(完整版)机械能守恒定律测试题及答案
- 格式:pdf
- 大小:176.11 KB
- 文档页数:7
一、选择题1.有一质量m=2kg 的带电小球沿光滑绝缘的水平面只在电场力的作用下,以初速度v 0=2m/s 在x 0=7m 处开始向x 轴负方向运动。
电势能E P 随位置x 的变化关系如图所示,则小球的运动范围和最大速度分别为( )A. 运动范围x≥0B. 运动范围x≥1mC. 最大速度v m =2m/sD. 最大速度v m =3m/s 【答案】BC 【解析】试题分析:根据动能定理可得W 电=0−12mv 02=−4J ,故电势能增大4J ,因在开始时电势能为零,故电势能最大增大4J ,故运动范围在x≥1m ,故A 错误,B 正确;由图可知,电势能最大减小4J ,故动能最大增大4J ,根据动能定理可得W =12mv 2−12mv 02;解得v=2√2m/s ,故C 正确,D 错误;故选:BC 考点:动能定理;电势能.2.如图所示,竖直平面内光滑圆弧轨道半径为R ,等边三角形ABC 的边长为L ,顶点C 恰好位于圆周最低点,CD 是AB 边的中垂线.在A 、B 两顶点上放置一对等量异种电荷.现把质量为m 带电荷量为+Q 的小球由圆弧的最高点M 处静止释放,到最低点C 时速度为v 0.不计+Q 对原电场的影响,取无穷远处为零电势,静电力常量为k ,则( )A. 小球在圆弧轨道上运动过程机械能守恒B. C 点电势比D 点电势高C. M 点电势为(mv 02﹣2mgR )D. 小球对轨道最低点C 处的压力大小为mg+m +2k【答案】C 【解析】试题分析:此题属于电场力与重力场的复合场,根据机械能守恒和功能关系即可进行判断.解:A、小球在圆弧轨道上运动重力做功,电场力也做功,不满足机械能守恒适用条件,故A错误;B、CD处于AB两电荷的等势能面上,且两点的电势都为零,故B错误;C、M点的电势等于==,故C正确;D、小球对轨道最低点C处时,电场力为k,故对轨道的压力为mg+m+k,故D错误;故选:C【点评】此题的难度在于计算小球到最低点时的电场力的大小,难度不大.3.如图,平行板电容器两极板的间距为d,极板与水平面成45°角,上极板带正电。
机械能守恒定律专题练习姓名:分数:专项练习题第一类问题:双物体系统的机械能守恒问题例1. (2007·江苏南京)如图所示,A 物体用板托着,位于离地面处,轻质细绳通过光滑定滑轮与A、B相连,绳子处于绷直状态,已知A 物体质量,B 物体质量,现将板抽走,A将拉动B上升,设A与地面碰后不反弹,B上升过程中不会碰到定滑轮,问:B 物体在上升过程中离地的最大高度为多大?(取)(例1)(例2)例2. 如图所示,质量分别为2m、m的两个物体A、B可视为质点,用轻质细线连接跨过光滑圆柱体,B着地A恰好与圆心等高,若无初速度地释放,则B上升的最大高度为多少?第二类问题:单一物体的机械能守恒问题例3. (2005年北京卷)是竖直平面内的四分之一圆弧形轨道,在下端B点与水平直轨道相切,如图所示,一小球自A点起由静止开始沿轨道下滑,已知圆轨道半径,不计各处摩擦,求:为R,小球的质量为m(1)小球运动到B点时的动能;(2)小球下滑到距水平轨道的高度为R时速度的大小和方向;(3)小球经过圆弧形轨道的B点和水平轨道的C点时,所受轨道支持力各是多大。
例4. (2007·南昌调考)如图所示,O点离地面高度为H,以O点为圆心,制作点等高的圆弧最高点滚下后水平抛出,试求:四分之一光滑圆弧轨道,小球从与O(1)小球落地点到O点的水平距离;(2)要使这一距离最大,R应满足何条件?最大距离为多少?第三类问题:机械能守恒与圆周运动的综合问题例5. 把一个小球用细线悬挂起来,就成为一个摆(如图所示),摆长为l ,最大偏角为,小球运动到最低位置时的速度是多大?(例5)(例6)例6. (2005·沙市)如图所示,用一根长为L 的细绳,一端固定在天花板上的O点,另一端系一小球A ,在O 点的正下方钉一钉子B ,当质量为m 的小球由水平位置静止释放后,小球运动到最低点时,细线遇到钉子B ,小球开始以B 为圆心做圆周运动,恰能过B 点正上方C ,求OB 的距离。
高考物理《机械能守恒定律》真题练习含答案1.[2024·上海市新中中学月考]如图,将质量为m 的篮球从离地高度为h 的A 处,以初始速度v 抛出,篮球恰能进入高度为H 的篮圈.不计空气阻力和篮球转动的影响,经过篮球入圈位置B 的水平面为零势能面,重力加速度为g .则篮球经过位置B 时的机械能为( )A .12 m v 2B .12 m v 2+mg (h -H )C .12 m v 2+mg (H -h )D .12 m v 2+mgh答案:B解析:不计空气阻力和篮球转动的情况下,篮球运动过程中机械能守恒,篮球经过B 点的机械能等于在A 点的机械能.以B 点所在的水平面为零势能面,篮球在A 点的重力势能E p =-mg (H -h )=mg (h -H ),则机械能E =E k +E p =12m v 2+mg (h -H ),B 正确.2.如图所示,一根轻质弹簧左端固定,现使滑块沿光滑水平桌面滑向弹簧,在滑块接触到弹簧直到速度减为零的过程中,弹簧的( )A .弹力越来越大,弹性势能越来越大B .弹力越来越小,弹性势能越来越小C .弹力先变小后变大,弹性势能越来越小D .弹力先变大后变小,弹性势能越来越大 答案:A解析:滑块接触到弹簧直到速度减为零的过程中,弹簧形变量越来越大,根据F =kx 得弹力越来越大,滑块接触到弹簧直到速度减为零的过程中,弹簧弹力一直做负功,物块的动能逐渐转化为弹簧的弹性势能,弹簧的弹性势能越来越大,A 正确.3.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如一根长为2L 的细线系一质量为m 的小球,两线上端系于水平横杆上,A 、B 两点相距也为L ,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为( )A .6mgB .23 mgC .5mgD .533 mg答案:B解析:小球恰好过最高点时有mg =m v 21R,解得v 1=32gL ,由机械能守恒定律得mg ×3 L =12 m v 22 -12 m v 21 ,由牛顿第二定律得3 F -mg =m v 22 32L ,联立以上各式解得F =23 mg ,B 正确.4.[2024·河北省张家口市张垣联盟联考]有一条均匀金属链条,一半长度在光滑的足够高斜面上,斜面顶端是一个很小的圆弧,斜面倾角为30°,另一半长度竖直下垂,由静止释放后链条滑动,已知重力加速度g =10 m/s 2,链条刚好全部滑出斜面时的速度大小为522 m/s ,则金属链条的长度为( )A .0.6 mB .1 mC .2 mD .2.6 m 答案:C解析:设链条的质量为2m ,以开始时链条的最高点所在水平面为零势能面,链条的机械能为E =E p +E k =-12 ×2mg ×L 4 sin θ-12 ×2mg ×L 4 +0=-14 mgL (1+sin θ),链条全部滑出后,动能为E ′k =12 ×2m v 2,重力势能为E ′p =-2mg L2 ,由机械能守恒可得E =E ′k +E ′p ,即-14mgL (1+sin θ)=m v 2-mgL ,解得L =2 m ,C 正确.5.[2024·山东省济宁市期中考试]有一竖直放置的“T”形架,表面光滑,滑块A 、B 分别套在水平杆与竖直杆上,A 、B 用一根不可伸长的轻细绳相连,A 、B 质量相等,且可看做质点,如图所示,开始时细绳水平伸直,A 、B 静止.由静止释放B 后,已知当细绳与竖直方向的夹角为60°时,滑块B 沿着竖直杆下滑的速度为v ,则连接A 、B 的绳长为( )A .4v 2gB .3v 2gC .2v 23gD .4v 23g答案:D解析:如图所示,将A 、B 的速度分解为沿绳的方向和垂直于绳的方向,两物体沿绳子的方向速度大小相等,则有v B cos 60°=v A cos 30°,解得v A =33v ,由于A 、B 组成的系统只有重力做功,所以系统机械能守恒,B 减小的重力势能全部转化为A 和B 的动能,有mgh =12 m v 2A +12 m v 2B ,解得h =2v 23g ,绳长L =2h =4v 23g,D 正确.6.(多选)如图所示,轻弹簧的一端固定在O 点,另一端与质量为m 的小球连接,小球套在光滑的斜杆上,初始时小球位于A 点,弹簧竖直且长度为原长L .现由静止释放小球,当小球运动至B 点时弹簧水平,且长度再次变为原长.关于小球从A 点运动到B 的过程,以下说法正确的是( )A .小球的机械能守恒B .小球运动到B 点时的速度最大 C.小球运动到B 点时的速度为0D .小球运动到B 点时的速度为2gL答案:BD解析:在小球向下运动的过程中,弹簧的弹力做功,并不是只有重力做功,小球的机械能不守恒,A 错误;从A 到B 的过程中,弹簧弹力做功为零,小球的重力做正功最多,由动能定理得小球的速度最大,B 正确,C 错误;小球运动到B 点时,弹簧为原长,由系统的机械能守恒定律得mgL =12m v 2,解得v =2gL ,D 正确.7.(多选)在竖直平面内,一根光滑金属杆弯成如图所示形状,相应的曲线方程为y =2.5cos (kx +23 π)(单位:m),式中k =1 m -1,将一光滑小环套在该金属杆上,并从x =0处以v 0=5m/s 的初速度沿杆向下运动,取重力加速度g =10 m/s 2,则下列说法正确的是( )A.当小环运动到x =π3 时的速度大小v 1=52 m/sB.当小环运动到x =π3 时的速度大小v 1=5 m/sC .该小环在x 轴方向最远能运动到x =56 π处D .该小环在x 轴方向最远能运动到x =76 π处答案:AC解析:当x =0时,y 0=-1.25 m ;当 x =π3 时,y 1=-2.5 m .由机械能守恒定律得mg (y 0-y 1)=12 m v 21 -12 m v 20 ,解得v 1=52 m/s ,A 正确,B 错误;设小球速度为零时上升的高度为h ,由机械能守恒定律得mgh =12 m v 20 ,解得h =1.25 m ,即y =0,代入曲线方程可得x =56π,C 正确,D 错误.8.如图所示,在竖直平面内有一半径为R 的四分之一圆弧轨道BC ,与竖直轨道AB 和水平轨道CD 相切,轨道均光滑.现有长也为R 的轻杆,两端固定质量为m 的小球a 、质量为2m 的小球b (均可视为质点),用某装置控制住小球a ,使轻杆竖直且小球b 与B 点等高,然后由静止释放,杆将沿轨道下滑.设小球始终与轨道接触,重力加速度为g .则( )A .下滑过程中a 球机械能增大B .下滑过程中b 球机械能守恒C .小球a 滑过C 点后,a 球速度大于26mgR3D .从释放至a 球到滑过C 点的过程中,轻杆对b 球做正功为23 mgR答案:D解析:下滑过程中,若以两球为整体,只有重力做功,则有系统的机械能守恒,若分开单独分析,杆对a 球做负功,a 球的机械能减小,杆对b 球做正功,b 球的机械能增加,A 、B 错误;若以两球为整体,只有重力做功,则有系统的机械能守恒,则有mg ·2R +2mgR =12(m +2m )v 2,解得v =26gR 3 ,C 错误;对b 球分析,由动能定理可得W +2mgR =12 ·2m v 2,W =12 ·2m v 2-2mgR =23 mgR ,杆对b 球做正功为23mgR ,D 正确.9.[2024·浙江1月]类似光学中的反射和折射现象,用磁场或电场调控也能实现质子束的“反射”和“折射”.如图所示,在竖直平面内有三个平行区域Ⅰ、Ⅱ和Ⅲ,Ⅰ区宽度为d ,存在磁感应强度大小为B 、方向垂直平面向外的匀强磁场,Ⅱ区的宽度很小.Ⅰ区和Ⅲ区电势处处相等,分别为φⅠ和φⅢ,其电势差U =φⅠ-φⅢ.一束质量为m 、电荷量为e 的质子从O 点以入射角θ射向Ⅰ区,在P 点以出射角θ射出,实现“反射”;质子束从P 点以入射角θ射入Ⅱ区,经Ⅱ区“折射”进入Ⅲ区,其出射方向与法线夹角为“折射”角.已知质子仅在平面内运动,单位时间发射的质子数为N ,初速度为v 0,不计质子重力,不考虑质子间相互作用以及质子对磁场和电势分布的影响.(1)若不同角度射向磁场的质子都能实现“反射”,求d 的最小值;(2)若U =m v 20 2e,求“折射率”n (入射角正弦与折射角正弦的比值);(3)计算说明如何调控电场,实现质子束从P 点进入Ⅱ区发生“全反射”(即质子束全部返回Ⅰ区);(4)在P 点下方距离3m v 0eB 处水平放置一长为4m v 0eB的探测板CQD (Q 在P 的正下方),CQ 长为m v 0eB ,质子打在探测板上即被吸收中和.若还有另一相同质子束,与原质子束关于法线左右对称,同时从O 点射入Ⅰ区,且θ=30°,求探测板受到竖直方向力F 的大小与U 之间的关系.答案:(1)2m v 0Be (2)2 (3)U ≤-m v 20 cos 2θ2e(4)见解析解析:(1)根据牛顿第二定律 Be v 0=m v 20r不同角度射向磁场的质子都能实现“反射”,d 的最小值为 d min =2r =2m v 0Be(2)设水平方向为x 方向,竖直方向为y 方向,x 方向速度不变,y 方向速度变小,假设折射角为θ′,根据动能定理Ue =12 m v 21 -12 m v 20 解得 v 1=2 v 0 根据速度关系 v 0sin θ=v 1sin θ′ 解得n =sin θsin θ′ =v 1v 0=2 (3)全反射的临界情况:到达Ⅲ区的时候y 方向速度为零,即 Ue =0-12 m (v 0cos θ)2可得U =-m v 20 cos 2θ2e即应满足U ≤-m v 20 cos 2θ2e(4)临界情况有两个:1、全部都能打到,2、全部都打不到的情况,根据几何关系可得 ∠CPQ =30°所以如果U ≥0的情况下,折射角小于入射角,两边射入的粒子都能打到板上,分情况讨论如下:①当U ≥0时 F =2Nm v y 又eU =12 m v 2y-12 m (v 0cos θ)2 解得 F =2Nm34v 20 +2eUm②全部都打不到板的情况,根据几何知识可知当从Ⅱ区射出时速度与竖直方向夹角为60°时,粒子刚好打到D 点,水平方向速度为v x =v 02所以v y =v x tan 60° =36 v 0又eU =12 m v 2y-12 m (v 0cos θ)2 解得 U =-m v 20 3e即当U <-m v 203e 时F =0③部分能打到的情况,根据上述分析可知条件为(-m v 203e ≤U <0),此时仅有O 点右侧的一束粒子能打到板上,因此F =Nm v y 又eU =12 m v 2y-12 m (v 0cos θ)2 解得 F =Nm 34v 20 +2eUm。
机械能守恒定律练习一、单选题1.下列所述的物体在运动过程中满足机械能守恒的是( )A. 跳伞运动员张开伞后,在空中匀速下降B. 忽略空气阻力,物体竖直上抛C. 火箭升空过程D. 拉着物体沿光滑斜面匀速上升【答案】B【解析】解:A、跳伞运动员在空中匀速下降,动能不变,重力势能减小,因机械能等于动能和势能之和,则机械能减小。
故A错误。
B、忽略空气阻力,物体竖直上抛,只有重力做功,机械能守恒,故B正确。
C、火箭升空,动力做功,机械能增加。
故C错误。
D、物体沿光滑斜面匀速上升,动能不变,重力势能在增加,所以机械能在增大。
故D错误。
故选:B。
物体机械能守恒的条件是只有重力或者是弹簧弹力做功,或看物体的动能和势能之和是否保持不变,即采用总量的方法进行判断。
解决本题的关键掌握判断机械能是否守恒的方法,1、看是否只有重力做功。
2、看动能和势能之和是否不变。
2.安徽芜湖方特水上乐园是华东地区最大的水上主题公园。
如图为彩虹滑道,游客先要从一个极陡的斜坡落下,接着经过一个拱形水道,最后达到末端。
下列说法正确的是( )A. 斜坡的高度和拱形水道的高度差要设计合理,否则游客经过拱形水道的最高点时可能飞起来B. 游客从斜坡的最高点运动到拱形水道最高点的过程中,重力一直做正功C. 游客从斜坡下滑到最低点时,游客对滑道的压力最小D. 游客从最高点直至滑到最终停下来过程中,游客的机械能消失了【答案】A【解析】解:A、斜坡的高度和拱形水道的高度差要设计合理,不能让游客经过拱形水A正确;B、游客从斜坡的最高点运动到拱形水道最高点的过程中,游客的位置是先降低后升高,所以重力先做正功后做负功,故B错误;C、游客从斜坡上下滑到最低点时,加速度向上,处于超重状态,游客对滑道的压力最大,故C错误;D、游客从最高点直至滑到最终停下来过程中,游客的机械能没有消失,而是转化为其他形式的能(内能),故D错误。
故选:A。
高点运动到拱形水道最高点的过程中,游客是先降低后升高的;游客在最低点时,其加速度向上,游客处于超重状态;整个过程是符合能量守恒的,机械能不是消失,而是转化为其它形式的能。
机械能守恒定律精选练习一夯实基础1.如图所示实例中均不考虑空气阻力,系统机械能守恒的是()【答案】D【解析】:人上楼、跳绳过程中机械能不守恒,从能量转化角度看都是消耗人体的化学能;水滴石穿,水滴的机械能减少的部分转变为内能;弓箭射出过程中是弹性势能与动能、重力势能的相互转化,只有重力和弹力做功,机械能守恒。
2.(2019·浙江省温州市诸暨中学高一下学期期中)关于以下四幅图,下列说法中正确的是()A.图1中“蛟龙号”被吊车吊下水的过程中它的机械能守恒B.图2中火车在匀速转弯时动能不变,故所受合外力为零C.图3中握力器在手的压力作用下弹性势能增加了D.图4中撑杆跳高运动员在上升过程中机械能守恒【答案】C【解析】:图1中“蛟龙号”被吊车吊下水的过程,钢绳对它做负功,所以机械能不守恒,故A错误;图2中火车在匀速转弯时做匀速圆周运动,所受的合外力指向圆心且不为零,故B错误;图3中握力器在手的压力下形变增大,所以弹性势能增大,C正确;图4中撑杆跳高运动员在上升过程中撑杆的弹性势能转化为运动员的机械能,所以运动员的机械能不守恒,故D错误。
3.(2019·山东省济南外国语学校高一下学期月考)如图所示,光滑斜面的顶端固定一弹簧,一物体向右滑行,并冲上固定在地面上的斜面。
设物体在斜面最低点A的速度为v,压缩弹簧至C点时弹簧最短,C点距地面高度为h ,则物体运动到C 点时,弹簧的弹性势能是( )A .mgh -12mv 2 B .12mv 2-mgh C .mghD .mgh +12mv 2 【答案】B【解析】:由A 到C 的过程运用机械能守恒定律得:mgh +E p =12mv 2所以E p =12mv 2-mgh ,故选B 。
4.如图,质量为m 的苹果,从离地面H 高的树上由静止开始落下,树下有一深度为h 的坑。
若以地面为零势能参考平面,则当苹果落到坑底时的机械能为( )A .-mghB .mgHC .mg (H +h )D .mg (H -h )【答案】B【解析】:苹果下落过程机械能守恒,开始下落时其机械能为E =mgH ,落到坑底时机械能仍为mgH 。
高三物理机械能守恒定律试题答案及解析1.(10分)光滑水平面上静置两个小木块A和B,其质量分别为mA =150g、mB=200g,它们中间用一根轻质弹簧相连,弹簧处于原长状态。
一颗水平飞行的子弹质量为m=50g,以v=400m/s的速度在极短时间内打入木块A并镶嵌在其中,求系统运动过程中弹簧的最大弹性势能。
【答案】500J【解析】取子弹和木块A为研究对象,根据动量守恒定律得出取子弹和木块A、B为研究对象,根据动量守恒定律得出根据能量守恒可得【考点】本题考查了动量守恒定律和能量守恒定律2.关于动能,下列说法中正确的是()A.动能是机械能中的一种基本形式,凡是运动的物体都有动能B.公式Ek=中,速度v是物体相对地面的速度,且动能总是正值C.一定质量的物体,动能变化时,速度一定变化,但速度变化时,动能不一定变化D.动能不变的物体,一定处于平衡状态【答案】AC【解析】动能的计算式为EK=mV2,物体的质量和速度的大小都可以引起物体动能的变化,它是没有方向的,它是标量解:A、动能就是物体由于运动而具有的能量,是普遍存在的机械能中的一种基本形式,凡是运动的物体都有动能,所以A正确.B、物体的动能是没有方向的,它是标量,速度v是物体相对参考平面的速度,所以B错误.C、对于一定质量的物体,动能变化时,速度一定变化的,但速度变化时,动能不一定变化,所以C正确D、动能不变的物体,可以是物体速度的大小不变,但速度的方向可以变化,比如匀速圆周运动,此时的物体并不一定是受力平衡状态,所以D错误.故选:AC【点评】本题考查的是学生对动能的理解,由于动能的计算式中是速度的平方,所以速度变化时,物体的动能不一定变化3.斜面倾角为60°,长为3L,其中AC段、CD段、DB段长均为L,一长为L,质量均匀分布的长铁链,其总质量为M,用轻绳拉住刚好使上端位于D点,下端位于B点,铁链与CD段斜面的动摩擦因数,斜面其余部分均可视为光滑,现用轻绳把铁链沿斜面全部拉到水平面上,人至少要做的功为A.B.C.D.【答案】D【解析】试题分析: 拉力做功最小时,铁链重心到达水平面时的速度刚好为零,从开始拉铁链到铁链的重心到达水平面的过程中运用动能定理得:,解得:,故D 正确.故选D 。
(完整版)机械能守恒定律练习题含答案机械能守恒定律练习题一、选择题(每题6分,共36分)1、下列说法正确的是:(选CD)A、物体机械能守恒时,一定只受重力和弹力的作用。
(是只有重力和弹力做功)B、物体处于平衡状态时机械能一定守恒。
(吊车匀速提高物体)C、在重力势能和动能的相互转化过程中,若物体除受重力外,还受到其他力作用时,物体的机械能也可能守恒。
(受到一对平衡力)D、物体的动能和重力势能之和增大,必定有重力以外的其他力对物体做功。
2、两个质量不同而动能相同的物体从地面开始竖直上抛(不计空气阻力),当上升到同一高度时,它们(选C)A.所具有的重力势能相等(质量不等)B.所具有的动能相等C.所具有的机械能相等(初始时刻机械能相等)D.所具有的机械能不等3、一个原长为L的轻质弹簧竖直悬挂着。
今将一质量为m的物体挂在弹簧的下端,用手托住物体将它缓慢放下,并使物体最终静止在平衡位置。
在此过程中,系统的重力势能减少,而弹性势能增加,以下说法正确的是(选A)A、减少的重力势能大于增加的弹性势能(手对物体的支持力也有做功,根据合外力做功为0)B、减少的重力势能等于增加的弹性势能C、减少的重力势能小于增加的弹性势能D、系统的机械能增加(动能不变,势能减小)4、如图所示,桌面高度为h,质量为m的小球,从离桌面高H处自由落下,不计空气阻力,假设桌面处的重力势能为零,小球落到地面前的瞬间的机械能应为(选B)A、mghB、mgHC、mg(H+h)D、mg(H-h)6、质量为m的子弹,以水平速度v射入静止在光滑水平面上质量为M的木块,并留在其中,下列说法正确的是(选BD)A.子弹克服阻力做的功与木块获得的动能相等(与木块和子弹的动能,还有热能)B.阻力对子弹做的功与子弹动能的减少相等(子弹的合外力是阻力)C.子弹克服阻力做的功与子弹对木块做的功相等D.子弹克服阻力做的功大于子弹对木块做的功(一部分转化成热能)二、填空题(每题8分,共24分)7、从离地面H高处落下一只小球,小球在运动过程中所受到的空气阻力是它重力的k倍,而小球与地面相碰后,能以相同大小的速率反弹,则小球从释放开始,直至停止弹跳为止,所通过的总路程为 H/k 。
《第七章机械能守恒定律》试卷(答案在后面)一、单项选择题(本大题有7小题,每小题4分,共28分)1、一个物体从静止开始沿光滑斜面下滑,下列说法正确的是:A、物体的动能随着下滑距离的增加而增加B、物体的势能随着下滑距离的增加而减少C、物体的机械能守恒D、物体的动量和速度随下滑距离增加而增加2、一个物体从高度h自由下落,落地时的速度v与下落的高度h的关系可以表示为:A、v = √(2gh)B、v = ghC、v = h/√gD、v = √(gh/2)3、物体沿光滑斜面自由下滑的过程中,以下说法正确的是()。
A、物体的动能增加,势能减少,机械能守恒;B、物体的动能减少,势能增加,机械能守恒;C、物体的动能增加,势能减少,机械能增加;D、物体的动能增加,势能减少,机械能不变。
4、在光滑水平面上,一个物体在拉力的作用下做变速直线运动,如果物体的动能增加了,那么()。
A、其重力势能一定增加;B、其重力势能一定减少;C、其重力势能不变;D、此过程中拉力不一定对物体做正功。
5、一个物体从高处自由下落,在下落过程中:A、重力势能在增加B、重力势能在减少C、动能和重力势能总和不变D、动能和势能无法同时增加6、关于机械能守恒定律的适用条件,以下说法正确的是:A、所有运动过程中都适用B、只有匀速直线运动过程适用C、只有自由落体运动过程适用D、受限在只有重力和弹力作用下的机械运动过程适用7、一个物体在光滑水平面上从静止开始沿着x轴正方向运动,受到一个恒定的水平向右的力F作用。
下列说法正确的是()A、物体的动能增加时,其势能必定减少B、物体的势能增加时,其动能必定减少C、物体的机械能守恒,因为只有重力做功D、物体的机械能不守恒,因为除了重力做功,还有其他力做功二、多项选择题(本大题有3小题,每小题6分,共18分)1、物体沿斜面匀速下滑时,下列哪些力做功为零?A、摩擦力B、重力C、支持力D、合外力2、在一个弹性系统中,当一个弹簧振子从最大位移处释放后,下列哪些描述是正确的?A、在开始释放的瞬间,弹簧弹力对振子做正功B、振子到达平衡位置时,速度达到最大值C、振子经过平衡位置时,带有最大的势能D、振子到达最大位移处时,动能为零3、一个物体从静止状态开始下落的运动,下列关于其机械能守恒的说法正确的是()A、物体的势能减小,动能增大,总机械能守恒B、物体在整个下落过程中只有重力做功C、物体下落过程中,如果有空气阻力,其机械能将不会守恒D、物体下落的末速度与重力加速度无关三、非选择题(前4题每题10分,最后一题14分,总分54分)第一题已知一物体从高度为h的平台上自由落下,落地的速度为v。
一、选择题1.质量为m 的汽车在平直路面上启动,启动过程的速度图像如图所示,OA 段为直线,从1t 时刻起汽车保持额定功率不变,整个运动过程中汽车所受阻力恒为f ,则( )A .10t 时间内,汽车的牵引力等于11v mt B .12t t 时间内,汽车做匀加速运动 C .12t t 时间内,汽车的功率等于1fv D .12t t 时间内,汽车运动的路程等于()()22221212m v t t v v f--- 2.如图所示,质量为m 的物体置于粗糙的质量为()M m M <的斜面体上,斜面体M 置于光滑的水平面上,当物体m 以速度0v 沿斜面体M 底端冲上顶端的过程中,下列说法正确的是( )A .物体m 受到的力的个数比斜面体M 受到的力的个数要少B .物体m 和斜面体M 组成的系统机械能守恒C .斜面体M 对物体m 的作用力不做功D .物体m 的机械能增大3.直立在水平面上的轻弹簧上端位置为A ,如图甲所示。
在弹簧上放一个质量为2m 的物体a ,或者将质量为m 的物体b 与弹簧上端连接后再在b 上放质量为m 的物体c ,结果弹簧上端被压缩至位置O (图中未画出),A 、O 间距离为x 0;若同时对a 、c 施加竖直向下的压力将弹簧上端缓慢压缩至B 处,此时压力大小为F ,如图乙、丙所示,A 、B 间距离为x ;突然撤去压力F ,a 、b 、c 在向上运动的过程中,物体a 在某处脱离弹簧上端继续向上运动,重力加速度为g ,弹簧始终在弹性限度内,弹簧的弹性势能E p =21()2k x ∆,k 为弹簧的劲度系数,Δx 为弹簧的形变量,不计空气阻力。
下列说法正确的是( )A .压力F 大于2mgB .物体c 会在位置O 脱离物体bC .撤去压力F 瞬间,a 、b 处于超重状态,c 处于失重状态D .向上运动过程中c 对b 的压力先增大后减小4.在高处的某同一点将甲、乙两个质量相同的小球以相同的速率0v 分别竖直上抛、平抛。