李狄-电化学原理-第八章-气体电极过程
- 格式:ppt
- 大小:413.50 KB
- 文档页数:19
电化学原理第一章习题答案1、解:2266KCl KCl H O H O 0.001141.31.010142.31010001000c K K K K cm 11λ−−−−×=+=+=+×=×Ω溶液 2、解:E V Fi i =λ,FE V i i λ=,,, 10288.0−⋅=+s cm V H 10050.0−⋅=+s cm V K 10051.0−⋅=−s cm V Cl 3、解:,62.550121,,,,2−−⋅Ω=−+=eq cm KCl o HCl o KOH o O H o λλλλ2O c c c ,c 1.004H H +−====设故,2,811c5.510cm 1000o H O λκ−−−==×Ω4、(1)121,,Cl ,t t 1,t 76.33mol (KCl o KCl o Cl cm λλλλλ−−−−+−+−=++=∴==Ω⋅∵中)121121121,K ,Na ,Cl 73.49mol 50.14mol 76.31mol (NaCl o o o cm cm cm λλλ++−−−−−−−=Ω⋅=Ω⋅=Ω⋅同理:,,中)(2)由上述结果可知: 121Cl ,Na ,121Cl ,K ,mol 45.126mol 82.142−−−−⋅Ω=+⋅Ω=+−+−+cm cm o o o o λλλλ,在KCl 与NaCl 溶液中−Cl ,o λ相等,所以证明离子独立移动定律的正确性;(3) vs cm vs cm u vs cm u F u a o o l o l o i o /1020.5,/1062.7,/1091.7,/24N ,24K ,24C ,C ,,−−−×=×=×==++−−λλ5、解:Cu(OH)2== Cu 2++2OH -,设=y ;2Cu c +OH c −=2y 则K S =4y 3因为u=Σu i =KH 2O+10-3[y λCu 2++2y λOH -]以o λ代替λ(稀溶液)代入上式,求得y=1.36×10-4mol/dm 3所以Ks=4y 3=1.006×10-11 (mol/dm 3)36、解: ==+,令=y ,3AgIO +Ag −3IO Ag c +3IO c −=y ,则=y S K 2,K=i K ∑=+(y O H K 2310−+Ag λ+y −3IO λ)作为无限稀溶液处理,用0λ代替,=+y O H K 2310−3AgIO λ则:y=43651074.1104.68101.11030.1−−−×=××−×L mol /;∴= y S K 2=3.03810−×2)/(L mol 7、解:HAc o ,λ=HCl o ,λ+NaAc o ,λ-NaCl o ,λ=390.7,121−−⋅Ωeq cm HAc o ,λ=9.02121−−⋅Ωeq cm ∴α0/λλ==0.023,==1.69αK _2)1/(V αα−510−×8、解:由欧姆定律IR=iS KS l ⋅=K il,∵K=1000c λ,∴IR=1000il cλ⋅=V 79.05.0126101010533≈××××− 9、解:公式log ±γ=-0.5115||||+Z −Z I (设25)C °(1)±γ=0.9740,I=212i i z m ∑,I=212i i c z ∑,=()±m ++νm −−νm ν1(2)±γ=0.9101,(3)±γ=0.6487,(4)±γ=0.811410、解:=+H a ±γ+H m ,pH=-log =-log (0.209+H a 4.0×)=1.08电化学原理第二章习题答案1、 解:()+2326623Sb O H e Sb H O ++++ ,()−236H H +6e + ,电池:2322323Sb O H Sb H O ++解法一:00G E nF ∆=−83646F =0.0143V ≈,E=+0E 2.36RT F 2232323log H Sb O Sb H OP a a a ==0.0143V0E 解法二:0602.3 2.3log log 6Sb Sb H H RT RT a a F Fϕϕϕ+++=+=+; 2.3log H RTa Fϕ+−=∴000.0143Sb E E ϕϕϕ+−=−===V2解:⑴,(()+22442H O e H O +++ )−224H H +4e + ;电池:22222H O H O +2220022.3log 4H O H O P P RT E E E Fa =+= 查表:0ϕ+=1.229V ,0ϕ−=0.000V ,001.229E V ϕϕ+−∴=−= ⑵视为无限稀释溶液,以浓度代替活度计算()242Sn Sn e ++−+ ,(),电池:32222Fe e Fe ++++ 23422Sn Fe Sn Fe 2+++++ +23422022.3log 2Sn Fe Sn Fe C C RT E E F C C ++++=+=(0.771-0.15)+220.05910.001(0.01)log 20.01(0.001)××=0.6505V ⑶(),,(0.1)Ag Ag m e +−+ ()(1)Ag m e Ag +++ (1)(0.1)Ag m Ag m ++→电池:(1)0(0.1)2.3log Ag m Ag m a RT E E F a ++=+,(其中,=0) 0E 查表:1m 中3AgNO 0.4V γ±=,0.1m 中3AgNO 0.72V γ±=, 2.310.4log0.0440.10.72RT E V F×∴==× 3、 解:2222|(),()|(),Cl Hg Hg Cl s KCl m Cl P Pt ()2222Hg Cl Hg Cl e −−++ ,()222Cl e Cl −++ ,222Hg Cl Hg Cl 2+ 电池:222200002.3log 2Cl Hg Hg Cl P a RT E E E F a ϕϕ+−=+==−∵O 1.35950.2681 1.0914(25C)E V ,∴=−=设 由于E 与无关,故两种溶液中的电动势均为上值Cl a −其他解法:①E ϕϕ+=−−0,亦得出0E ϕϕ+=−−②按Cl a −计算ϕ+,查表得ϕ甘汞,则E ϕϕ+=−甘汞 4、 ⑴解法一:23,(1)|(1)()H Pt H atm HCl a AgNO m Ag +=()222H H e +−+ 222,()Ag e Ag +++ g ,2222H Ag H A ++++ 电池:有E ϕϕϕ+−=−=+,02.3log()AgAgAg RTE m Fϕγ++±∴=−。
气体电极(gas electrode )指有气体参与电极反应的电极,如氢电极、氧电极等。
气体分子与溶液中相应的离子在气/液相之间的惰性金属上接受电子,从而建立电极反应的平衡。
实验室中往往用镀有铂黑的铂片作为电极之电子导体。
近年在燃料电池、金属空气电池等的研制开发中研制了载有催化剂的气体扩散电极,扩展了气体电极的应用。
气体电极是将被单质气体冲击着的铂片浸入单质气体其离子组成的溶液中而构成。
其中标准氢电极是把镀有铂黑的铂片浸入的溶液中,并以的干燥氢气不断冲击到铂电极上构成,电极结构,规定标准氢电极(SHE)的电极电势为零。
呼吸式气体电极特征在于包括外壳、气体腔、多孔电极和电解液腔构成,气体腔和电解液腔之间仅通过多孔电极内的毛细管相连通;所述气体腔或电解液腔与周期性变化的压力源相连;周期性变化的压力使多孔电极内产生周期性的气驱液和液驱气过程,形成有利于电化学反应的三相区域,加快多孔电极内的传质过程,从而提高电池的输出功率;适用于消耗气体的燃料电池电极,如氧电极、氢电极等。
气体扩散电极Gas diffusion electrode是一种特制的多孔膜电极,由于大量气体可以到达电极内部,且与电极外面的整体溶液(电解质)相连通,可以组成一种三相(固、液、气)膜电极。
它既有足够的“气孔”,使反应气体容易传递到电极上,又有大量覆盖在催化剂表面的薄液层。
催化剂(如铂黑)的粉粒分散在多孔膜中,并通过薄液层的“液孔”与电极外面的电解质溶液连通,以利于液相反应物和产物的迁移。
气体进入扩散电极发生催化反应,并产生电流,由此可测出气体的含量,常用于监测气体中某些微量组分。
用气体扩散电极制成的小型监测器用于监测环境、工厂、矿场空气中某些微量的有害气体。
气体扩散电极应用用于携带式的一氧化碳监测仪,其中的电解质用稀硫酸,含有一氧化碳的气流通过装有催化剂的气体扩散电极被氧化为二氧化碳,氧气则被还原为水。
测量这一电池的电流,便可测出一氧化碳含量。
91第七章 气体电极过程在电化学生产实践中,气体电极反应所涉及的面极为广泛,所以研究气体电极过程具有重要的意义。
电解食盐工业和电解水工业都是全部或部分以气体电极过程为基础的电化学工业。
在某些类型的化学电源中,利用气体电极的反应自由焓变化来获得电能,例如各种不同类型的“空气电池”、“燃料电池”,其中都是利用氧的还原构成阴极反应。
在氢氧燃料电池中,还利用氢的电离过程构成阳极反应。
另一方面,由于气体电极反应的出现,也可能对生产造成一些不利的因素,甚至带来十分有害的后果。
例如在电镀工业中,氢和氧的析出,不仅降低了主要电极反应的电流效率,氢在阴极上的析出,还能使金属引起“氢脆”,使镀层产生针孔、麻点,鼓泡等现象,氧在阳极上的析出,使阳极金属钝化,溶解不良。
在金属的电化学腐蚀中,氢离子或溶解氧的还原反应往往是促使金属腐蚀的主要原因。
为了有效地控制这些气体电极过程,要求人们研究这些过程的规律性。
下面我们将重点讨论氢和氧的阴极过程,并简单介绍电催化的基本概念。
7.1 氢的阴极析出过程氢的阴极析出过程,是各类电极过程中研究得比较多的一种,至今已有半个世纪以上的历史。
但是对氢在阴极上的析出机理,却长期存在着分歧意见,直到近年,才逐渐在主要问题上取得了比较一致的结论。
7.1.1 氢析出的基本实验事实在大多数金属电极上,氢的析出反应都存在着比较大的过电位。
塔菲尔在大量的实践中发现,在许多电极上,氢的过电位与电流密度间存在着半对数关系,即i b a lg +=∆ϕ。
在大多数纯净金属的表面上,公式中的经验常数b 具有几乎相同的数值,约0.11~0.12 v(见表7-1)。
有时虽也观察到比较高的b 值(>0.14 v ),其原因常常是由于表面状态发生了变化所致。
公式中经验常数a ,数值主要决定于电极材料。
电极不同,a 也不同,说明电极及其表面对氢的析出过程,有着不同的“催化能力”(7.8)。
一般按a 值的大小,可将电极材料大致分为三类: (1)高过电位金属(a ≈1.2~1.5 v ),如Pb 、Cd 、Hg 、Tl 、Zn 、Sn 等。