新北师大版第一章《特殊的平行四边形》导学案解析
- 格式:doc
- 大小:705.05 KB
- 文档页数:39
新北师大版九年级数学上册特殊平行四边形导学案学习目标、重点、难点【学习目标】1、经历探索、猜想、证明的过程,进一步发展推理论证的能力.2、能运用综合法证明矩形、菱形、正方形性质定理和判定定理.3、体会证明过程中所运用的归纳概括以及转化等数学思想方法.【重点难点】掌握矩形、菱形、正方形的性质和判定以及证明方法.知识概览图新课导引【生活链接】如图(1)所示,田村有一口呈四边形的池塘,在它的4个顶点A,B,C,D处均有一棵大核桃树.田村准备挖池塘建养鱼池,想使养鱼池面积为原池塘面积的两倍,又想保持核桃树不动.并要求扩建后的养鱼池为平行四边形.田村能否实现这一设想?【问题探究】问题中要求扩建后的养鱼池面积为原池塘面积的两倍,形状成平行四边形,且核桃树不动,即设法使A,B,C,D四点在所作平行四边形的边上,联想平行四边形的性质,将原四边形分成四个三角形,把每一个三角形都补成一平行四边形,即得到满足条件的平行四边形.设计出符合题意的图形,如图(2)所示.【点拨】分别以AB,BC,CD,DA为对角线作BFCP CGDO,,则△ABO≌△BAE,△BCO≌△CBF,△CDO≌△DCG,△ADO≌△DAH,所以S△ABO+S△BCO+S△CDO +S△ADO=12S EFGH.即S四边形ABCD=12S EFGH.教材精华知识点1 矩形的性质定义:有一个角是直角的平行四边形是矩形.矩形的性质.矩形是特殊的平行四边形,它具有平行四边形的所有性质.除此之外,它还有自己特有的性质,矩形的相关性质定理如下.(1)矩形的四个角都是直角.用数学符号语言表示:如图3—40所示,如果四边形ABCD是矩形,那么∠A=∠B=∠C=∠D=90°.(2)矩形的对角线相等.用数学符号语言表示:如图3—4l所示,如果四边形ABCD是矩形,那么AC=BD.性质定理的推论:直角三角形斜边上的中线等于斜边的一半.用数学符号语言表示:如图3-42所示,在Rt△ABC中,AD是斜边BC的中线,则AD=1BC.这是证明线段相等、线段倍分关系、角相等的重要依据.2拓展矩形的两条对角线把矩形分成四个腰长相等的等腰三角形,当两条对角线夹角为60°时,必有一边长等于对角线长的一半,即这四个三角形中有两个是等边三角形.知识点2 矩形的判定矩形的判定.(1)用定义判定:有一个角是直角的平行四边形是矩形.(2)矩形的判定定理l:有三个角是直角的四边形是矩形.(3)矩形的判定定理2:对角线相等的平行四边形是矩形.矩形的判定定理的证明.(1)判定定理1的证明:已知:如图3-43所示,在四边形ABCD中,∠A=∠B=∠C=90°求证:四边形ABCD是矩形.证明:∵∠A=∠B=90°,∴∠A+∠B=180°,∴AD∥BC.同理,AB∥DC.∴四边形ABCD是平行四边形.∴四边形ABCD是矩形(有一个角是直角的平行四边形是矩形).(2)判定定理2的证明:已知:如图3—44所示,四边形ABCD是平行四边形,且AC=BD.求证:平行四边形ABCD是矩形.证明:∵四边形ABCD是平行四边形,∴AD CB .∴∠AD C +∠BCD =180°.∵DC =CD ,AC =BD ,AD =BC , ∴△ADC ≌△BCD (SSS ).∴∠ADC =∠BCD .∴∠ADC =∠BCD =90° ∴平行四边形ABCD 为矩形.拓展 (1)矩形的每种判定方法都有两个条件. 定义:①是平行四边形;②有一个角是直角. 判定定理1:①是四边形;②有三个角是直角. 判定定理2:①是平行四边形;②对角线相等.(2)注意不要不加考虑地把性质定理的逆命题作为矩形的判定定理. 知识点3 菱形的性质定义:有一组邻边相等的平行四边形叫做菱形. 菱形的性质.菱形是特殊的平行四边形,除具有平行四边形的性质外,还有自己特有的性质,菱形的性质定理如下. (1)菱形的四条边都相等.用数学符号语言表示:如图3-45所示,若四边形ABCD 是菱形,则AB =BC =CD =DA .(2)菱形的对角线互相垂直,并且每条对角线平分一组对角.用数学符号语言表示:如图3-46所示,若四边形ABCD 是菱形,AC ,BD 是对角线,则AC ⊥BD ,且AC 平分∠BAD 和∠BCD ,BD 平分∠ABC 和∠ADC .拓展(1)菱形的面积等于两条对角线乘积的一半.用数学符号语言表示:如图3-47所示,在菱形ABCD 中,AC ,BD 是对角线,则S 菱形=12AC ·BD . (2)如果菱形有一个内角为60°或120°,则两边与较短对角线可构成等边三角形,这是非常有用的基本图形.另外,两条对角线把菱形分成了四个全等的含30°角的直角三角形.探索交流 我们知道,若菱形的两条对角线长分别为a ,b ,则菱形的面积S =12ab .那么在对角线互相垂直的四边形中,面积也为它的对角线长的乘积的一半吗?为什么?点拔 菱形的面积等于对角线乘积的一半,这一公式可以推广到对角线互相垂直的四边形中.如图3-48所示,在四边形ABCD 中,AC ⊥BD ,则S 四边形ABCD=12AC ·BD .理由如下: 设AC ,BD 交于点O , ∵AC ⊥BD , ∴S △ABD =12AO ·BD ,S △BCD =12OC ·BD ,∴S四边形ABCD=S△ABD+S△BCD=12A O·BD+12OC·BD=12BD(AO+OC)=12BD·AC即菱形的面积等于对角线乘积的一半,这一公式可以推广到对角线互相垂直的四边形中.知识点4 菱形的判定用定义判定:有一组邻边相等的平行四边形是菱形.判定定理l:四条边都相等的四边形是菱形.判定定理2:对角线互相垂直的平行四边形是菱形.拓展(1)菱形的判定定理1,2的起点不同,一个是四边形,一个是平行四边形.判定的条件也不同,一个是四条边都相等,一个是对角线互相垂直.(2)注意这里的起点和条件不能张冠李戴,否则会得出错误的结论。
特殊的平四边形适用学科 初中数学 适用年级 初中三年级适用区域 全国课时时长(分钟) 120分钟知识点1四边形以及特殊四边形的概念、性质、判定 2.三角形、梯形中位线定理及其运用3.梯形、等腰梯形、直角梯形的概念,掌握等腰梯形的性质和判定,运用相关知识进行证明和计算学习目标 1.掌握平行四边形及几种特殊四边形的性质与判定 2.灵活运用有关性质及判定解决问题3.经历四边形基本性质,使学生学会“合乎逻辑地思考”,建立知识体系,获得一定的技能基础4.让学生理解平面几何观念的基本途径是多种多样的,感知和体验几何图形的现实意义,体验二维空间相互转换关系学习重点 理解和掌握几种常见特殊四边形的性质、判定 学习难点发展合情推理和初步的演绎推理能力学习过程一、复习预习上节课我们复习了勾股定理的内容,接下来请同学们回忆一下1.勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+.2. 勾股定理的证明:(1)方法一:将四个全等的直角三角形拼成如图所示的正方形:()22222142.ABCD S a b c aba b c =+=+⨯∴+=正方形(2)方法二:将四个全等的直角三角形拼成如图所示的正方形:()222221=42.正方形EFGH =-+⨯∴+=S c a b aba b c(3)方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形。
()222222121221c b a c ab b a S =+∴+⨯=+=梯形3. 勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
4. 常用勾股数:3、4、5; 5、12、13; 6、8、10;7、24、25; 8、15、17; 9、40、41。
(牢记)勾股数扩大相同倍数后,仍为勾股数.二、知识讲解1、平行四边形性质及判定,列表归纳平行四边形矩形菱形正方形性质边对边平行且相等对边平行且相等对边平行,四边相等对边平行,四边相等角对角相等四个角都是直角对角相等四个角都是直角对角线互相平分互相平分且相等互相垂直平分,且每条对角线平分一组对角垂直平分且相等,每条对角线平分一组对角判定1.两组对边分别平行;2.两组对边分别相等;3.一组对边平行且相等;4.两组对角分别相等;5.两条对角线互相平分.1有三个角是直角的四边形;2有一个角是直角的平行四边形;3对角线相等的平行四边形.1.四边相等的四边形;2.对角线互相垂直的平行四边形;3.有一组邻边相等的平行四边形。
一. 作业检查作业完成情况:优□ 良□ 中□ 差□二. 内容回顾回顾上节课内容.三.知识梳理知识点一、菱形1.菱形的性质(1)菱形的定义:有一组邻边相等的平行四边形叫做菱形.(平行四边形+一组邻边相等=菱形)(2)菱形的性质: 菱形具有平行四边形的一切性质;A、边:对边平行且相等B、角:菱形的对角相等,邻角互补C、对角线:两条对角线互相平分且垂直每一条对角线平分一组对角D、对称性:中心对称:对角线的交点就是对称中心轴对称:有两条对称轴。
即:两条对角线所在的直线(3)菱形的面积计算①利用平行四边形的面积公式.②菱形面积=1/2ab.(a、b是两条对角线的长度)【练习】1、边长为3cm的菱形的周长是()A.6cm B.9cm C.12cm D.15cm2、如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是()A.1 B.√3 C.2 D.2√33、如图,四边形ABCD是菱形,对角线AC=8,DB=6,DE⊥BC于点E,则DE的长为()A.2.4 B.3.6 C.4.8 D.64、在菱形ABCD中,若对角线的长AC=8cm,BD=6cm,则边长AB= cm.5、如图,在菱形ABCD中,AB=10,AC=12,则它的面积是.6、如图,菱形ABCD中,AC、BD相交于点O,若∠BCO=55°,则∠ADO=°.7、如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连接DE,F在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.2.菱形的判定3、相关知识点A、线段垂直平分线的性质①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.B、直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的.勾股定理(相关知识点)【练习】1、如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28° B.52° C.62° D.72°2、如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且与边AD、BC分别交于点M和点N.(1)请你判断OM和ON的数量关系,并说明理由;(2)过点D作DE∥AC交BC的延长线于点E,当AB=6,AC=8时,求△BDE的周长.3、如图,在菱形ABCD中,AB的垂直平分线EF交对角线AC于点F,垂足为点E,连接DF,若∠CDF=24°,则∠DAB等于()A.100° B.104° C.105° D.110°4、如图,菱形ABCD的周长为12cm,BC的垂直平分线EF经过点A,则对角线BD的长是cm.5.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是.6.如图,CE是△ABC外角∠ACD的平分线,AF∥CD交CE于点F,FG∥AC交CD于点G.求证:四边形ACGF是菱形.7.已知,如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE,AC平分∠BAD.求证:四边形ABCD为菱形.8.如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.(3)若AD=3,AE=5,则菱形AECF的面积是多少?9、已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.10、已知:如图四边形ABCD的对角线AC的垂直平分线与边AD,BC分别交于E,F.求证:四边形AFCE是菱形.11、已知如图,菱形ABCD中,E是BC上一点,AE,BD交于M,若AB=AE,∠EAD=2∠BAE.求证:AM=BE.12、如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE∠AB,垂足为E.求线段BE的长.13、如图,四边形ABCD是菱形,DE∠AB交BA的延长线于E,DF∠BC,交BC的延长线于F.请你猜想DE与DF的大小有什么关系?并证明你的猜想DA BCOE6012、如图,菱形ABCD的边长为2,BD=2,E,F分别是边AD,CD上的两个动点,且满足AE+CF=2.(1)求证:∠BDE∠∠BCF;(2)判断∠BEF的形状,并说明理由;(3)设∠BEF的面积为S,求S的取值范围.知识点二、矩形1. 矩形的定义:有一个角是直角的平行四边形是矩形。
北师大版九年级上册第一章特殊平行四边形课程设计一、教学目标1.1 知识目标•了解特殊平行四边形的概念和性质。
•学习如何判断一个四边形是否是特殊平行四边形,并能够应用这一方法。
•掌握特殊平行四边形之间的关系,如正方形和长方形的关系。
•学会应用特殊平行四边形的性质解决几何问题。
1.2 能力目标•能够分析和解决由特殊平行四边形引出的问题。
•能够运用所学的思路和方法,从多个角度解决一个问题。
•能够用严密的语言表达证明过程和结论。
1.3 情感目标•培养学生良好的几何直觉和几何想象力。
•营造积极的学习氛围,增强学生的自信和兴趣。
二、教学重难点2.1 教学重点•特殊平行四边形的概念和性质。
•如何判断一个四边形是否是特殊平行四边形,并能够应用这一方法。
•特殊平行四边形之间的关系,如正方形和长方形的关系。
2.2 教学难点•学会应用特殊平行四边形的性质解决几何问题。
•用严密的语言表达证明过程和结论。
三、教学过程3.1 导入(5分钟)通过几何图形投影展示出长方形和正方形,并让学生猜测这两者的异同点。
3.2 概念讲解(20分钟)•介绍特殊平行四边形的定义,包括正方形、长方形、菱形等。
•分别从外观、内角和对边长度等方面特征,介绍各类特殊平行四边形的性质,并和学生一起研究证明。
3.3 练习(35分钟)•判断是否为特殊平行四边形。
例如,给出图形,让学生判断是不是正方形或长方形等特殊平行四边形。
•应用特殊平行四边形的性质解决几何问题。
例如,给出图形和问题,让学生分析并解决问题。
3.4 总结(10分钟)请学生回答总结问题并总结本节课所学知识点。
四、教学资源•纸笔。
•教材。
•白板和黑板。
五、作业•完成练习册上第一章所有练习。
•针对教材引导学生自主挖掘和扩展,充分发挥学生的探究兴趣。
例如,让学生了解更多特殊平行四边形的定义以及性质,或者通过搜索相关资料寻找几何应用的案例等。
六、课后作业点评通过对学生作业的点评,反馈最近教学效果,帮助学生更好地掌握学习内容。
强湾中学导学案学科:数学年级:九年级主备人:王花香辅备人:张晓霞审批:教师活动(环节、措施)学生活动(自主参与、合作探究、展示交流)明确目标合作交流二、合作交流1.议一议:前面我们已探讨过矩形的性质,矩形的四个角都是直角;矩形的对角线相等.那你能证明它们吗?(1) 已知:四边形ABCD是矩形.求证:∠A=∠B=∠C=∠D=90°(2) 已知:四边形ABCD是矩形.求证:AC=DB定理矩形的四个角都是直角.定理矩形的对角线相等.课题 3.2特殊平行四边形(1)课时1课时课型导学+展示课学习目标1.能运用综合法证明矩形性质定理和判定定理.2.体会证明过程中所运用的归纳概括以及转化等数学思想方法.流程课前自测——新课探究——例题解析——自我测验——应用拓展重难点重点:掌握运用综合法证明矩形性质定理和判定定理.难点:证明过程中所运用的归纳概括以及转化等数学思想方法. 课前准备一、温故而知新1.你了解哪些特殊的平行四边形?2.这些特殊的平行四边形与平行四边形有哪些关系?3.能用一张图来表示它们之间的关系吗?达标检测三、我的课堂我做主1、如图,设矩形的对角线AC与BD的交点为E,那么BE是Rt△ABC中一条怎样的特殊线段?它与AC有什么大小关系?为什么?E推论:直角三角形斜边上的中线等于斜边的一半.2.如图,矩形ABCD的两条对角线相交于点O,已知∠AOD=120°,AB=2.5cm,求矩形对角线的长.课后训练四、巩固练习1.矩形除了具备平行四边形的性质外,还有一些特殊性质:四个角,对角线.2.在矩形ABCD中,对角线AC、BD交于点O,若100AOB∠=,则OAB∠=.3.已知矩形的长为20,宽为12,顺次连结矩形四边中点所形成四边形的面积是__________.4.正方形的四个角都是直角吗?为什么?5.证明:有三个角是直角的四边形是矩形.五、反思领悟这节课我们学到了: .我的疑问是: .。
第一章特殊平行四边形一、学生知识状况分析“特殊的平行四边形”是学生继学习了平行四边形之后的一个学习内容,学生已经学习了平行四边形的有关知识,对平行四边形的性质和判定已有一定的认识,学生在小学也接触过矩形,菱形,正方形的一些简单应用。
本节主要复习三种特殊平行四边形的性质和判定,以及对他们的比较。
研究过程中以类比,归类为主要方法,同时,九年级学生已经具备比较强的归纳、总结能力,利用学生间相互评价、相互提问,使之参与课堂的热情提高。
二、教学任务分析本节是从三种特殊平行四边形的关系入手,使学生进一步认识矩形、菱形、正方形的内在关系:不仅要让学生了解三种特殊平行四边形的性质和判定,更重要的是让学生通过观察、比较、归类找出他们内在的转化方法。
通过自己动经历和体验图形的变化过程,进一步发展学生的空间观念,为后续章节的学习打下基础。
本节共一个课时,已总结和简单练习为主。
1.知识目标:复习三种特殊平行四边形的性质及判定,及理解他们之间的关系。
2.能力目标:(1)经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维.(2)经历课前准备总结,探索三种特殊平行四边形的关系,发展总结归纳能力和初步的演绎推理的能力;(3)在具体问题的证明过程中,有意识地渗透实验论证、逆向思维的思想,提高学生的能力。
3.情感与价值观要求(1)积极参与数学学习活动,对数学有好奇心和求知欲.(2)通过“猜想—总结—证明—应用“的数学活动提升科学素养.4. 教学重点(1)三种特殊平行四边形性质和判定的复习.(2)三种特殊平行四边形的关系.4.教学难点总结关系方法的多样性和系统性。
三、教学过程分析本节课设计了五个教学环节:第一环节:交流创意,导入课题;第二环节:动手操作、探求新知;第三环节:先猜想再实践,发展几何直觉;第四环节:巩固基础,检测自我;第五环节:课堂小结,布置作业。
第一环节:交流创意,导入课题内容:事先布置好任务,让学生用自己的方式总结三种特殊平行四边形的关系图,课堂上先交流讨论。
《平行四边形》复习课教学设计【教学目标】1、进一步理解平行四边形、矩形、菱形、正方形的概念及其相互联系;2、掌握平行四边形、矩形、菱形、正方形的性质和判定;3、会把各种平行四边形的相关知识进行结构化整理。
【教学重点】1、平行四边形与各种特殊平行四边形的区别。
2、梳理平行四边形、矩形、菱形、正方形的知识体系及应用方法。
【教学难点】平行四边形与各种特殊平行四边形的定义、性质、判定的综合运用。
【教学模式】以题代纲,梳理知识-----变式训练,查漏补缺 -----综合训练,总结规律-----测试练习,提高效率【教具准备】三角板。
【教学过程】一、以题代纲,梳理知识(一)开门见山,直奔主题同学们,今天我们一起来复习《平行四边形》的相关知识,先请同学们首先完成下面几道练习题,请看黑板。
(二)诊断练习1、根据条件判定它是什么图形,并在括号内填出,在四边形ABCD中,对角线AC和BD相交于点O:(1) AB=CD,AD=BC (平行四边形)(2)∠A=∠B=∠C=90°(矩形)(3)AB=BC,四边形ABCD是平行四边形(菱形)(4)OA=OC=OB=OD ,AC⊥BD (正方形)(5) AB=CD, ∠A=∠C ( ? )2、菱形的两条对角线长分别是6厘米和8厘米,则菱形的边长为5厘米。
3、顺次连结矩形ABCD各边中点所成的四边形是菱形。
4、若正方形ABCD的对角线长10厘米,那么它的面积是50平方厘米。
5、平行四边形、矩形、菱形、正方形中,轴对称图形有:矩形、菱形、正方形,中心对称图形的有:平行四边形、矩形、菱形、正方形,既是轴对称图形,又是中心对称图形的是:矩形、菱形、正方形。
(二)归纳整理,形成体系1、性质判定,列表归纳(1)矩形、菱形、正方形都具有的性质是(C)A.对角线相等(距、正) B. 对角线平分一组对角(菱、正) C.对角线互相平分 D. 对角线互相垂直(菱、正)(2)、正方形具有,矩形也具有的性质是(A)A.对角线相等且互相平分 B. 对角线相等且互相垂直C. 对角线互相垂直且互相平分D. 对角线互相垂直平分且相等(3)、如果一个四边形是中心对称图形,那么这个四边形一定(D) A.正方形B.菱形C.矩形 D.平行四边形都是中心对称图形,A、B、C都是平行四边形(4)、矩形具有,而菱形不一定具有的性质是(B)A. 对角线互相平分B. 对角线相等C. 对边平行且相等D. 内角和为3600问:菱形的对角线一定不相等吗?错,因为正方形也是菱形。
菱形的性质与判定 导学案第一课时一、学习准备:1、 叫做平行四边形2、平行四边形的对边 ,对角 ,邻角 ,对角线3、一组对边 的四边形是平行四边形,两组对边分别 的四边形是平行四边形,两组对边分别相等的四边形是 。
两条对角线 的四边形是平行四边形。
学习目标:1.掌握菱形概念,知道菱形与平行四边形的关系.2.理解并掌握菱形的定义及性质1和性质2三、自学提示: 1、自主学习:叫做菱形。
菱形是 的平行四边形。
2、合作探究:例1:已知四边形ABCD 是菱形,且AD=BC ,求证四边相等。
性质1: 例2:已知四边形ABCD 是菱形,求证AC ⊥BD 。
性质2: 例3:已知四边形ABCD 是菱形,求证AC 、BD 各平分一组对角。
性质3:例4:在菱形ABCD 中,已知AC=6,BD=8,边上的高是4.8,求菱形ABCD 的面积。
性质4:注意,性质5:菱形具有 的一切性质。
思考:菱形具有而平行四边形不一定具有的性质有哪些?菱形是 图形,对称轴有 条,即两条 所在的直线。
四、学习小结:这节课你有哪些收获和体会? 五、夯实基础:1、(1)菱形的对角线长为24和10,则菱形的边长为 ,周长为 ,面积为 。
(2)在菱形ABCD 中,已知∠ABC=60°,AC=4,则AB= 。
OD C BA(3)菱形的两邻角之比为1:2,边长为2,则菱形的面积为__________.(4)已知菱形的面积等于80cm2,高等于8cm,则菱形的周长为 .(5)已知菱形ABCD的周长为20cm,∠A:∠ABC=1:2,则BD= cm.(6)在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,(如图)则∠EAF等于()A.75°B.60°C.45°D.30°(7)菱形ABCD,若∠A:∠B=2:1,∠CAD的平分线AE和边CD之间的关系是()A.相等B.互相垂直且不平分C.互相平分且不垂直D.垂直且平分(8)已知菱形的周长为20cm,一条对角线长为5cm,求菱形各个角的度数.六、能力提升:1、已知菱形ABCD的边长为2 cm,∠BAD=120°对角线AC、BD相交于点O,试求出菱形对角线的长和面积.2、如图,已知菱形ABCD的对角线交于点O,AC=16cm,BD=12cm,求菱形的高.菱形的性质与判定第二课时一、学习准备:你还记得菱形的定义吗?菱形有哪些特殊性质?边:__________________________;______________________________角:__________________________;______________________________对角线:_____________________________________________________对称性:二、学习目标:1.理解并掌握菱形的定义及两个判定方法,明确菱形证明的三种切入方式;会用这些判定方法进行有关的论证和计算;2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力. 三、自学提示:(一)、自主学习:1.(菱形的判定方法一)菱形的定义:有 的 叫做菱形. 2.用符号语言可以表示为:∵四边形ABCD 是 四边形 ∵ ___ =____ ∴四边形 ABCD 是菱形△ABC 中,AD 平分∠BAC 交BC 于D 点,过D 作DE ∥AC 交AB 于E 点, 过D 作DF ∥AB 交AC 于F 点. 求证:(1)四边形AEDF 是平行四边形(2)∠2﹦∠3(3)四边形AEDF 是菱形 (二):合作探究推证菱形判定二、三,并会用该种方法进行有关的证明.相平分的四边形是 四边形,如果两条对角线又互相垂直,那么这个四边形的邻边有什么关系,所以如果平行四边形的对角线互相垂直,那么这个四边形一定是 形。
北师大版数学九年级上册导学案1.1菱形的性质与判定第1课时菱形的性质【学习目标】1.理解菱形的概念,掌握菱形的性质.2.培养学生主动探究的习惯、严密的思维意识和审美意识.3.经历探索菱形的性质和基本概念的过程,在操作、观察、分析过程中发展学生思维意识,体会几何说理的基本方法.【学习重点】理解并掌握菱形的性质.【学习难点】形成推理的能力.情景导入生成问题1.平行四边形的一组对边平行且相等.2.平行四边形的对角相等.3.平行四边形的对角线互相平分.自学互研生成能力知识模块一探索菱形的性质先阅读教材P2-3页的内容,然后完成下面的问题:1.菱形的定义是什么?答:菱形定义:有一组邻边相等的平行四边形叫做菱形.2.菱形具有平行四边形的所有性质吗?答:菱形是特殊的平行四边形,它具有一般平行四边形的所有性质.1.教师拿出平行四边形木框(可活动的),操作给学生看,让学生体会到:平移平行四边形的一条边,使它与相邻的一条边相等,可以得到一个菱形,说明菱形也是特殊的平行四边形,因此,菱形也具有平行四边形的所有性质.2.如图:将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,再打开.思考:(1)这是一个什么样的图形呢?(2)有几条对称轴?(3)对称轴之间有什么位置关系? (4)菱形中有哪些相等的线段?师生结论:(1)菱形;(2)菱形是轴对称图形,有两条对称轴,是菱形对角线所在的直线;(3)两条对称轴互相垂直;(4)菱形的四条边相等.3.归纳结论:菱形具有平行四边形的一切性质,另外,菱形的四条边相等、对角线互相垂直. 知识模块二 菱形性质的应用解答下列各题:1.已知菱形ABCD 的边长为3cm ,则该菱形的周长为__12__cm .2.如图,已知菱形ABCD 的周长为20cm ,∠A =60°,则对角线BD =__5__cm .典例讲解:如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,∠BAD =60°,BD =6,求菱形的边长AB 和对角线AC 的长.解:∵四边形ABCD 是菱形,∴AB =AD(菱形的四条边都相等),AC ⊥BD(菱形的对角线互相垂直),OB =OD =12BD =12×6=3(菱形的对角线互相平分).在等腰三角形ABC 中,∵∠BAD =60°,∴△ABD 是等边三角形,∴AB =BD =6.在Rt △AOB 中,由勾股定理得OA 2+OB 2=AB 2,∴OA =AB 2-OB 2=62-32=33,∴AC =2OA =6 3.对应练习:如图,在菱形ABCD 中,对角线AC 与BD 相交于点O.已知AB =5cm ,AO =4cm .求BD 的长. 解:∵四边形ABCD 是菱形,∴AC ⊥BD(菱形的对角线互相垂直).在Rt △AOB 中,由勾股定理,得AO 2+BO 2=AB 2,∴BO =AB 2-AO 2=52-42=3.∵四边形ABCD 是菱形,∴BD =2BO =2×3=6(菱形的对角线互相平分).交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 探索菱形的性质知识模块二菱形性质的应用检测反馈达成目标1.已知菱形ABCD的周长为8cm,则菱形的边长为__2__cm.2.已知菱形ABCD的两条对角线AC=10cm,BD=24cm,则菱形ABCD的周长为__52__cm.3.菱形具有而平行四边形不一定具有的性质是(B)A.内角和为360°B.对角线互相垂直C.对边平行D.对角线互相平行4.已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为(B)A.45°,135°B.60°,120°C.90°,90°D.30°,150°课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________第2课时菱形的判定【学习目标】1.理解并掌握菱形的定义及两种判定方法.2.会用这些判定方法进行有关的论证和计算.3.经历探索菱形判定条件的过程,领会菱形的概念以及判定方法,发展学生主动探究的思想并了解说理的基本方法.4.培养良好的探究意识以及推理能力,感悟其应用价值;培养学生的观察能力、动手能力及逻辑思维能力.【学习重点】菱形的两个判定方法.【学习难点】判定方法的证明及运用.情景导入生成问题1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.2.菱形的性质:性质1:菱形的四条边都相等;性质2:菱形的对角线互相垂直.自学互研生成能力知识模块一探索菱形的判定方法先阅读教材P5-6页内容,然后完成下面的问题。
第一章特殊平行四边形第1节菱开的性质与判定教学目标:1.理解菱形的概念,了解它与平行四边形之间的关系。
2.经历菱形性质定理和判定的探索过程,进一步发展合情推理能力。
3.能够用综合法证明菱形的性质定理和判定定理,进一步发展演绎推理能力。
4.体会探索与证明过程中所蕴含的抽象、推理等数学思想。
教学重点:菱形的性质及判定方法.教学难点:菱形性质和直角三角形的知识的综合应用.教学过程:3个课时第一课时菱形的性质一、导入新课1、回顾上学期平行四边形的性质与判定。
2、观察生活中的菱形物体。
二、菱形1、定义:有一组邻边相等的平行四边形叫做菱形。
2、菱形的性质:阅读P2,想一想、做一做。
如何证明?①菱形具有平行四边形所有的性质。
②菱形的四条边相等。
③菱形的对角线互相垂直平分,且每条对角线平分一组对角。
④菱形的面积等于两条对角线积的一半。
⑤菱形既是轴对称图形也是中心对称图形。
三、阅读P3,例1四、例:已知菱形ABCD中,AB=20,∠ABC=60°,AC与BD交于点O,求对角线的长及这个菱形面积。
五、练习:P4-5六、作业:1、若一个菱形的边长为2,则这个菱形两条对角线的平方和为。
2、在菱形ABCD中,点P为AC上一点,PE⊥CD,PF⊥AD,AB=4,∠DAB=60°,求PE+PF 的值。
12第二课时 菱形的判定一、回顾菱形的性质二、菱形的判定1、一组邻边相等的平行四边形是菱形。
(定义)2、对角线互相垂直的平行四边形是菱形。
(为什么?阅读P5) 对角线互相平分且垂直的四边形是菱形。
3、四边相等的四边形是菱形。
(P5,议一议,为什么?)三、做一做:P6四、例2:P6,如下图,ABCD 的两条对角线AC 、BD 相交于O 点,AB=5,AO=2,OB=1. (1)AC 、BD 有怎样的位置关系?(2)四边形ABCD 是菱形吗?为什么?五、例:、六、练习:P7 七、作业:1、如图,在Rt △ABC 中,∠BAC=90°,AD ⊥BC 于D ,BE 平分∠ABC 交AD 于F ,交AC 于E ,若EG ⊥BC 于G ,连结FG. 求证:四边形AFGE 是菱形.3第三课时 应用与练习一、回顾菱形的性质与判定二、阅读P8,例3三、做一做:P8,两条等宽的纸条交叠在一起,则重叠的四边形ABCD 是菱形吗?为什么?如果纸条宽为2CM ,∠ABC=60°,求四边形ABCD 的面积。
北师大版九年级数学上册《第一章特殊平行四边形回顾与思考》教学设计一. 教材分析《北师大版九年级数学上册》第一章《特殊平行四边形回顾与思考》主要包括平行四边形的性质、判定以及特殊平行四边形的性质和判定。
本章内容是对初中阶段平行四边形知识的总结和提升,为后续几何学习打下基础。
通过本章的学习,学生需要掌握平行四边形的性质和判定方法,了解特殊平行四边形的性质和应用。
二. 学情分析九年级的学生已经学习了平行四边形的性质和判定,对特殊平行四边形有一定的了解。
但部分学生对知识的理解和运用还不够熟练,对特殊平行四边形的性质和判定方法容易混淆。
因此,在教学过程中,需要针对学生的实际情况,巩固基础知识,提高学生的解题能力。
三. 教学目标1.知识与技能:使学生掌握平行四边形的性质和判定方法,了解特殊平行四边形的性质和应用;2.过程与方法:培养学生运用几何知识分析问题、解决问题的能力;3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的团队协作精神。
四. 教学重难点1.教学重点:平行四边形的性质和判定方法,特殊平行四边形的性质和应用;2.教学难点:特殊平行四边形的性质和判定方法的灵活运用。
五. 教学方法1.情境教学法:通过生活实例引入特殊平行四边形的概念,激发学生的学习兴趣;2.问题驱动法:设置问题引导学生思考,培养学生解决问题的能力;3.合作学习法:分组讨论,培养学生团队协作精神;4.练习法:通过适量练习,巩固所学知识。
六. 教学准备1.准备相关教学材料,如PPT、练习题等;2.准备特殊平行四边形的模型或图片,以便于学生直观理解;3.安排课堂练习的时间和内容。
七. 教学过程1.导入(5分钟)利用生活实例引入特殊平行四边形的概念,如电梯门、蝴蝶翅膀等,引导学生回顾已学的平行四边形知识,为新课的学习做好铺垫。
2.呈现(10分钟)介绍特殊平行四边形的性质和判定方法,如矩形、菱形、正方形的性质和判定。
通过PPT展示,让学生直观地了解特殊平行四边形的特征。
五、教学过程教学过程教师活动学生活动应对措施预测用时设计意图及资源准备程序1:导入提问:判断四边形的形状?猜想、交流回答老师问题:哪个是平行四边形? 哪个是矩形 ? 哪个是长方形?哪个是正方形?面对开放式的问题思考、交流、讨论引领思考教师对课堂生成问题采取相应措施3分钟从生活中简单的图形出发,激发学生学习兴趣。
改变问题的呈现方式,调动学生的思维。
激发学生思考讨论、交流,培养逆向思维程序2:自主学习主题1 从图形识别开始,怎样的四边形是平行四边形?它的性质和判别是什么?并结合图形用几何语言表述.观看屏幕明确学习内容积极回忆学生代表发言在学案上用几何语言写出平行四边形的性质和判定,交流点成绩中等学生发言,有鼓励+督促意图配合学生回答,点击投影,与学生交流3分钟导入课题,板书:《特殊的平行四边形》复习课用几何语言表述平行四边形的性质和判定,有利于学生更好的理解定理,并且提高熟练运用的能力(这是我在长期教学一线,得出的辅助几何定理学习的方法,对学困生帮助作用是很明显的)(1)有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形吗?不一定!(2) 有一组对边平行,并且另外一组对边相等的四边形一定是平行四边形吗?不一定!等腰梯形平行四边形❖平行四边形性质平行四边形对边相等且平行、对角相等、对角线互相平分❖平行四边形判别一组对边平行且相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形两组对边分别平行的四边形是平行四边形对角线互相平分的四边形是平行四边形AB CDO平行四边形❖平行四边形性质∵□ABCD∴AB=DC AD=BCAB∥DC AD∥BC∠BAD=∠BCD ∠ABC=∠ADCOA=OC OB=OD❖平行四边形判别∵AB=DC且AB∥DC ∴□ABCD∵AB∥DC AD∥BC ∴□ABCD∵AB=DC AD=BC ∴□ABCD∵OA=OC OB=OD ∴□ABCDAB CDO、观察图形怎样的四边形是矩形?它的性质和判别是什么?并结合图形用几何语言表述.菱形❖菱形性质菱形对边平行且四边相等、对角相等、对角线互相垂直平分且每一条对角线平分一组对角❖菱形判别一组邻边相等的平行四边形是菱形对角线互相垂直的平行四边形是菱形四条边都相等的四边形是菱形A BCD O 菱形❖菱形性质∵菱形ABCD∴AB ∥DC AD ∥BC 且AB =DC =AD =BC∠BAD=∠BCD ∠ABC=∠ADCOA=OC OB=OD 且AC ⊥BD , ∠DAO=∠BAO 等❖菱形判别∵在□ABCD 中AB=AD ∴菱形ABCD ∵在□ABCD 中AC ⊥BD ∴菱形ABCD ∵四边形ABCD 中AB =DC =AD =BC ∴菱形ABCDA BCD O 矩形❖矩形性质∵矩形ABCD∴AB=DC AD=BC 且AB ∥DC AD ∥BC∠BAD=∠BCD=∠ABC=∠ADC= 90°AC=BD 且OA=OC OB=OD❖矩形判别∵在□ABCD 中∠ABC= 90°∴矩形ABCD ∵在□ABCD 中AC=BD ∴矩形ABCD在四边形ABCD 中∠BAD=∠BCD=∠ABC= 90°∴矩形ABCDADCBO矩形❖矩形性质矩形对边相等且平行、四个角相等且等于90度、对角线相等且互相平分❖矩形判别有一个角是直角的平行四边形是矩形对角线相等的平行四边形是矩形有三个角是直角的四边形是矩形A DCBO正方形❖正方形性质正方形对边平行且四边相等四个角相等且等于90度对角线互相垂直平分且相等,每一条对角线平分一组对角❖正方形判别一组邻边相等的矩形是正方形有一个角是直角的菱形是正方形一组邻边相等、有一个角是直角的平行四边形是正方形你能用恰当的方式表示平行四边形,菱形,矩形,正方形之间的关系吗?正方形❖正方形性质正方形对边平行且四边相等四个角相等且等于90度对角线互相垂直平分且相等,每一条对角线平分一组对角❖正方形判别一组邻边相等的矩形是正方形有一个角是直角的菱形是正方形一组邻边相等、有一个角是直角的平行四边形是正方形ADCB O平行四边形要继续探索的问题?四边形两组对边分别平行平行四边形菱形矩形正方形11.如图,点E 、F 在正方形ABCD 的边BC 、CD 上,BE=CF.(1)AE 与BF 相等吗?为什么?(2)AE 与BF 是否垂直?说明理由。
4748 第二阶段教学案精讲点拨:1、如图, 已知菱形ABCD的周长为20cm,∠A:∠ABC=1:2,求∠ABD的度数与BD长。
2、已知菱形的两条对角线长分别为6和8,则它的边长为多少?3、菱形ABCD的周长为16厘米,∠ABC=120°,求对角线BD与AC的长。
4、如图,四边形ABCD是边长为13 cm的菱形,其中对角线BD长10 cm,求:(1)对角线AC的长度;(2)菱形ABCD的面积4748第二阶段教学案预习反馈:预习诊断独立完成课后练习1、2题。
合作探究:学习任务四:阅读课本18页,自己在下面独立证明菱形的判定定理(1):四条边都相等的四边形是菱形已知:求证:证明:学习任务五:阅读课本18页,合上课本在下面独立证明菱形的判定定理(2):对角线互相垂直的平行四边形是菱形已知:求证:证明:47第二阶段教学案精讲点拨:如图,在菱形ABCD中,E、F分别为BC、CD的中点,求证:AE=AF.思路点拨:证法1:利用菱形性质证得∠B=∠D,AB=AD,BE=DF,再运用△ABE≌△ADF(SAS)可以证出AE=AF,证法2:连线AC,证△AEC≌△AFC(SAS).4847第三阶段检测案能力提高: 【当堂达标】1.下列命题中是真命题的是( )A.对角线互相平分的四边形是菱形B.对角线互相平分且相等的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形2.小明和小亮在做一道习题,若四边形ABCD 是平行四边形,请补充条件 ,使得四边形ABCD 是菱形。
小明补充的条件是AB=BC ;小亮补充的条件是AC=BD ,你认为下列说法正确的是( )A.小明、小亮都正确B.小明正确,小亮错误C.小明错误,小亮正确D.小明、小亮都错误 3.在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交AC 于F ,交AB 于E ,则∠CDF=( )A.80°B.70°C.65°D.60°4.棱形的周长为8.4cm ,相邻两角之比为5:1,那么菱形一组对边之间的距离为( )A.1.05cmB.0.525cmC.4.2cmD.2.1cm 5.菱形ABCD 中∠A=120°,周长为14.4,则较短对角线的长度为 。
6.菱形的面积为50平方厘米,一个角为30°,则它的周长为 。
7. 菱形花坛ABCD 的边长为20m ,∠ABC=60°,沿着菱形的对角线修建了两条小路AC 和BD ,求两条小路的长和花坛的面积(分别精确到0.01m 和0.01m 2).课后反思北滩中学 九 年级 数学(上) 导学案课题 1特殊的平行四边形(第3课时)授课时间 主备人授课人班级审核人第一阶段目学习目标 1.理解菱形的定义, 掌握菱形的性质和判定;2.能运用菱形的性质和判定进行简单的计算与证明预学案标导航学习重点掌握矩形及直角三角形斜边上中线的性质定理,会用定理进行有关的计算与证明。
【课前预习】Ⅰ.菱形两条对角线、边长之间的关系:1. 如图所示,在菱形ABCD中,两条对角线AC=6,BD=8,则:①此菱形的边长为.周长为.②此菱形的面积为.③此菱形对角线的交点O到AB的距离为.④菱形内部(包括边界)任取一点P,使△ACP的面积大于6 cm2的概率为.2. 已知菱形的边长是5cm,一条对角线长为8cm,则另一条对角线长为___ ___cm.3.菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=_____cm,BD=_____cm.4.若一个菱形的边长为2,则这个菱形两条对角线长的平方和为.48第二阶段教学案合作探究:有一个内角为60°的菱形:1. 如图如图所示,在菱形ABCD中,若AB=6,∠DAC=60°则:①BD=.②AC=.③S菱形ABCD=.归纳:有一个内角为60°的菱形,短的对角线等于;长的对角线等于.2. 菱形的两邻角之比为1:2,边长为2,则菱形的面积为__________.4748 第二阶段教学案精讲点拨:3. 已知:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为4.(11 南京)如图,菱形ABCD的边长是2㎝,E是AB中点,且DE⊥AB,则S菱形ABCD= cm2.5.(10 荷泽) 如图,菱形ABCD中,∠B=60°,AB=2㎝,E、F分别是BC、CD的中点,连结AE、EF、AF,则△AEF的周长为cm.第3题图第4题图第5题图第三阶段检测案【当堂达标】已知:如图,AD 平分∠BAC ,DE ∥AB ,DF ∥AC .试判断四边形AFED 的形状,并加以证明.知识梳理1:菱形的定义: 菱形的性质: (边) (角)(对角线)(对称性)菱形的面积等于 .知识梳理2:如图,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以A 和B 为圆心,大于1,2AB 的长为半径画弧,两弧相交于C 、D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是... 形,你判定的理由是: . 归纳:课后反思北滩中学 九 年级 数学(上) 导学案课题 1特殊的平行四边形(第4课时)授课时间 主备人授课人班级审核人第一阶段目学习目标 1、理解矩形的意义,知道矩形与平行四边形的区别与的平行四边形是菱形的四边形是菱形第二阶段教学案合作探究:(1)由于矩形是特殊的平行四边形,因此它具有平行四边形的所有性质,还具有平行四边形不具有的特殊性质....。
.如图,同学们研究矩形的性质,填写下表:(2)你能证明以下性质的正确性⑴矩形的四个角都是直角⑵矩形的对角线相等矩形的性质边角对角线对称性具有平行四边形的所有性质具有平行四边形不具有的特殊性质第三阶段检测案【当堂达标】1.工人师傅做铝合金窗框分下面三个步骤进行:⑴ 先截出两对符合规格的铝合金窗料(如图①),使AB =CD ,EF=GH ;⑵ 摆放成如图②的四边形,则这时窗框的形状是 形,根据的数学道理是: ;⑶ 将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是 形,根据的数学道理是:2.△ABC 中,点O 是AC 边上一动点,过O 点作直线MN//BC ,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F ,(1)试说明EO=OF 的理由。
(2)当点O 运动到何处时,四边形AECF 是矩形?并说明你的结论。
课后反思北滩中学 九 年级 数学(上) 导学案课题 1特殊的平行四边形(第6课时)授课时间 主备人授课人班级审核人EF ABCONMD第一阶段预学案一、1.矩形的定义:叫做矩形。
由此可见,矩形是特殊的,它具有平行四边形的所有性质。
2、矩形是图形,有条对称轴二、矩形的性质:1.2.2、知识应用例:已知:如图,矩形ABCD的两条对角线相交于点O,且AC=2AB。
求证:△AOB是等边三角形。
拓展与延伸:本题若将“AC=2AB”改为“∠BOC=120°”,你能获得有关这个矩形的哪些结论?OAB CD第二阶段教学案训练提高(1)已知ABCD的对角线AC,BD相交于O,△AOB是等边三角形,AB=4厘米,求这个四边形的面积。
二、矩形的判定1、矩形的定义:2、矩形的其他判定方法。
矩形的判定定理(1):矩形的判定定理(2):3、典例学习(1)如图,ABCD中,∠1=∠2.求证:四边形ABCD是矩形。
第二阶段教学案(2)已知:如图,ABCD的四个内角的平分线分别相交于E、F、G、H,求证:四边形EFGH为矩形4、(2)已知:如图.矩形ABCD的对角线AC、BD相交于点O,且E、F、G、H分别是AO、BO、CO、DO的中点,求证四边形EFGH是矩形第三阶段检测案三、课堂检测1、能够判断一个四边形是矩形的条件是( )A 对角线相等B 对角线垂直C 对角线互相平分且相等D 对角线垂直且相等2、如图,直线EF ∥MN ,P Q 交EF 、MN 于A 、C 两点,AB 、CB 、CD 、AD 分别是∠ EAC 、 ∠ MCA 、 ∠ ACN 、 ∠ CAF 的角平分线,则四边形ABCD 是( )A 菱形B 平行四边形C 矩形D 不能确定3、(训练2变式训练)已知:O 是矩形ABCD 对角线的交点,E 、F 、G 、H 分别是OA 、OB 、OC 、OD 上的点,AE=BF=CG=DH ,求证:四边形EFGH 为矩形3、已知:如图,E 为矩形ABCD 内一点,且EB=EC 。
求证:EA=ED.课后反思北滩中学 九 年级 数学(上) 导学案课题 1特殊的平行四边形(第7课时)授课时间 主备人授课人班级审核人第一阶段目学习目标 1.掌握正方形的概念、性质,并会用它们进行有关的E F MNPQ ACD B BC DEFG HOAEDCBA第二阶段教学案合作探究:1、探究一:你能用纸折出一个正方形吗探究二:正方形与平行四边形的关系探究三:正方形与矩形的关系探究四:正方形与菱形的关系2、将平行四边形、矩形、菱形、正方形填入相应的圆圈内。
3、根据上图的从属关系,可知正方形的性质有:边:;角:;对角线:;是对称图形,也是对称图形。
4、边长为2的正方形的周长和面积分别是多少?5、边长为2的正方形的对角线长是多少?6、对角线长为2的正方形边长是多少?7、求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.第二阶段教学案预习诊断独立完成课后练习1、2题。
精讲点拨1、正方形与平行四边形、矩形、菱形的联系和区别。
2、已知:如图,四边形ABCD为正方形,E、F分别为CD、CB 延长线上的点,且DE=BF.求证:∠AFE=∠AEF.已知:如图,正方形ABCD中,E为BC上一点,AF平分∠DAE 交CD于F,求证:AE=BE+DF.ABC D EF第三阶段检测案【当堂达标】1、下列说法中,不正确的是()A、既是矩形,又是菱形的四边形是正方形。
B、正方形是对角线相等的菱形。
C、正方形是对角线互相垂直的矩形。
D、正方形是对角线平分的平行四边形2、已知四边形ABCD是平行四边形,下列结论中不正确的是()A、当AB=BC时,它是菱形B、当A C⊥BD时,它是菱形。
C、当∠ABC=90°时,它是矩形D、当AC=BD时,它是正方形3、正方形、矩形、菱形都具有的特征是()A、对角线互相平分B、对角线相等C、对角线互相垂直D、对角线平分一组对角4、下列四边形是正方形的是()A、有一组邻边相等的四边形;B、有一组邻边相等的平行四边形;C、有一组邻边相等的矩形;D、有一个角是直角的平行四边形;5、如图,E为正方形ABCD内一点,且△EBC是等边三角形,求∠EAD与∠ECD6、已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.求证:EA⊥AF.五、拓展延伸已知:如图,正方形ABCD中,对角线的交点为O,E是OB上的一点,DG ⊥AE于G,DG交OA于F.求证:OE=OF.课后反思北滩中学九年级数学(上)导学案课题1特殊的平行四边形(第8课时)授课时间主备人授课人班级审核人第一阶段预学案目标导航学习目标知道正方形的判定方法,会运用平行四边形、矩形、菱形、正方形的判定条件进行有关的论证和计算。