uboot 2014移植手册
- 格式:pdf
- 大小:389.39 KB
- 文档页数:15
uboot移植资料u-boot-1.3.4 移植到S3C2440 (带有某些解析)移植u-boot-1.3.4到S3C2440一.预备知识:1. 首先,U-Boot1.3.4还没有支持s3c2440,移植仍是用2410的文件稍作修改而成的。
2. 2440和2410的区别:2440和2410的区别主要是2440的主频更高,增加了摄像头接口和AC‘97音频接口;寄存器方面,除了新增模块的寄存器外,移植所要注意的是NAND FlASH控制器的寄存器有较大的变化、芯片的时钟频率控制寄存器(芯片PLL的寄存器)有一定的变化。
其他寄存器基本是兼容的。
3. 你开发板的boot方式是什么,开发板上电以后是怎么执行的。
一般来说三星的开发板有三种启动方式:nand、nor、ram。
具体用那一种方式来启动决定于CPU的0M[0:1]这两个引脚,具体请参考S3C2440的datasheetnand:对于2440来说,CPU是不给nand-flash分配地址空间的,nand-flash只相当于CPU的一个外设,S3C2440做了一个从nand-flash启动的机制。
开发板一上电,CPU就自动复制nand-flash里面的前4K-Bytes内容到S3C2440内部集成的SDRAM,然后把4K内容所在的RAM映射到S3C2440的0地址,从0地址开始执行。
这4K的内容主要负责下面这些工作:初始化中断矢量、设定CPU的工作模式为SVC32模式、屏蔽看门狗、屏蔽中断、初始化时钟、把整个u-boot重定向到外部SDRAM、跳到主要的C函数入口。
nor: 早期的时候利用nor-flash启动的方式比较多,就是把u-boot烧写到nor-flash里面,直接把nor-flash映射到S3C2440的0地址,上电从0地址开始执行。
ram: 直接把u-boot放到外部SDRAM上跑,这一般debug时候用到。
4. u-boot程序的入口地址问题要理解程序的入口地址,自然想到的是连接文件,首先看看开发板相对于某个开发板的连接文件"/board/你的开发板/u-boot.lds",看一个2410的例子:ENTRY(_start)SECTIONS{. = 0x00000000;. = ALIGN(4);.text :{cpu/arm920t/start.o (.text)*(.text)}. = ALIGN(4);.rodata : { *(.rodata) }. = ALIGN(4);.data : { *(.data) }. = ALIGN(4);.got : { *(.got) }__u_boot_cmd_start = .;.u_boot_cmd : { *(.u_boot_cmd) }__u_boot_cmd_end = .;. = ALIGN(4);__bss_start = .;.bss : { *(.bss) }_end = .;}(1) 从ENTRY(_start)可以看出u-boot的入口函数是_start,这个没错(2) 从. = 0x00000000也许可以看出_start的地址是0x00000000,事实并不是这样的,这里的0x00000000没效,在连接的时候最终会被TETX_BASE所代替的,具体请参考u-boot根目录下的config.mk.(3) 网上很多说法是_start=TEXT_BASE,我想这种说法也是正确的,但没有说具体原因。
uuboot 移植流程U-Boot 移植流程介绍U-Boot是一个开源的引导加载程序,常用于嵌入式系统中。
移植U-Boot可以将其适配到不同的硬件平台上,以满足特定需求。
本文将详细说明U-Boot移植的流程。
准备工作1.硬件选型:根据项目需求,选择适合的硬件平台。
2.获取源代码:从U-Boot官方网站或仓库下载最新版本的源代码。
3.安装交叉编译工具链:根据目标硬件平台的指令集架构,选择合适的交叉编译工具链,并进行安装。
4.了解目标硬件平台:熟悉目标硬件平台的架构、引导方式、存储器布局等相关信息。
移植流程1.配置编译环境:设置交叉编译工具链的环境变量,以确保正确编译U-Boot源代码。
2.配置U-Boot:修改U-Boot源代码中的配置文件,根据目标硬件平台的特性和需求进行相应配置。
–配置目标硬件平台的处理器类型、存储器布局等基本信息。
–配置启动方式,如通过网络(TFTP)或存储介质(SD卡、NAND Flash)等进行启动。
–配置启动流程,如引导加载程序的加载顺序、启动脚本等。
3.添加适配代码:根据目标硬件平台的需求,编写适配代码,包括引导加载程序和设备驱动等。
–引导加载程序:为目标硬件平台选择合适的程序入口点,配置启动参数,加载适配的设备驱动等。
–设备驱动:根据目标硬件平台的外设,编写相应的设备驱动代码,以支持外设的初始化和操作。
4.编译U-Boot:使用交叉编译工具链,编译修改后的U-Boot源代码。
–执行make clean清除之前的编译结果。
–执行make命令编译U-Boot源代码。
5.烧录和运行:将编译生成的U-Boot镜像烧录到目标硬件平台,并进行测试。
–根据目标硬件平台的烧录方式(串口、JTAG等),将U-Boot镜像烧录到目标设备。
–启动目标设备,观察U-Boot的启动信息是否正常输出,检查设备驱动是否正常加载。
6.调试和优化:根据实际情况,进行U-Boot的调试和性能优化。
–使用调试工具进行调试,如调试器、串口打印信息等。
移植SD卡启动盘之uboot要想深入学习uboot,需要自定义uboot,进行源码级的uboot移植。
本篇将对进行基于u-boot-201404版本的移植进行讲解。
一、准备源码1 在ubuntu下,新建文件目录2 将EVB-T335T光盘目录src下的linux源码和u-boot源码,复制到ubuntu下3 将EVB-T335T光盘目录toolchains下的交叉编译器,arm-2010和gcc-linaro-xx,得到到ubuntu下4 将EVB-T335T光盘目录rootfs下的根文件系统buildroot,得到到ubuntu下二、编译uboot1 配置交叉编译器(1)解压tar xfj arm-2010.09.tar.bz2(2)设置sudo vim /etc/profileexport PATH=$PATH:/home/rabbit/evb-t335/arm-2010.09/binsource /etc/profile2 解压u-boottar xfj u-boot-2014.04-rc2-00037-gbaecd31.tar.bz23 配置u-bootmake com335x_sd_256_config其中com335x代表核心板为com335x,sd代表从SD卡启动,或emmc代表从板载的emmc 启动,或nand代表为nandflash;256表示com-335是256M的DDR,如果是128M或512M,则设置为相应的值;这些信息,可以从uboot源码主目录下的boards.cfg文件中找到:如下图所示:最后执行命令,得出如下结果:4 编译u-bootmake ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi-这样,就生成了我们需要的MLO和u-boot.img文件5 根据以前的方法,将MLO和u-boot.img移植到SD卡上,上电启动,输出如下信息:到此,uboot算是移植成功,接下来,进行linux内核的移植。
U-BOOT移植实验u-boot简介u-boot是德国DENX小组的开发用于多种嵌入式CPU的bootloader程序, u-boot不仅仅支持嵌入式Linux系统的引导,当前,它还支持NetBSD, VxWorks, QNX, RTEMS, ARTOS, LynxOS嵌入式操作系统。
u-boot除了支持PowerPC系列的处理器外,还能支持MIPS、 x86、ARM、NIOS、XScale等诸多常用系列的处理器。
u-boot源码目录介绍u-boot的启动过程1 启动流程我们一般把bootloader都分为阶段1(stage1)和阶段2(stage2)两大部分,依赖于CPU体系结构的代码(如CPU初始化代码等)通常都放在阶段1中且通常用汇编语言实现,而阶段2则通常用C语言来实现,这样可以实现复杂的功能,而且有更好的可读性和移植性。
1 阶段1,汇编代码,对于s3c2410是cpu/arm920t/start.s文件。
主要流程如下:关闭看门狗禁掉所有中断设置以CPU的频率把自己拷贝到RAM配置内存区控制寄存器配置的栈空间进入C代码部分2 阶段2是C语言代码,在lib_arm/board.c中的start_armboot是C语言开始的函数,也是整个启动代码中C语言的主函数。
这个函数调用一系列的初始化函数,然后进入主UBOOT命令行,进入命令循环(即整个boot的工作循环),接受用户从串口输入的命令,然后进行相应的工作。
当用户输入启动linux的命令的时候,u-boot会将kernel 映像(zImage)和从nand flash 上读到RAM 空间中,为内核设置启动参数,调用内核,从而启动linux。
u-boot移植要点:我们可以总结出bootloader的两大功能:1 是下载功能,既通过网口、串口或者USB口下载文件到RAM中。
2 是对flash芯片的读写功能。
u-boot对S3C2410已经有了很好的支持,我们在移植过程中主要是完善u-boot对nand flash的读写功能。
u‐boot移植详细文档作者:Tekkaman Ninja作者博客:整理:Coolbor Xie一、Boot Loader的概念和功能1、嵌入式Linux软件结构与分布在一般情况下嵌入式Linux系统中的软件主要分为以下及部分:(1)引导加载程序:其中包括内部ROM中的固化启动代码和Boot Loader两部分。
而这个内部固化ROM是厂家在芯片生产时候固化的,作用基本上是引导Boot Loader。
有的芯片比较复杂,比如Omap3,他在flash中没有代码的时候有许多启动方式:USB、UART或以太网等等。
而S3C24x0则很简单,只有Norboot和Nandboot。
(2)Linux kernel 和drivers。
(3)文件系统。
包括根文件系统和建立于Flash内存设备之上的文件系统(EXT4、UBI、CRAMFS等等)。
它是提供管理系统的各种配置文件以及系统执行用户应用程序的良好运行环境的载体。
(4)应用程序。
用户自定义的应用程序,存放于文件系统之中。
在Flash 存储器中,他们的一般分布如下:但是以上只是大部分情况下的分布,也有一些可能根文件系统是initramfs,被一起压缩到了内核映像里,或者没有Bootloader参数区,等等。
2、在嵌入式Linux中为什么要有BootLoader在linux内核的启动运行除了内核映像必须在主存的适当位置,CPU还必须具备一定的条件:1. CPU 寄存器的设置: R0=0;R1=Machine ID(即Machine Type Number,定义在linux/arch/arm/tools/mach‐types); R2=内核启动参数在 RAM 中起始基地址;2. CPU 模式: 必须禁止中断(IRQs和FIQs); CPU 必须 SVC 模式;3. Cache 和 MMU 的设置: MMU 必须关闭;指令 Cache 可以打开也可以关闭; 数据 Cache 必须关闭;但是在CPU刚上电启动的时候,一般连内存控制器都没有配置过,根本无法在内存中运行程序,更不可能处在Linux内核的启动环境中。
UBOOT移植操作1. 确定目标平台和硬件:首先需要了解目标平台的硬件架构、处理器类型、存储设备(如 Flash 或者 SD 卡)等重要信息。
同时需要获取目标平台的硬件参考手册或者相关文档。
2.设置交叉编译工具链:UBOOT是使用C和汇编语言编写的,因此需要使用交叉编译工具链来生成可在目标平台上运行的二进制可执行文件。
交叉编译工具链包括交叉编译器、链接器和调试器等工具,这些工具需要针对目标平台进行配置。
4. 配置 UBOOT 环境:进入 UBOOT 源代码目录,运行 `make menuconfig` 命令来配置 UBOOT 的环境。
这个命令会打开一个图形界面,可以在其中选择需要的功能、驱动程序和选项。
根据目标平台的硬件特性和需求,选择适当的选项。
5. 修改配置文件:UBOOT 需要一个配置文件(通常是`include/configs/<target.h>`),在这个文件中需要将目标平台的硬件配置信息填入。
这些信息包括芯片型号、Flash 存储器地址等。
还需要设置启动参数,如内核地址、根文件系统地址等。
6. 编译 UBOOT:运行 `make` 命令来编译 UBOOT。
根据配置和硬件平台的不同,可能需要选择不同的编译选项。
编译过程会生成一个 UBOOT 头文件(u-boot.bin)和其他必要的文件。
7.将UBOOT烧录到目标平台:使用烧录工具(如JTAG烧录器、USB烧录器或者SD卡等)将编译好的UBOOT烧录到目标平台的存储设备中。
具体的烧录方法和工具依赖于目标平台的配置。
8.测试和调试:将烧录好的UBOOT安装到目标平台后,通过串口或者网络连接到目标平台,使用终端工具进行测试和调试。
可以通过串口输出来查看启动过程中的日志和错误信息,或者使用调试工具来分析程序执行的问题。
9.优化和定制:根据需求对UBOOT进行优化和定制。
可以修改配置文件、增加功能模块或者修改代码,以达到更好的性能和适应特定需求的目的。