数学专业参考书——学数学的必看
- 格式:pdf
- 大小:248.26 KB
- 文档页数:7
高等数学是大学数学的基础课程,对于理工科学生来说尤为重要。
以下是一些经典的高等数学书单,供大家参考:1. 《高等数学》(上、下册)- 同济大学数学系编著这是一本非常经典的高等数学教材,内容全面,讲解详细,适合初学者入门。
书中包含了微积分、解析几何、线性代数等多个方面的内容,是学习高等数学的必备教材。
2. 《数学分析》(上、下册)- 陈纪修编著这本书是一本更加深入的数学分析教材,内容更加抽象和严谨。
书中介绍了实数系统、极限、连续性、微分学、积分学等多个方面的内容,适合对数学有一定基础的学生进一步学习和提高。
3. 《高等代数与解析几何》- 王萼芳编著这本书是一本综合性的高等数学教材,内容包括线性代数、解析几何等多个方面。
书中讲解详细,例题丰富,适合对数学有一定基础的学生进一步提高。
4. 《微积分》(上、下册)- 斯图尔特编著这本书是一本国际知名的微积分教材,内容全面,讲解清晰。
书中包含了微积分的基本概念、定理和应用,适合对微积分有一定基础的学生进一步学习和提高。
5. 《概率论与数理统计》- 陈希孺编著这本书是一本关于概率论和数理统计的经典教材,内容涵盖了概率论和数理统计的基本概念、方法和应用。
书中讲解详细,例题丰富,适合对数学有一定基础的学生进一步学习和提高。
6. 《离散数学》- 耿素云编著这本书是一本关于离散数学的经典教材,内容包括集合论、图论、逻辑等多个方面。
书中讲解详细,例题丰富,适合对数学有一定基础的学生进一步学习和提高。
7. 《数值分析》- 黄皮书编著这本书是一本关于数值分析的经典教材,内容包括数值逼近、数值解方程、数值积分等多个方面。
书中讲解详细,例题丰富,适合对数学有一定基础的学生进一步学习和提高。
8. 《复变函数》- 阿姆斯特朗编著这本书是一本关于复变函数的经典教材,内容包括复数、解析函数、级数等多个方面。
书中讲解详细,例题丰富,适合对数学有一定基础的学生进一步学习和提高。
9. 《常微分方程》- 阿诺尔德编著这本书是一本关于常微分方程的经典教材,内容包括常微分方程的基本概念、解法和应用。
数学专业的数学教材推荐数学专业的学习需要有一套系统的教材作为指导,这些教材不仅要全面覆盖数学的各个领域,还需要具备深度和难度适宜。
下面是我根据个人经验与专业意见整理的数学专业数学教材推荐。
一、高等数学系列教材高等数学是数学专业的基础课程,掌握好高等数学的知识对于学习和理解其他数学分支是至关重要的。
因此,在选择高等数学教材时,应该考虑书籍的权威性、全面性和教学方式。
推荐教材:《高等数学》(第七版)(同济大学出版社):这套教材是国内高校广泛采用的教材之一,内容全面、严谨,由浅入深,有助于学生逐步建立起完整的高等数学知识体系。
《数学分析教程》(第三版)(高等教育出版社):这本教材由李维广等人编写,对数学分析的知识点进行了系统的阐述,融入了一些数学思想的历史和文化,可以帮助学生更好地理解数学的本质。
二、线性代数与解析几何教材线性代数和解析几何是数学专业的重点课程,它们在数学专业的学习中具有重要的地位。
合适的教材应该囊括这两门课程的所有基本知识,并结合实际问题进行讲解。
推荐教材:《线性代数与解析几何》(第三版)(高等教育出版社):这本教材由丁同仁等人编写,内容深入浅出,逻辑严谨,既注重基本理论的讲解,又注重应用问题的讲解,适合初学者。
《线性代数及其应用》(国际版)(Pearson Education出版社):这是一本经典的教材,由David C. Lay等人编写,全面介绍了线性代数的知识和应用,对于深入理解线性代数的概念和性质非常有帮助。
三、概率论与数理统计教材概率论与数理统计是数学专业的重要课程,也是理解和应用统计学的基础。
在选择概率论与数理统计教材时,应该注重理论和实践的结合,讲解方式要生动有趣。
推荐教材:《概率论与数理统计》(第三版)(高等教育出版社):这本教材由胡敦欣等人编写,内容全面,既注重理论的讲解,又注重实践问题的讲解,特别适合初学者。
《数理统计及其应用》(国际版)(Wiley出版社):这本教材由Morris H. DeGroot和Mark J. Schervish编写,内容深入,涵盖了概率论和数理统计的基本理论和方法,对于深入研究数理统计非常有帮助。
高等数学经典教材推荐书目高等数学是大学数学的重要组成部分,涉及到微积分、线性代数等内容。
选择一本优秀的教材对学习者来说尤为重要,可以加深对数学概念的理解,提升解题能力。
本文将为大家推荐几本经典的高等数学教材,希望能对学习者选择合适的教材提供一些建议。
一、《高等数学(一)》—同济大学数学系同济大学数学系编写的《高等数学(一)》是一本备受推崇的经典教材。
该教材以严谨的逻辑结构和清晰的数学推导,深入浅出地讲解了微积分的基本概念和方法。
书中还融入了一些实际问题和例题,帮助学生将抽象的数学知识与实际应用相结合,加深理解。
二、《高等数学(二)》—北京大学出版社由北京大学出版社出版的《高等数学(二)》也是一本经典教材。
该教材内容全面,涵盖了高等数学的多个方面,如微积分的进阶内容、微分方程的基本理论等。
书中例题丰富,题型多样,既有基础题目又有较难的拓展题目,有助于提高学生的解题能力和思维能力。
三、《高等数学(下)》—清华大学出版社清华大学出版社出版的《高等数学(下)》是一本经典中的经典。
该教材在讲解微积分理论的同时,注重培养学生的数学思维和证明能力。
书中的习题分为基础题和拓展题两部分,涵盖了各个知识点,可以帮助学生系统地巩固所学内容。
四、《线性代数与解析几何》—高等教育出版社对于想要深入学习线性代数的学习者来说,推荐一本由高等教育出版社出版的《线性代数与解析几何》。
该教材以线性代数为主线,结合解析几何,系统地介绍了线性空间、线性变换、向量的内积与正交性等内容。
书中还有大量的例题和习题,帮助学生提高理论应用能力。
五、《数学分析》—外语教学与研究出版社《数学分析》是经典的高等数学教材之一,由外语教学与研究出版社出版。
该教材以数学分析为核心内容,涵盖了实数、连续函数、微分与积分等重要概念和理论。
书中注重数学定理的证明和推导过程,帮助学生建立起扎实的数学基础。
总结:以上所推荐的几本高等数学经典教材,对于学习者来说都是非常有价值的选择。
数学分析参考书目:1.邓东皋、尹小玲,数学分析简明教程,高等教育出版社/20022.华东师范大学数学系,数学分析(第3版),高等教育出版社/2003基本要求:数列极限、函数极限、函数的连续性、一元函数微分学(导数与微分、微分学基本定理及其应用)、多元函数微分学(偏导数与全微分、隐函数定理与多元微分的应用)、一元函数积分学(不定积分、定积分、广义积分、定积分的应用)、多元函数积分学(重积分与含参量积分、曲线积分与曲面积分)、级数(数项级数、函数项级数、幂级数、Fourier级数).高等代数与空间解析几何参考书目:1.《高等代数》(第3版)北京大学数学系高等教育出版社/20032.《解析几何》(第3版)吕林根、许子道高等教育出版社/2001基本要求:多项式:多项式的整除性,带余除法;多项式的因式分解,最大公因式和重因式;不可约多项式的判定和性质;多项式函数和多项式的根;实数域、复数域和有理数域上的多项式。
行列式:行列式的性质和计算;范德蒙行列式、常用计算技巧;行列式按行按列展开、拉普拉斯展开;克莱姆法则。
矩阵:矩阵运算;初等矩阵与初等变换;可逆矩阵;分块矩阵;矩阵的秩;矩阵的等价,合同,相似。
线性方程组:线性方程组的求解和讨论;线性方程组有解判别定理;线性方程组的解结构及其解空间的讨论。
二次型:二次型的标准形与合同变换;复数域和实数域上二次型的标准形,规范型;正定二次型及其讨论。
线性空间:线性空间的定义和性质;向量的线性相关性讨论、极大线性无关组;基,维数和坐标;基变换和坐标变换;线性子空间及相关理论。
线性变换:线性变换的概念和性质,运算;线性变换的矩阵,值域和核;线性变换(矩阵)的特征多项式,特征值与特征向量;不变子空间。
欧氏空间:向量内积;标准正交基(组)和度量矩阵;正交变换和正交矩阵,对称变换。
向量代数与方程,直线:矢量的数性积、矢量积、混合积和运算规律,空间曲线、曲面方程的各种不同形式,球面、柱面参数方程,平面与空间直线的各种形式的方程。
关于数学的书(一)必读数学书1、《离散数学》:由美国数学家米勒撰写,书中涵盖了大量的离散数学的基本概念,包括数学归纳法、逻辑证明、程序设计、图论中的图、矩阵论、二进制等,并且给出了详细的证明。
对于对数学或者计算机感兴趣的人来说,这是一本必读的经典之作。
2、《线性代数》:这本书作者为德国数学家克劳斯·帕蒂尔,是线性代数完整矩阵理论研究和提出的重要贡献者。
书中讨论了矩阵理论、基本矩阵、线性方程组、特征值、向量空间、张量分解等很多内容。
读该书的人需要有一定的数学基础,熟悉高等数学,但是书中的推导细节流畅而且很详细,很适合学习。
3、《计算机数学》:本书由Calvin 撰写,介绍了计算机数学经典知识,如数学逻辑、数理逻辑、算法设计、算术表达式解释和实现等,讲述了从算法到物理计算的全面的计算机科学课程,书中的实例十分具体,看起来轻松易懂。
(二)实践数学书1、《时间序列分析:理论及应用》:这是一本关于时间序列分析的实践性书籍,由美国大学的数学专家写就,书中涵盖细节超全,从宏观的财经变量到具体的传感器数据,本书适合用于大数据分析或工业数据驱动,为科学研究和经济管理起到了重要作用。
2、《统计学》:本书是由美国知名专家约翰生钟撰写,本书详尽地论述了统计学的最基本的概念,如概率论、连续变量分析和试验设计等,书中介绍了很多数学分析工具,用于分析科学和工程的实际问题的数据,可以说是统计学发展的一部很重要的参考资料。
3、《微积分概论》:这是一本微积分的实用教材,作者是美国数学家斯维特林,书中涵盖了多种微积分的基本概念,包括复变函数、微积分的变换方法、初等变换和校正变换等,以及与微积分有关的抽象向量空间及作用空间等,也可以用于机器学习及深度学习分析中。
高等数学入门书籍高等数学是大学数学中的一门重要课程,它是数学学科的基础,也是其他学科的重要工具。
因此,掌握高等数学的理论和方法对于学习其他学科以及解决实际问题具有重要意义。
下面是一些适合初学者的高等数学入门书籍的相关参考内容。
1.《高等数学(上、下册)》这本教材是国内高校广泛采用的高等数学教材,由数学定性分析、数列与极限、连续函数与导数、定积分与无穷级数等内容组成。
这本书详细介绍了高等数学的基础知识,并且有大量的例题和习题供读者练习。
通过阅读这本教材,读者可以系统地学习高等数学的理论和方法。
2.《高等数学解题方法与技巧》这本书主要介绍了高等数学解题的一些常用方法和技巧。
它将高等数学中的知识点与解题方法相结合,通过分析典型例题和解题技巧的演练,帮助读者掌握高等数学的基本解题方法。
这本书适合那些想提高自己高等数学解题能力的读者阅读。
3.《高等数学思维导图与解题方法》这本书运用思维导图的方法,将高等数学的知识点进行归类整理,并以图文结合的方式进行介绍。
读者通过阅读这本书,可以形成对高等数学知识的整体性把握,有助于建立高等数学的整体框架和思维模式。
4.《高等数学分析与解题技巧》这本书侧重于分析高等数学的概念和理论,并介绍了解题的一些基本技巧。
它通过分析高等数学中的重要概念和定理,帮助读者理解数学问题的本质,掌握高等数学的分析方法,并且通过解题的例题帮助读者巩固知识。
5.《高等数学参考书》这本书是一本高等数学的综合参考书,涵盖了高等数学各个分支的知识点。
它采用了简明扼要的语言和形象生动的图表,结合了例题和解题技巧,帮助读者理解高等数学的基本概念和方法。
这本书适合那些想扩展高等数学知识面的读者阅读。
通过阅读这些高等数学入门书籍,读者可以逐步掌握高等数学的基本概念和方法,提高数学分析和解题能力。
同时,这些书籍还可以帮助读者建立起高等数学的整体框架和思维模式,为进一步深入学习数学打下坚实基础。
数学专业书单数学专业是一门理论性较强的学科,学习数学需要掌握一定的基础知识和技巧。
下面是一份数学专业书单,帮助学生系统学习数学知识。
1.《数学分析》数学分析是数学专业的基础课程之一,它主要研究实数、函数、极限、连续性、微积分等概念和性质。
这本书以严谨的推导和证明,帮助学生深入理解数学分析的基本原理和方法。
2.《线性代数》线性代数是数学专业的另一个重要基础课程,它研究向量空间、线性变换、矩阵、特征值等概念和性质。
这本书介绍了线性代数的基本理论和应用,包括矩阵运算、线性方程组、特征值问题等。
3.《概率论与数理统计》概率论与数理统计是数学专业的一门重要课程,它研究随机事件的概率和随机变量的统计规律。
这本书介绍了概率论和数理统计的基本概念、定理和方法,包括概率、随机变量、概率分布、参数估计、假设检验等。
4.《常微分方程》常微分方程是数学专业的一门应用数学课程,它研究描述变化规律的微分方程解的存在性、唯一性和性质。
这本书介绍了常微分方程的基本理论和求解方法,包括一阶和高阶微分方程、常系数和变系数线性微分方程、常微分方程的数值解法等。
5.《数值分析》数值分析是数学专业的一门应用数学课程,它研究利用计算机进行数值计算和数值模拟的方法和技巧。
这本书介绍了数值分析的基本原理和常用算法,包括数值逼近、数值积分、数值代数方程的求解等。
6.《离散数学》离散数学是数学专业的一门基础课程,它研究离散结构和离散对象的性质和关系。
这本书介绍了离散数学的基本概念和方法,包括集合论、图论、布尔代数、逻辑推理等。
7.《数学建模》数学建模是数学专业的一门应用数学课程,它研究利用数学方法解决实际问题的建模和求解技巧。
这本书介绍了数学建模的基本原理和方法,包括问题分析、模型构建、模型求解和模型评价等。
8.《实变函数》实变函数是数学专业的一门高级课程,它研究实数轴上的函数的性质和变化规律。
这本书介绍了实变函数的基本概念和性质,包括连续性、可微性、积分等。
高等数学好用的教材书推荐高等数学是大学必修的一门基础课程,对于计算机、自然科学等学科都具有重要意义。
选择一本好用的教材书对于学习高等数学来说是非常重要的。
下面我将为大家推荐几本好用的高等数学教材书。
1. 《高等数学》(第七版,同济大学主编)这本教材是经典的高等数学教材之一,由同济大学主编,内容全面、系统。
它详细介绍了高等数学的基本概念、定理和常见的计算方法,并给出了大量的例题和习题。
该书语言简洁明了,适合初学者入门,并且配有详细的解答和习题答案,让学生能够更好地巩固所学知识。
2. 《高等数学》(第七版,北京大学主编)这本教材是北京大学数学系主编的高等数学教材,也是一本非常优秀的教材。
它内容详实、内容覆盖面广,并且重点突出,适合对高等数学有一定了解的学生。
该书的习题设置独特,题型多样,能够帮助学生提高解题能力。
另外,该教材配有配套的电子辅助教学材料,可以方便学生进行在线学习和练习。
3. 《高等数学》(第八版,高等教育出版社)这本教材是高等数学最新的版本之一,内容全面、结构清晰。
它以应用为导向,将高等数学与实际问题相结合,使学生能够更好地理解数学在实际应用中的意义。
该书内容新颖、层次清晰,适合那些对数学的应用更感兴趣的学生。
此外,该教材还提供了大量的实例分析和案例讨论,帮助学生将数学应用于实际问题中。
4. 《高等数学导论》(第五版,人民教育出版社)这本教材以数学的思维方法和基本概念为主线,对高等数学的基础知识进行了全面系统的阐述。
它逻辑严谨、思路清晰,能够帮助学生更好地理解高等数学的基本原理和推导方法。
除了基础知识的介绍,该书还包含了一些数学思维的拓展内容,能够培养学生的创新思维和解题方法。
综上所述,以上推荐的几本高等数学教材书在内容和结构上都具有一定的优势,适合不同层次、不同学习需求的学生。
选择适合自己的教材书,能够帮助学生更好地理解和掌握高等数学的知识,提高解题能力,为将来的学习和研究打下坚实的基础。
数学必读10本经典著作1、王尔德《金字塔原理》:它以有趣的证明方法深入浅出地介绍了数学的核心原理,启发着现代数学思想。
2、华罗庚《数学分析原理》:作为应用数学发展史上的代表作,数学分析原理以清晰深入的思想框架来详细讨论数学分析,考虑函数在极限、连续性等数学概念方面的应用。
3、斯蒂芬·克莱因《线性代数-方程组与空间观念》:这本书探究到最基础的线性代数学科,如矩阵与行列式、向量空间和线性变换,并介绍互补性定理及其应用。
4、伯纳德·穆勒《抽象代数》:这本书是数学史上关于组合论的重要著作,介绍了群论中的概念及其应用,如有限群、有限域,以及环论的工具。
5、乔治·夏普《微积分的概念和原理》:全书分为三部分,介绍微积分的历史、三大概念:函数、变量和微分,以及定积分和曲线积分运算规则。
6、艾伦·默里《复变函数学》:它解释了复数构造的函数及其应用,特别是潜伏在复变函数和数论领域的有趣表现,构成了复数及其积分的重要基础。
7、威廉·希尔顿·汤普森《代数几何》:这本书是研究几何理论的核心文献,介绍了代数几何在各种几何体中的应用,如三角形、圆、曲线等等。
8、弗拉基米尔·高尔基《数学分析与文章》:这本书包含了数学史上最强大的数学思想,讨论了应用数学解决实际三维空间问题的方法,深入浅出地探索了单变量函数的连续性。
9、罗斯培根·萨瑟兰·特拉普《椭圆型微分方程》:从具体的偏微分方程的定义出发,讨论了椭圆型方程的解的性质及其关系,是一本实用性强的有关微分方程的经典著作。
10、詹姆斯·玛斯·布莱尔《几何学推理》:布莱尔探讨了几何推理概念及其在数学和科学研究中的作用,用新颖的思路分析和例子,打开了拓展几何学思想的新路。
数学一数学二数学三的教材与参考书籍推荐数学一、数学二和数学三是大学本科数学专业的三门核心课程。
要想学好这三门课程,选择合适的教材和参考书籍是非常重要的。
本文将推荐适用于数学一、数学二和数学三的教材和参考书籍,帮助学生更好地学习和理解这些课程内容。
一、数学一的教材与参考书籍推荐数学一主要涵盖了微积分和线性代数的基础知识。
以下是数学一的教材和参考书籍推荐:1. 《高等数学》(第七版) - 高等教育出版社这是一本经典的数学一教材,内容详细全面,涵盖了微积分和线性代数的基础知识。
书中配有大量的例题和习题,帮助学生巩固所学内容。
2. 《线性代数及其应用》(第四版) - 哈尔滨工业大学出版社这本书主要着重介绍了线性代数的基本理论和应用。
它以清晰的语言和丰富的示例帮助学生理解线性代数的概念和原理。
3. 《微积分学教程》(上、下册) - 高等教育出版社这是一套简明扼要的微积分教材,以概念讲解为主,适合初学者阅读。
书中有很多实例和习题,帮助学生巩固所学的微积分知识。
二、数学二的教材与参考书籍推荐数学二是数学专业的进阶课程,主要围绕多变量微积分、线性代数和常微分方程展开。
以下是数学二的教材和参考书籍推荐:1. 《数学分析教程》(下册) - 高等教育出版社这本教材覆盖了多变量微积分的基本理论和应用。
它以清晰的推导和丰富的例题帮助学生理解多变量微积分的概念和原理。
2. 《线性代数》(第五版) - 高等教育出版社这是一本全面讲解线性代数的教材,内容扎实,适合深入学习线性代数。
书中配有大量的例题和习题,帮助学生提高解题的能力。
3. 《常微分方程教程》 - 高等教育出版社这本书介绍了常微分方程的基本理论和常见的解法技巧。
它以清晰的语言和实例帮助学生理解常微分方程的概念和应用。
三、数学三的教材与参考书籍推荐数学三是数学专业的高级课程,涵盖了数学分析、复变函数和概率统计等内容。
以下是数学三的教材和参考书籍推荐:1. 《数学分析教程》(上册) - 高等教育出版社这本教材是数学三数学分析部分的权威教材,内容详细全面。