液的渗透压,血浆中的水分向红细胞渗透,使红细胞膨胀甚至破裂。
共价键的类型:头碰头和肩并肩。
断裂:均裂(共价键断裂后,两个键合原子共用的一堆电子由两个原子个保留一个),异裂(共价键断裂后,两个键合原子共用电子对完全被其中一个原子所占有)D/L标记构型:将单糖分子中离醛基或羰基最远的手性碳原子与甘油醛的C-2进行比较,规定与D-甘油醛一致的单糖为D-构型,即-OH在右侧,与L-甘油醛一致的单糖为L-构型,即-OH在左侧。
α-或β-构型:葡萄糖成环后C-1从非手性碳原子转变为手性碳原子,出现两种环式异构体。
呼吸分析仪:乙醇遇到重铬酸钾溶液后,能使橙色溶液变为绿色,可用于酒精检测。
诊断急性肝炎:利用含有羰基的丙酮酸与羰基试剂2,4-二硝基苯肼作用,在碱性条件下生成红棕色的苯腙。
糖的定义:一类多羟基醛或多羟基酮,或水解后能产生多羟基醛或多羟基酮的化合物糖的分类:单糖(根据碳原子数目:丙糖、丁糖、戊糖、己糖;根据羰基特点:醛糖、酮糖)、寡糖/低聚糖(双糖:麦芽糖有还原性、蔗糖无还原性、乳糖有还原性)、多糖(同多糖:淀粉、糖原、纤维素、右旋糖酐;杂多糖:透明质酸、硫酸软骨素、肝素)乳糖不耐受症:指一部分人因体内缺乏乳糖酶,不能很好地吸收乳糖,甚至在食用乳糖后出现腹胀、腹痛、恶心等症状的现象。
油脂的组成:由一分子丙三醇(甘油)和三分子高级脂肪酸所构成的三脂酰甘油营养必须脂肪酸:人体需要的又不能在体内合成的,必须由食物提供的脂肪酸(亚油酸、亚麻酸、花生四烯酸、DHA、EPA)饱和脂肪酸:月桂酸、豆蔻酸、软脂酸、硬脂酸、花生酸不饱和脂肪酸:软油酸、油酸、亚油酸、亚麻酸、花生四烯酸类脂:化学结构或理化性质类似油脂的物质,包括磷脂、糖脂和类固醇类固醇:人体内重要的类固醇有胆固醇、胆固醇酯、胆汁酸、类固醇激素和维生素D氨基酸的等电点:当处于某一PH溶液的氨基酸解离后所带的正、负电荷相等,成为兼性离子,呈电中性,此时溶液的PH称为该氨基酸的等电点。
当溶液PH小于等电点时,氨基酸带正电荷,当溶液的PH大于等电点时,氨基酸带负电荷蛋白质沉淀:蛋白质分子互相聚集从溶液中析出的现象。
方法:盐析、有机溶剂沉淀、重金属盐沉淀、生物碱试剂沉淀蛋白质的变性:在某些理化因素(高温、高压、紫外线、超声波、强酸、强碱、重金属离子、生物碱试剂、有机溶剂)的作用下,使特定的空间结构遭到破坏,从而导致其理化性质的改变和生物学活性的丧失。
蛋白质的颜色反应:双缩脲反应(含有两个或两个以上肽键的化合物与兼性硫酸铜反应生成紫红色,用于蛋白质和多肽的定量测定和检查蛋白质的水解程度)、酚试剂反应(蛋白质分子中络氨酸能与酚试剂(磷钼酸与磷钨酸)反应生成蓝色化合物,灵敏度比双缩脲高100倍)、米伦试剂反应(蛋白质溶液中加入米伦试剂(亚硝酸汞、硝酸汞及硝酸的混合液),蛋白质首先沉淀,加热变成红色沉淀)核苷酸的基本组成:碱基、戊糖、磷酸DNA二级结构--DNA双螺旋结构RNA:信使RNA(mRNA)、转运RNA(tRNA)、核糖体RNA(rRNA)、非编码小分子RNA(sncRNA) 退火:热变性的DNA经缓慢冷却后即可复性烷烃:碳碳单键相连的烃分子中碳原子结合的氢原子数目达到最高限度。
甲烷Sp3(沼气或坑气)、天然气(1~4碳烷烃)、汽油(5~10)、煤油(12~18)、液体石蜡(18~24)、固体凡士林(18~22)烯烃:烃分子中出现C=C的不饱和烃。
乙烯Sp2炔烃:烃分子中出现CC三键的不饱和烃。
乙炔Sp环烃:脂环烃(饱和的环烷烃Sp3、不饱和的环烯烃、环炔烃)、芳香烃(苯Sp2、单环芳香烃、多环芳香烃萘、蒽、菲)醇:醇式羟基R-OH。
甲醇(木精)、乙醇(酒精)、丙三醇(甘油)、苯甲醇(芐醇)酚:酚式羟基Ar-OH。
苯酚(石炭酸)、甲酚(煤酚)、2,4,6-三硝基苯酚(苦味酸)、苯二酚(邻苯二酚-儿茶酚)醚:醇式或酚式羟基上的氢被烃基取代的化合物R-O-R。
乙醚醛:羰基与一个氢原子和一个烃基相连的化合物。
甲醛(乙醛、40%水溶液福尔马林)酮:羰基与两个烃基相连的化合物。
丙酮、樟脑、麝香酮醌:含有环己二烯二酮结构的一类化合物。
苯醌、α-萘醌羧酸:分子中烃基与羧基相连而构成的化合物。
甲酸(乙酸)、乙酸(醋酸)、乙二酸(草酸)、丁二酸(琥珀酸)、苯甲酸(安息香酸)羟基酸:分子中同时具有羟基和羧基两种官能团的化合物。
乳酸、β-羟基丁酸、酒石酸、枸酸(柠檬酸)、水杨酸酮酸:羧酸分子中烃基上的两个氢原子被氧原子取代后生成的含酮基化合物。
丙酮酸、乙酰乙酸、草酰乙酸、α-酮戊二酸溶胶:以多个分子、原子或离子的聚集体为分散相所形成的胶体分散系。
特性:丁铎尔效应(当聚光光束通过暗处的溶胶时,从侧面可以看到一条明亮的光柱)布朗运动(胶体粒子作不规则运动)电泳现象(带电粒子在电场作用下向相反电极方向移动的现象)缓冲溶液的组成:缓冲溶液由一堆物质组成,其中一种为抗酸成分,另一种为抗碱成分。
构成抗酸和抗碱成分的往往是弱酸及其对应的盐(醋酸/醋酸钠、碳酸/碳酸氢钠)、弱碱及其对应的盐(氨水/氯化铵、苯胺/盐酸苯胺)、多元酸的酸式盐及其对应的次级盐(磷酸二氢钠/磷酸氢二钾、碳酸氢钠/碳酸钠)。
特性:可以抵抗外加的少量强酸或强碱,是溶液中的H+和OH-不发生明显变化,具有缓冲作用,但缓冲能力有一定的限度。
等渗溶液:渗透压在275~310mOsm/L范围内的溶液,如生理盐水(9g/L的NaCl溶液)、50g/L 的葡萄糖溶液等。
红细胞皱缩:大量输入高渗溶液,血浆渗透压高于红细胞内液的渗透压,红细胞内的水分透过细胞膜进入血浆。
溶血现象:大量输入低渗溶液,血浆渗透压低于红细胞內液的渗透压,血浆中的水分向红细胞渗透,使红细胞膨胀甚至破裂。
共价键的类型:头碰头和肩并肩。
断裂:均裂(共价键断裂后,两个键合原子共用的一堆电子由两个原子个保留一个),异裂(共价键断裂后,两个键合原子共用电子对完全被其中一个原子所占有)D/L标记构型:将单糖分子中离醛基或羰基最远的手性碳原子与甘油醛的C-2进行比较,规定与D-甘油醛一致的单糖为D-构型,即-OH在右侧,与L-甘油醛一致的单糖为L-构型,即-OH在左侧。
α-或β-构型:葡萄糖成环后C-1从非手性碳原子转变为手性碳原子,出现两种环式异构体。
呼吸分析仪:乙醇遇到重铬酸钾溶液后,能使橙色溶液变为绿色,可用于酒精检测。
诊断急性肝炎:利用含有羰基的丙酮酸与羰基试剂2,4-二硝基苯肼作用,在碱性条件下生成红棕色的苯腙。
糖的定义:一类多羟基醛或多羟基酮,或水解后能产生多羟基醛或多羟基酮的化合物糖的分类:单糖(根据碳原子数目:丙糖、丁糖、戊糖、己糖;根据羰基特点:醛糖、酮糖)、寡糖/低聚糖(双糖:麦芽糖有还原性、蔗糖无还原性、乳糖有还原性)、多糖(同多糖:淀粉、糖原、纤维素、右旋糖酐;杂多糖:透明质酸、硫酸软骨素、肝素)乳糖不耐受症:指一部分人因体内缺乏乳糖酶,不能很好地吸收乳糖,甚至在食用乳糖后出现腹胀、腹痛、恶心等症状的现象。
油脂的组成:由一分子丙三醇(甘油)和三分子高级脂肪酸所构成的三脂酰甘油营养必须脂肪酸:人体需要的又不能在体内合成的,必须由食物提供的脂肪酸(亚油酸、亚麻酸、花生四烯酸、DHA、EPA)饱和脂肪酸:月桂酸、豆蔻酸、软脂酸、硬脂酸、花生酸不饱和脂肪酸:软油酸、油酸、亚油酸、亚麻酸、花生四烯酸类脂:化学结构或理化性质类似油脂的物质,包括磷脂、糖脂和类固醇类固醇:人体内重要的类固醇有胆固醇、胆固醇酯、胆汁酸、类固醇激素和维生素D氨基酸的等电点:当处于某一PH溶液的氨基酸解离后所带的正、负电荷相等,成为兼性离子,呈电中性,此时溶液的PH称为该氨基酸的等电点。
当溶液PH小于等电点时,氨基酸带正电荷,当溶液的PH大于等电点时,氨基酸带负电荷蛋白质沉淀:蛋白质分子互相聚集从溶液中析出的现象。
方法:盐析、有机溶剂沉淀、重金属盐沉淀、生物碱试剂沉淀蛋白质的变性:在某些理化因素(高温、高压、紫外线、超声波、强酸、强碱、重金属离子、生物碱试剂、有机溶剂)的作用下,使特定的空间结构遭到破坏,从而导致其理化性质的改变和生物学活性的丧失。
蛋白质的颜色反应:双缩脲反应(含有两个或两个以上肽键的化合物与兼性硫酸铜反应生成紫红色,用于蛋白质和多肽的定量测定和检查蛋白质的水解程度)、酚试剂反应(蛋白质分子中络氨酸能与酚试剂(磷钼酸与磷钨酸)反应生成蓝色化合物,灵敏度比双缩脲高100倍)、米伦试剂反应(蛋白质溶液中加入米伦试剂(亚硝酸汞、硝酸汞及硝酸的混合液),蛋白质首先沉淀,加热变成红色沉淀)核苷酸的基本组成:碱基、戊糖、磷酸DNA二级结构--DNA双螺旋结构RNA:信使RNA(mRNA)、转运RNA(tRNA)、核糖体RNA(rRNA)、非编码小分子RNA(sncRNA) 退火:热变性的DNA经缓慢冷却后即可复性烷烃:碳碳单键相连的烃分子中碳原子结合的氢原子数目达到最高限度。
甲烷Sp3(沼气或坑气)、天然气(1~4碳烷烃)、汽油(5~10)、煤油(12~18)、液体石蜡(18~24)、固体凡士林(18~22)烯烃:烃分子中出现C=C的不饱和烃。
乙烯Sp2炔烃:烃分子中出现CC三键的不饱和烃。
乙炔Sp环烃:脂环烃(饱和的环烷烃Sp3、不饱和的环烯烃、环炔烃)、芳香烃(苯Sp2、单环芳香烃、多环芳香烃萘、蒽、菲)醇:醇式羟基R-OH。
甲醇(木精)、乙醇(酒精)、丙三醇(甘油)、苯甲醇(芐醇)酚:酚式羟基Ar-OH。
苯酚(石炭酸)、甲酚(煤酚)、2,4,6-三硝基苯酚(苦味酸)、苯二酚(邻苯二酚-儿茶酚)醚:醇式或酚式羟基上的氢被烃基取代的化合物R-O-R。
乙醚醛:羰基与一个氢原子和一个烃基相连的化合物。