数据结构算法大全有代码
- 格式:docx
- 大小:77.18 KB
- 文档页数:18
C程序经典算法50例1.二分查找算法:在有序数组中查找指定元素。
2.冒泡排序算法:通过不断比较相邻元素并交换位置,将较大的元素向后冒泡。
3.快速排序算法:通过选择一个基准元素,将数组分割为左右两部分,并递归地对两部分进行快速排序。
4.插入排序算法:将数组划分为已排序和未排序两部分,每次从未排序中选择一个元素插入到已排序的合适位置。
5.选择排序算法:遍历数组,每次选择最小元素并放置在已排序部分的末尾。
6.希尔排序算法:将数组按照一定间隔进行分组并分别进行插入排序,然后逐步减小间隔并重复这个过程。
7.归并排序算法:将数组递归地划分为两部分,然后将两个有序的部分进行合并。
8.桶排序算法:将元素根据特定的映射函数映射到不同的桶中,然后对每个桶分别进行排序。
9.计数排序算法:统计每个元素的出现次数,然后根据计数进行排序。
10.基数排序算法:从低位到高位依次对元素进行排序。
11.斐波那契数列算法:计算斐波那契数列的第n项。
12.阶乘算法:计算给定数字的阶乘。
13.排列问题算法:生成给定数组的全排列。
14.组合问题算法:生成给定数组的所有组合。
15.最大连续子序列和算法:找出给定数组中和最大的连续子序列。
16.最长递增子序列算法:找出给定数组中的最长递增子序列。
17.最长公共子序列算法:找出两个给定字符串的最长公共子序列。
18.最短路径算法:计算给定有向图的最短路径。
19.最小生成树算法:构建给定连通图的最小生成树。
20.汉诺塔算法:将n个圆盘从一个柱子移动到另一个柱子的问题。
21.BFS算法:广度优先算法,用于图的遍历和查找最短路径。
22.DFS算法:深度优先算法,用于图的遍历和查找连通分量。
23.KMP算法:字符串匹配算法,用于查找一个字符串是否在另一个字符串中出现。
24.贪心算法:每次都选择当前情况下最优的方案,适用于求解一些最优化问题。
25.动态规划算法:将一个大问题划分为多个子问题,并通过子问题的解求解整个问题,适用于求解一些最优化问题。
数据结构经典题目及c语言代码一、线性表1. 顺序表顺序表是一种利用连续存储空间存储元素的线性表。
以下是一个顺序表的经典题目及C语言代码实现:```c#define MaxSize 50typedef struct {int data[MaxSize]; // 存储元素的数组int length; // 顺序表的当前长度} SeqList;// 初始化顺序表void initList(SeqList *L) {L->length = 0;}// 插入元素到指定位置void insert(SeqList *L, int pos, int elem) {if (pos < 1 || pos > L->length + 1) {printf("插入位置无效\n");return;}if (L->length == MaxSize) {printf("顺序表已满,无法插入\n"); return;}for (int i = L->length; i >= pos; i--) { L->data[i] = L->data[i - 1];}L->data[pos - 1] = elem;L->length++;}// 删除指定位置的元素void delete(SeqList *L, int pos) {if (pos < 1 || pos > L->length) {printf("删除位置无效\n");return;}for (int i = pos - 1; i < L->length - 1; i++) {L->data[i] = L->data[i + 1];}L->length--;}// 获取指定位置的元素值int getElement(SeqList *L, int pos) {if (pos < 1 || pos > L->length) {printf("位置无效\n");return -1;}return L->data[pos - 1];}```2. 链表链表是一种利用非连续存储空间存储元素的线性表。
c语言算法100例以下是一些经典的C语言算法题目,总共提供100个例子供你练习和学习:1.编写一个程序,计算并输出斐波那契数列的前20个数。
2.编写一个程序,判断一个数是否为素数。
3.编写一个程序,计算并输出一个数的阶乘。
4.编写一个程序,实现两个数的交换(不使用第三个变量)。
5.编写一个程序,找出一个数组中的最大值。
6.编写一个程序,将一个字符串反转。
7.编写一个程序,判断一个字符串是否为回文字符串。
8.编写一个程序,实现冒泡排序算法对一个数组进行排序。
9.编写一个程序,实现二分查找算法在一个有序数组中查找指定的元素。
10.编写一个程序,计算并输出斐波那契数列的第n个数。
11.编写一个程序,将一个二维数组顺时针旋转90度。
12.编写一个程序,计算并输出一个数的平方根。
13.编写一个程序,判断一个字符串中是否包含重复字符。
14.编写一个程序,实现插入排序算法对一个数组进行排序。
15.编写一个程序,将一个有序数组合并为一个有序数组。
16.编写一个程序,判断一个数是否为完全数(即所有因子之和等于该数本身)。
17.编写一个程序,计算并输出一个数的倒数。
18.编写一个程序,判断一个字符串是否是另一个字符串的子串。
19.编写一个程序,实现选择排序算法对一个数组进行排序。
20.编写一个程序,计算并输出两个数的最大公约数。
21.编写一个程序,实现快速排序算法对一个数组进行排序。
22.编写一个程序,将一个字符串中的所有空格替换为指定的字符。
23.编写一个程序,判断一个数是否是回文数。
24.编写一个程序,计算并输出两个数的最小公倍数。
25.编写一个程序,实现归并排序算法对一个数组进行排序。
26.编写一个程序,判断一个字符串是否是有效的括号串。
27.编写一个程序,计算并输出一个数的立方根。
28.编写一个程序,实现堆排序算法对一个数组进行排序。
29.编写一个程序,判断一个数是否是质数。
30.编写一个程序,计算并输出一个数的二进制表示。
C常用数据结构与算法1.数据结构1.1 数组- 定义- 常用操作:访问元素、添加元素、删除元素、查找元素 - 应用场景1.2 链表- 定义- 常用操作:插入节点、删除节点、查找节点- 单链表、双链表、循环链表的区别- 应用场景1.3 栈- 定义- 常用操作:入栈、出栈、查看栈顶元素、判断栈是否为空 - 可使用数组或链表实现- 应用场景1.4 队列- 定义- 常用操作:入队、出队、查看队首元素、查看队尾元素、判断队列是否为空- 可使用数组或链表实现- 应用场景1.5 哈希表- 定义- 常用操作:插入键值对、删除键值对、根据键查找值、计算哈希值- 冲突解决方法:开放寻址法、链地质法- 应用场景2.常用算法2.1 排序算法- 冒泡排序- 插入排序- 选择排序- 快速排序- 归并排序- 堆排序2.2 查找算法- 线性查找- 二分查找- 插值查找- 哈希查找- 树查找(二叉搜索树、平衡二叉树、红黑树)2.3 图算法- 广度优先搜索- 深度优先搜索- 最短路径算法(Dijkstra算法、Floyd-Warshall算法) - 最小树算法(Prim算法、Kruskal算法)2.4 动态规划- 背包问题- 最长公共子序列- 最大子数组和3.附件:无4.法律名词及注释:- C: C是一种通用的、面向对象的编程语言,由微软公司开发。
- 数据结构:数据结构是计算机中组织和存储数据的方式。
- 算法:算法是解决问题的一系列步骤或过程。
- 数组:数组是一种线性数据结构,由一系列元素组成,每个元素都有唯一的索引值。
- 链表:链表是一种线性数据结构,由一系列节点组成,每个节点都包含数据和指向下一个节点的指针。
- 栈:栈是一种后进先出(LIFO)的数据结构,只能在栈顶进行操作。
- 队列:队列是一种先进先出(FIFO)的数据结构,只能在队首和队尾进行操作。
- 哈希表:哈希表是一种使用哈希函数将键映射到值的数据结构。
- 排序算法:排序算法是将一组数据按照特定顺序排列的算法。
C语言常用算法程序汇总C语言是一门广泛应用于计算机编程的语言,具有较高的效率和灵活性。
在C语言中,常见的算法程序包括排序算法、查找算法、递归算法等等。
以下是一些常用的C语言算法程序的汇总:1.排序算法:-冒泡排序:通过多次迭代比较相邻元素并交换位置,将最大的元素逐渐移动到正确的位置。
-插入排序:将待排序的元素与已排序的部分依次比较并插入到正确的位置。
-选择排序:每次从待排序的元素中选择最小的元素并与已排序的部分交换位置。
-快速排序:通过选择一个基准元素,将数组划分为两个子数组进行递归排序。
2.查找算法:-顺序查找:逐个比较数组中的元素,直到找到目标元素或到数组末尾。
-二分查找:通过比较目标元素与数组中间元素的大小,逐步缩小范围,直到找到目标元素。
-哈希查找:通过散列函数将目标元素映射到哈希表的索引位置进行查找。
3.递归算法:-阶乘:通过递归调用自身计算一个正整数的阶乘。
-斐波那契数列:通过递归调用自身计算斐波那契数列的第n个数。
-二叉树遍历:通过递归调用自身遍历二叉树的各个节点。
4.图算法:- 最短路径算法:如Dijkstra算法和Floyd算法,用于计算图中两个节点之间的最短路径。
-拓扑排序:通过对有向无环图进行排序,使得所有的边从排在前面的节点指向排在后面的节点。
- 最小生成树:如Prim算法和Kruskal算法,用于找到图中连接所有节点的最小子树。
5.动态规划:-最长公共子序列:通过寻找两个字符串中的最长公共子序列,解决字符串匹配问题。
-背包问题:通过动态规划解决在给定容量下选取物品使得总价值最大的问题。
-最大子序列和:通过动态规划解决一个数组中选取连续子序列使得和最大的问题。
以上只是一些C语言中常用的算法程序的汇总,实际上,还有很多其他的算法,如逆波兰表达式、霍夫曼编码、最小割等等。
通过学习这些算法,可以更好地理解C语言的应用和开发。
二叉树c语言实现完整代码二叉树是一种非常常见的数据结构,它由节点和边组成,每个节点最多有两个子节点,分别称为左子节点和右子节点。
在计算机科学中,二叉树被广泛应用于搜索、排序、编译器等领域。
本文将介绍如何使用C语言实现二叉树的完整代码。
我们需要定义二叉树的节点结构体。
每个节点包含三个成员变量:数据、左子节点和右子节点。
代码如下:```struct TreeNode {int val;struct TreeNode *left;struct TreeNode *right;};```接下来,我们需要实现二叉树的基本操作,包括创建节点、插入节点、删除节点、查找节点等。
这些操作可以通过递归实现。
代码如下:```// 创建节点struct TreeNode* createNode(int val) {struct TreeNode* node = (struct TreeNode*)malloc(sizeof(struct TreeNode));node->val = val;node->left = NULL;node->right = NULL;return node;}// 插入节点struct TreeNode* insertNode(struct TreeNode* root, int val) {if (root == NULL) {return createNode(val);}if (val < root->val) {root->left = insertNode(root->left, val);} else {root->right = insertNode(root->right, val);}return root;}// 删除节点struct TreeNode* deleteNode(struct TreeNode* root, int val) {if (root == NULL) {return NULL;}if (val < root->val) {root->left = deleteNode(root->left, val);} else if (val > root->val) {root->right = deleteNode(root->right, val);} else {if (root->left == NULL) {struct TreeNode* temp = root->right;free(root);return temp;} else if (root->right == NULL) {struct TreeNode* temp = root->left;free(root);return temp;}struct TreeNode* temp = findMin(root->right); root->val = temp->val;root->right = deleteNode(root->right, temp->val); }return root;}// 查找节点struct TreeNode* searchNode(struct TreeNode* root, int val) {if (root == NULL || root->val == val) {return root;}if (val < root->val) {return searchNode(root->left, val);} else {return searchNode(root->right, val);}}// 查找最小节点struct TreeNode* findMin(struct TreeNode* root) {while (root->left != NULL) {root = root->left;}return root;}```我们需要实现二叉树的遍历操作,包括前序遍历、中序遍历和后序遍历。
/* c1.h (程序名) */#include<string.h>#include<ctype.h>#include<malloc.h> /* malloc()等*/#include<limits.h> /* INT_MAX等*/#include<stdio.h> /* EOF(=^Z或F6),NULL */#include<stdlib.h> /* atoi() */#include<io.h> /* eof() */#include<math.h> /* floor(),ceil(),abs() */#include<process.h> /* exit() *//* 函数结果状态代码*/#define TRUE 1#define FALSE 0#define OK 1#define ERROR 0#define INFEASIBLE -1/* #define OVERFLOW -2 因为在math.h中已定义OVERFLOW的值为3,故去掉此行*/ typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等*/ typedef int Boolean; /* Boolean是布尔类型,其值是TRUE或FALSE *//* algo2-1.c 实现算法2.1的程序*/#include"c1.h"typedef int ElemType;#include"c2-1.h"/*c2-1.h 线性表的动态分配顺序存储结构*/#define LIST_INIT_SIZE 10 /* 线性表存储空间的初始分配量*/#define LISTINCREMENT 2/* 线性表存储空间的分配增量*/typedef struct{ElemType*elem; /* 存储空间基址*/int length; /* 当前长度*/int listsize; /* 当前分配的存储容量(以sizeof(ElemType)为单位) */}SqList;#include"bo2-1.c"/* bo2-1.c 顺序表示的线性表(存储结构由c2-1.h定义)的基本操作(12个) */ Status InitList(SqList*L) /* 算法2.3 */{ /* 操作结果:构造一个空的顺序线性表*/(*L).elem=(ElemType*)malloc(LIST_INIT_SIZE*sizeof(ElemType));if(!(*L).elem)exit(OVERFLOW); /* 存储分配失败*/(*L).length=0; /* 空表长度为0 */(*L).listsize=LIST_INIT_SIZE; /* 初始存储容量*/return OK;}Status DestroyList(SqList*L){ /* 初始条件:顺序线性表L已存在。
C语言入门必学—10个经典C语言算法C语言是一种广泛使用的编程语言,具有高效、灵活和易学的特点。
它不仅在软件开发中被广泛应用,也是计算机科学专业的必修课。
在学习C语言的过程中,掌握一些经典的算法是非常重要的。
本文将介绍10个经典C语言算法,帮助读者更好地了解和掌握C语言。
一、冒泡排序算法(Bubble Sort)冒泡排序算法是最简单、也是最经典的排序算法之一。
它通过不断比较相邻的元素并交换位置,将最大(或最小)的元素逐渐“冒泡”到数组的最后(或最前)位置。
二、选择排序算法(Selection Sort)选择排序算法是一种简单但低效的排序算法。
它通过不断选择最小(或最大)的元素,并与未排序部分的第一个元素进行交换,将最小(或最大)的元素逐渐交换到数组的前面(或后面)。
三、插入排序算法(Insertion Sort)插入排序算法是一种简单且高效的排序算法。
它通过将数组分为已排序和未排序两个部分,依次将未排序部分的元素插入到已排序部分的合适位置。
四、快速排序算法(Quick Sort)快速排序算法是一种高效的排序算法。
它采用了分治的思想,通过将数组分为较小和较大两部分,并递归地对两部分进行排序,最终达到整个数组有序的目的。
五、归并排序算法(Merge Sort)归并排序算法是一种高效的排序算法。
它采用了分治的思想,将数组一分为二,递归地对两个子数组进行排序,并将结果合并,最终得到有序的数组。
六、二分查找算法(Binary Search)二分查找算法是一种高效的查找算法。
它通过不断将查找范围折半,根据中间元素与目标值的大小关系,缩小查找范围,最终找到目标值所在的位置。
七、递归算法(Recursive Algorithm)递归算法是一种通过自我调用的方式解决问题的算法。
在C语言中,递归算法常用于解决树的遍历、问题分解等情况。
八、斐波那契数列算法(Fibonacci Sequence)斐波那契数列是一列数字,其中每个数字都是前两个数字的和。
C语言常用算法大全1.排序算法-冒泡排序:依次比较相邻的两个元素,如果顺序不对则交换,每轮找出一个最大或最小的元素-选择排序:从未排序的元素中选择最小或最大的放到已排序的最后,以此类推-插入排序:将未排序的元素插入到已排序的合适位置,从后向前进行比较和交换-快速排序:选择一个基准元素,将小于基准元素的放在左边,大于基准元素的放在右边,然后对左右两边递归地进行快速排序-归并排序:将待排序的序列不断划分为左右两部分,分别排序后再将排序好的左右两部分按顺序合并-堆排序:构建大顶堆,将堆顶元素与末尾元素交换,然后重新调整堆,重复这个过程直到排序完成2.查找算法-顺序查找:从给定的元素序列中逐个比较,直到找到目标元素或遍历完整个序列-二分查找:对于有序序列,在序列的中间位置比较目标元素和中间元素的大小关系,通过每次缩小一半的范围来查找目标元素-插值查找:根据目标元素与有序序列的最小值和最大值的比例推测目标元素所在的位置,然后递归地进行查找-斐波那契查找:根据斐波那契数列的性质来确定目标元素所在的位置,然后递归地进行查找3.图算法-深度优先(DFS):从图的一些顶点出发,依次访问其未被访问过的邻接顶点,直到所有顶点都被访问过为止-广度优先(BFS):从图的一些顶点出发,逐层遍历图的顶点,直到所有顶点都被访问过为止- 最小生成树算法:Prim算法和Kruskal算法,用于找到连接图中所有顶点的最小权值边,构成一棵包含所有顶点的生成树- 最短路径算法:Dijkstra算法和Floyd-Warshall算法,用于找到图中两个顶点之间的最短路径-拓扑排序:用于有向无环图(DAG)中的顶点排序,确保排序后的顶点满足所有依赖关系-关键路径算法:找出网络中的关键路径,即使整个工程完成的最短时间4.字符串算法- KMP算法:通过预处理模式串构建next数组,利用next数组在匹配过程中跳过一部分不可能匹配的子串- Boyer-Moore算法:从模式串的末尾开始匹配,利用坏字符和好后缀规则进行跳跃匹配- Rabin-Karp算法:利用哈希函数对主串和匹配串的子串进行哈希计算,然后比较哈希值是否相等- 字符串匹配算法:BM算法、Shift-And算法、Sunday算法等,用于寻找模式串在主串中的出现位置5.动态规划算法-最长公共子序列(LCS):用于寻找两个序列中最长的公共子序列-最长递增子序列(LIS):用于寻找给定序列中最长的递增子序列-0-1背包问题:将有限的物品放入容量为C的背包中,使得物品的总价值最大-最大子数组和:用于求解给定数组中连续子数组的最大和-最大正方形:在给定的0-1矩阵中,找出只包含1的最大正方形的边长这些算法是在C语言中常用的算法,它们涵盖了排序、查找、图、字符串和动态规划等多个领域。