传感器新技术的发展
- 格式:docx
- 大小:16.63 KB
- 文档页数:3
新型传感器技术的发展趋势随着科技的不断发展,新型传感器技术正在逐渐成为越来越重要的一项技术。
传感器是一种能够感知外界环境并将其转化为电信号的器件。
而新型传感器技术则是在原有传感器技术基础上加入了更多的新技术手段和材料,以实现更加精确、高效、可靠的环境感知和信号传输。
本文将讨论新型传感器技术的发展趋势和应用前景。
一、智能化、数字化、无线化是新型传感器技术的重要趋势智能化、数字化、无线化是当前新型传感器技术的重要发展趋势。
随着计算机技术、通信技术、人工智能技术的不断发展,传感器的智能化水平不断提高,能够实现更加精确、高效的数据采集和处理。
数字化则是指传感器能够将采集到的信号转化为数字信号,以便于数字化处理和信号传输。
无线化则是指传感器能够通过无线通信技术向远程传输采集到的数据,实现远程监测和控制。
二、新型材料和新型结构技术的应用将使传感器性能得到进一步提升新型材料和新型结构技术的应用将是新型传感器技术的另一个重要趋势。
例如,纳米材料是当前研究的热点之一,可以用于制备超灵敏、高稳定性、高精度的传感器。
另外,微纳加工技术、MEMS技术、光子晶体技术等也能为传感器的制备带来更多的突破。
新型材料和新型结构技术的应用将使传感器的灵敏度、精确度、响应速度等性能得到进一步提升。
三、生物仿生学的应用将促进传感器技术的发展生物仿生学将是促进新型传感器技术发展的另一个重要因素。
生物仿生学是基于对生物系统中优秀性能和结构的研究,把其特点或原理应用到传感器的制备中。
例如,研究昆虫的感应器官可以为传感器的制备提供启示。
生物仿生学的应用将有益于传感器的灵敏度、响应速度、抗干扰能力等方面的改进。
四、新型传感器技术的应用前景广阔新型传感器技术的应用前景十分广阔。
在工业领域,传感器能够为工业过程的自动化控制和质量控制提供可靠依据。
例如,利用温度传感器、压力传感器、流量传感器等,能够实现对化工生产过程的保护和控制。
在医疗领域,传感器能够实现对人体健康数据的实时监测和管理,例如,心电传感器、血糖传感器、体温传感器等。
新型传感器技术发展与应用随着信息技术的不断发展,各种新型传感器技术也日益成熟,并广泛应用于各个领域。
传感器是一种能够将物理量变化转换为电信号的设备,其应用范围已经覆盖了生活、环境、医疗、工业、交通等多个领域,为人类的生产和生活带来了极大的便利。
1. 传感器技术的发展历程传感器技术的起源可以追溯到19世纪初,当时发明了第一个压力传感器。
在20世纪50年代,随着微电子技术的发展,相应的新型传感器技术也开始得到了迅速发展。
到了21世纪初,金属氧化物半导体传感器和纳米传感器等新型传感器逐渐兴起。
随着物联网和智能制造技术的快速发展,传感器技术已经不断地更新换代,呈现出多种全新的技术形态。
2. 新型传感器技术的应用场景(1)智能家居智能家居已经成为人们日常生活中不可或缺的一部分,让家庭生活更加智能化和安全化。
而传感器技术在智能家居中发挥了重要的作用。
智能门锁可使用指纹传感器,智能浴室中使用的加热器大多使用温度传感器,智能客厅中的空调、灯光等都同样依赖传感器技术。
(2)医疗传感器技术在医疗领域中也有着广泛的应用,如生命体征监测、医疗器械等。
例如,智能手表和智能手环等可用来监测身体健康状态,与体温计、血压计等传统医疗器械相结合可以形成完善的医疗监测系统,提高患者的生命安全和医疗效率。
(3)工业传感器技术在工业领域的应用也相当广泛,包括工业流程自动化等领域。
例如,一些化工生产企业可使用温度传感器、压力传感器、液位传感器等,监测生产过程中温度、压力、液位等参数,实现产品精确控制,提高生产效率。
(4)交通运输传感器技术在交通运输领域中也有着重要的应用。
例如,在智能交通系统中可以使用车牌识别传感器、红外传感器、雷达等设备对交通进行预测和识别,同时通过传感器技术实现交通信号的智能控制,提高道路通行效率。
3. 新型传感器技术的发展趋势(1)发展 toward 大规模集成传感器作为人工智能和物联网实现的核心,面临着如何在数据处理方面进行更好的优化和压缩的挑战。
光电传感器技术的发展趋势与应用前景概述:光电传感器作为一种能够将光信号转化为可量化的电信号的设备,具有广泛的应用前景。
随着科技的不断进步和创新,光电传感器技术也不断得到发展。
本文将探讨光电传感器技术的发展趋势以及其在各个领域的应用前景。
发展趋势:1. 微型化和集成化:随着科技的进步,光电传感器的体积越来越小,功能越来越强大。
尤其是在无线通信、医疗设备以及智能家居等领域,对微型化和集成化光电传感器的需求越来越大。
2. 高灵敏度和高精度:随着科技的进步,对光电传感器的灵敏度和精度要求越来越高。
光电传感器的灵敏度和精度的提高,可以帮助我们更好地探测环境中微弱的光信号,并将这些信号转化为可处理的电信号。
3. 多功能化和智能化:随着科技的进步,光电传感器不再仅仅局限于单一的功能。
越来越多的光电传感器具备多种功能,如温度感应、湿度感应、气体检测等。
同时,智能化的光电传感器能够根据环境的不同自动调整参数,提高传感器的性能和可靠性。
4. 新型材料和新技术的应用:新型材料和新技术的应用将进一步推动光电传感器技术的发展。
例如,纳米材料在光电传感器中的应用可以提高灵敏度和响应速度。
此外,新技术如光子晶体、光纤传感等也将为光电传感器的发展带来新的突破。
应用前景:1. 工业应用:在工业领域,光电传感器广泛应用于自动化生产线中,能够实现对物体的检测和定位。
光电传感器可以通过光电束确定物体的位置和形状,并起到精准测量的作用。
此外,在智能制造和机器人领域,光电传感器也有着广阔的应用前景。
2. 生物医学应用:光电传感器在生物医学领域的应用前景巨大。
例如,通过光电传感器可以对血液中的葡萄糖浓度进行监测,从而实现糖尿病患者的实时监测和管理。
此外,光电传感器还可以应用于医疗成像、生物分析等领域,为医学诊断和治疗提供支持。
3. 环境监测与节能应用:随着人们对环境保护和节能减排的重视,光电传感器在环境监测与节能领域的应用前景不断扩大。
光电传感器可以用于空气质量监测、污水处理、能源管理等方面,实现对环境的准确监测和管理,并为节能减排提供解决方案。
传感器技术的五大发展趋势一、智能化。
一个方向是多种传感功能与数据处理、存储、双向通信等的集成,可全部或部分实现信号探测、变换处理、逻辑判断、功能计算、双向通讯,以及内部自检、自校、自补偿、自诊断等功能,具有低成本、高精度的信息采集、可数据存储和通信、编程自动化和功能多样化等特点。
另一个方向是软传感技术,即智能传感器与人工智能相结合,目前已出现各种基于模糊推理、人工神经网络、专家系统等人工智能技术的高度智能传感器,并已经在智能家居等方面得到利用。
二、可移动化,无线传感网技术应用加快。
该技术被美国麻省理工学院(MIT)的《技术评论》杂志评为对人类未来生活产生深远影响的十大新兴技术之首。
目前研发重点主要在路由协议的设计、定位技术、时间同步技术、数据融合技术、嵌入式操作系统技术、网络安全技术、能量采集技术等方面。
迄今,一些发达国家及城市在智能家居、精准农业、林业监测、军事、智能建筑、智能交通等领域对技术进行了应用。
三、微型化,MEMS传感器研发异军突起。
随着集成微电子机械加工技术的日趋成熟,MEMS传感器将半导体加工工艺(如氧化、光刻、扩散、沉积和蚀刻等)引入传感器的生产制造,实现了规模化生产,并为传感器微型化发展提供了重要的技术支撑。
目前,MEMS传感器技术研发主要在以下几个方向:(1)微型化的同时降低功耗;(2)提高精度;(3)实现MEMS传感器的集成化及智慧化;(4)开发与光学、生物学等技术领域交叉融合的新型传感器。
四、集成化,多功能一体化传感器受到广泛关注。
传感器集成化包括两类:一种是同类型多个传感器的集成,即同一功能的多个传感元件用集成工艺在同一平面上排列,组成线性传感器(如CCD 图像传感器)。
另一种是多功能一体化,如几种不同的敏感元器件制作在同一硅片上,制成集成化多功能传感器,集成度高、体积小,容易实现补偿和校正,是当前传感器集成化发展的主要方向。
五、多样化,新材料技术的突破加快了多种新型传感器的涌现。
新型传感器的研究现状及未来发展趋势传感器是一种现代化技术所必需的元件,它能够将各种物理量转化为电信号。
传感器的应用范围广泛,例如自动化生产、交通运输、医疗诊断、安全监测等领域,因此传感器技术的发展对现代化生产、生活、科学技术的发展有着非常重要的作用。
传感器的种类很多,根据测量的物理量不同,可以分为温度传感器、压力传感器、流量传感器、湿度传感器、加速度传感器、光学传感器等等。
在这些传感器中,新型传感器是一种备受关注的技术。
一、新型传感器的研究现状1. MEMS技术传感器MEMS是微电子机械系统(Micro-Electro-Mechanical System)的缩写,它是一种微型化的电气机械系统,它能够将机械元件和电子元件进行集成化处理。
因此,MEMS技术传感器的优势在于体积很小、功耗低、响应速度快、可靠性高、价格便宜等等。
如今,MEMS技术传感器的应用已经非常广泛,例如手机中的加速度传感器、陀螺仪、磁力计、压力传感器等等,这些传感器的应用大大提升了手机的功能和用户体验。
2. 光纤传感器光纤传感器是一种基于光学原理的传感器,它使用光的传输来测量物理量。
与传统传感器相比,光纤传感器具有很多优势,例如高灵敏度、抗干扰能力强、安全可靠、经济实用,能够实现长距离传递、分布式检测等等。
目前,光纤传感器主要应用在石油天然气、交通运输、环境监测、生命科学等领域。
例如,在石油天然气开采中,光纤传感器可以测量油井的温度、压力、流量等参数,可以帮助确定油井的产量和工作状态,并且可以提高油井的生产效率。
3. 生物传感器生物传感器主要是应用在医疗诊断领域中的,它能够检测人体内的生物分子、细胞和组织等信息。
例如,可以测量血液中的血糖、白细胞计数、酸碱度等指标,可以帮助医生进行疾病的诊断和治疗。
目前,生物传感器技术发展非常迅速,尤其是以DNA、RNA 等为基础的生物传感器,它可以快速、准确地检测病原体、基因变异等信息,有望成为未来医疗诊断中的主要手段。
简述传感器的技术发展趋势
传感器技术发展的趋势可以总结为以下几点:
1. 微型化和集成化:传感器正朝着微型化和集成化方向发展,通过采用微纳制造技术,传感器的体积和重量逐渐减小,可以更方便地集成到各种设备和系统中。
2. 多功能性:传感器不再局限于单一的功能,而是朝着多功能集成的方向发展。
例如,一个传感器可以同时测量不同的物理量,或者通过与其他传感器的组合,实现更精确的测量和控制。
3. 无线通信:传感器与物联网的结合使得无线通信成为传感器技术的重要发展方向。
通过无线通信模块,传感器可以实现与其他设备的远程通信和数据传输,从而实现智能化的监测和控制。
4. 高灵敏度和高分辨率:传感器的灵敏度和分辨率是其性能的重要指标。
目前,各种新材料和技术的引入使得传感器的灵敏度和分辨率不断提高,能够更准确地检测和量化所测量的物理量。
5. 低功耗和长寿命:在移动设备和无线传感网络等应用中,传感器的功耗和寿命是非常重要的考虑因素。
因此,传感器技术的发展趋势是降低功耗,并提高传感器的使用寿命。
总之,传感器技术的发展趋势是微型化、集成化、多功能化、无线通信、高灵敏度、高分辨率、低功耗和长寿命。
这些趋势将推动传感器在各个领域的广泛应用。
新型传感器技术及其应用前景近年来,随着科技的不断发展,传感器技术也得到了很大的发展。
新型传感器技术的应用范围越来越广,其在生活、医疗、能源和环保等领域都可以起到很好的作用。
本文将从新型传感器技术的基础原理、应用领域及发展前景几个方面进行探讨。
一、新型传感器技术的基础原理传感器是一种将非电信号转换成电信号的装置,它是测量或控制中不可或缺的部分。
传感器技术的原理在于测量物理量,并将其转换成电信号以便于处理。
传感器的核心部分是传感元件,传感元件可以将被检测的参数变为电信号,所以说传感器在现代的化工、生产、医疗、信息技术等处处都发挥着重要作用。
目前,新型传感器技术的应用十分广泛,例如:二、新型传感器技术的应用领域1. 温度传感器技术温度传感器技术是新型传感器技术的应用领域之一。
它可以将环境温度转换成电信号进行处理,在生产和制造业中广泛应用,如精密仪器、汽车和空调等设施都需要用到温度传感器来控制温度,确保室内温度处于正常状态。
2. 气压传感器技术气压传感器技术是新型传感器技术的应用领域之一,它可以检测气压的变化,并将其转换成电信号以便进行处理。
气压传感器的应用涉及到天气控制系统、飞机导航、气象学和气候变化等领域。
3. 生物传感器技术生物传感器技术是新型传感器技术的应用领域之一。
生物传感器技术可以检测人体或生物体内的化学物质,它使用了一些基于对体内信号和化学反应的敏感器件。
生物传感器具有快速和灵敏的特点,在临床上的应用范围很广。
三、新型传感器技术的发展前景新型传感器技术在不断发展中,其应用范围也在不断拓展。
未来的传感器技术将更加微小,更加智能化,所以说,新型传感器技术的发展前景是十分广阔的。
总之,新型传感器技术的应用前景是非常广泛的,其在物流、医疗、环保等领域都有着重要的作用,未来的人工智能、大数据和互联网等方向的进一步发展,必将推动新型传感器技术的发展和应用,探索更多应用领域,创造更多人类美好的未来。
MEMS传感器和智能传感器的发展随着科技的不断进步,传感器技术也在不断得到发展和创新。
MEMS传感器和智能传感器作为传感器技术的新兴方向,其在各个领域的应用逐渐增多,为人们的生活和工作带来了许多便利。
本文将重点介绍MEMS传感器和智能传感器的定义和原理,并分析其未来的发展趋势。
1. MEMS传感器MEMS是Micro-Electro-Mechanical Systems的缩写,即微机电系统。
MEMS传感器是一种集成了微机电系统技术的传感器,通常由微型机械部件和电子元件组成。
它利用微型机械部件感知外界环境的变化,并通过电子元件将这些变化转化为电信号。
MEMS传感器在体积小、成本低、功耗小的特点下,具有灵敏度高、响应速度快等优点,可以应用于汽车、医疗、航空航天等多个领域。
2. 智能传感器智能传感器是指将传感器与微处理器、通信模块相结合,实现智能化功能的传感器。
它除了具备传感器的基本功能外,还能够对采集到的数据进行处理和分析,并能够主动与外部设备通信。
智能传感器的出现大大提高了传感器的智能化程度,使得传感器能够更好地服务于人们的生活和工作。
MEMS传感器的工作原理是利用微型机械部件对外界环境的变化进行感知,然后将这些变化转化为电信号输出。
加速度传感器利用微机械重力加速度检测技术感知物体的运动状态,光学传感器利用微小的光学元件感知光信号的变化等。
这些微型机械部件通过微加工工艺制备成簇多结构,使得传感器具有高灵敏度和高精度的特点。
随着微加工技术和材料技术的不断成熟,MEMS传感器的制造工艺得到了极大的改进,传感器的灵敏度和精度得到了大幅提高。
在汽车、手机、医疗等领域,MEMS传感器已经得到了广泛的应用。
未来,随着生物、化工等新兴领域的发展,MEMS传感器将有望在更多领域展现出其强大的应用潜力。
智能传感器在物联网、智能家居等领域的应用已经逐渐增多。
随着人工智能和大数据技术的不断发展,智能传感器在数据处理和通信方面的能力将得到进一步提升。
传感器的新技术和应用现代科技的发展,让我们在日常生活中接触到更多的电子设备,其中最为重要的一类设备便是传感器。
传感器作为一种用于检测和测量物理量的设备,已经广泛应用于各个领域。
而在近些年,传感器技术也在不断创新和发展,为人类带来更多的便利和效益。
一、新技术1. IoT技术互联网物联网技术的发展使得传感器有了更广泛的应用。
通过将传感器与互联网相连,可以方便地把采集到的数据上传至云端,实现数据的实时监测和远程操控。
在工业生产、智能家居和城市管理等领域,IoT技术已经成为新一代的发展趋势。
2. 人工智能技术传感器与人工智能技术的结合,也为传感器的应用带来了全新的可能性。
通过人工智能技术对传感器采集的海量数据进行分析和处理,可以对物体、环境和生命进行更加深入的研究和识别。
在医疗、军事和安防等领域,人工智能技术的应用已经发挥了重要的作用。
二、应用1. 工业控制在工业领域,传感器的应用已经成为了工厂自动化控制的重要组成部分。
从温度、压力、液位等常规测量到运动控制和机器视觉等高级功能,传感器的应用范围越来越广泛。
通过传感器的实时监测和控制,工业生产可以实现自动化、高效化和低下成本的目的。
2. 智能家居智能家居的概念已经深入人心,而传感器作为智能家居的重要组成部分也在得到越来越广泛的应用。
通过传感器的监控和控制,家庭环境可以实现自动化和智能化的管理,例如温度、湿度、照明、安防等。
3. 健康监测随着人们健康意识的不断提高,传感器的应用也愈加广泛。
现在的健康监测器已经可以用传感器采集体温、心率、血压、血氧等数据,实现对健康状况的实时监测和预警。
在医疗、体育和健康管理等领域,传感器的应用正发挥着越来越重要的作用。
结语传感器技术的不断创新和发展,让传感器的应用范围越来越广泛。
未来,我们有理由相信,在传感器技术的推进下,人类的生产、生活和健康将会得到越来越多的改善和提升。
传感器新技术的发展
传感器是一种能将物理量、化学量、生物量等转换成电信号的器件。
输出信号有不同形式,如电压、电流、频率、脉冲等,能满足信息传输、处理、记录、显示、控制要求,是自动检测系统和自动控制系统中不可缺少的元件。
如果把计算机比作大脑,那么传感器则相当于五官,传感器能正确感受被测量并转换成相应输出量,对系统的质量起决定性作用。
自动化程度越高,系统对传感器要求越高。
在今天的信息时代里,信息产业包括信息采集、传输、处理三部分,即传感技术、通信技术、计算机技术。
现代的计算机技术和通信技术由于超大规模集成电路的飞速发展,而已经充分发达后,不仅对传感器的精度、可靠性、响应速度、获取的信息量要求越来越高,还要求其成本低廉且使用方便。
显然传统传感器因功能、特性、体积、成本等已难以满足而逐渐被淘汰。
世界许多发达国家都在加快对传感器新技术的研究与开发,并且都已取得极大的突破。
如今传感器新技术的发展,主要有以下几个方面:
一、发现并利用新现象
利用物理现象、化学反应、生物效应作为传感器原理,所以研究发现新现象与新效应是传感器技术发展的重要工作,是研究开发新型传感器的基础。
日本夏普公司利用超导技术研制成功高温超导磁性传感器,是传感器技术的重大突破,其灵敏度高,仅次于超导量子干涉器件。
它的制造工艺远比超导量子干涉器件简单。
可用于磁成像技术,有广泛推广价值。
利用抗体和抗原在电极表面上相遇复合时,会引起电极电位的变化,利用这一现象可制出免疫传感器。
用这种抗体制成的免疫传感器可对某生物体内是否有这种抗原作检查。
如用肝炎病毒抗体可检查某人是否患有肝炎,起到快速、准确作用。
美国加州大学巳研制出这类传感器。
二、利用新材料
传感器材料是传感器技术的重要基础,由于材料科学进步,人们可制造出各种新型传感器。
例如用高分子聚合物薄膜制成温度传感器;光导纤维能制成压力、流量、温度、位移等多种传感器;用陶瓷制成压力传感器。
高分子聚合物能随周围环境的相对湿度大小成比例地吸附和释放水分子。
高分子电介常数小,水分子能提高聚合物的介电常数。
将高分子电介质做成电容器,测定电容容量的变化,即可得出相对湿度。
利用这个原理制成等离子聚合法聚苯乙烯薄膜温度传感器,其有以下特点:
•测湿范围宽;
•温度范围宽,可达-400℃~+1500℃;
•响应速度快,小于1S;
•尺寸小,可用于小空间测湿;
•温度系数小。
陶瓷电容式压力传感器是一种无中介液的干式压力传感器。
采用先进的陶瓷技术,厚膜电子技术,其技术性能稳定,年漂移量小于0.1%F.S,温漂小于
±0.15%/10K,抗过载强,可达量程的数百倍。
测量范围可从0到60mpa。
德国E+H 公司和美国Kavlio公司产品处于领先地位。
光导纤维的应用是传感材料的重大突破,其最早用于光通信技术。
在光通信利用中发现当温度、压力、电场、磁场等环境条件变化时,引起光纤传输的光波强度、相位、频率、偏振态等变化,测量光波量的变化,就可知道导致这些光波量变化的温度、压力、电场、磁场等物理量的大小,利用这些原理可研制出光导纤维传感器。
光纤传感器与传统传感器相比有许多特点:灵敏度高,结构简单、体积小、耐腐蚀、电绝缘性好、光路可弯曲、便于实现遥测等。
光纤传感器日本处于先进水平。
如Idec Izumi公司和Sunx公司。
光纤传感受器与集成光路技术相结合,加速光纤传感器技术的发展。
将集成光路器件代替原有光学元件和无源光器件,使光纤传感器有高的带宽、低的信号处理电压,可靠性高,成本低。
三、微机械加工技术
半导体技术中的加工方法有氧化、光刻、扩散、沉积、平面电子工艺,各向导性腐蚀及蒸镀,溅射薄膜等,这些都已引进到传感器制造。
因而产生了各种新型传感器,如利用半导体技术制造出硅微传感器,利用薄膜工艺制造出快速响应的气敏、湿敏传感器,利用溅射薄膜工艺制压力传感器等。
日本横河公司利用各向导性腐蚀技术进行高精度三维加工,制成全硅谐振式压力传感器。
核心部分由感压硅膜片和硅膜片上面制作的两个谐振梁结成,两个谐振梁的频差对应不同的压力,用频率差的方法测压力,可消除环境温度等因素带来的误差。
当环境温度变化时,两个谐振梁频率和幅度变化相同,将两个频率差后,其相同变化量就能够相互抵消。
其测量最高精度可达0.01%FS。
美国Silicon Microstructure Inc.(SMI)公司开发一系列低价位,线性度在0.1%到0.65%范围内的硅微压力传感器,最低满量程为0.15psi(1KPa),其以硅为材料制成,具有独特的三维结构,轻细微机械加工,和多次蚀刻制成惠斯登电桥于硅膜片上,当硅片上方受力时,其产生变形,电阻产生压阻效应而失去电桥平衡,输出与压力成比例的电信号.象这样的硅微传感器是当今传感器发展的前沿技术,其基本特点是敏感元件体积为微米量级,是传统传感器的几十、几百分之一。
在工业控制、航空航天领域、生物医学等方面有重要的作用,如飞机上利用可减轻飞机重量,减少能源。
另一特点是能敏感微小被测量,可制成血压压力传感器。
中国航空总公司北京测控技术研究所,研制的CYJ系列溅谢膜压力传感器是采用离子溅射工艺加工成金属应变计,它克服了非金属式应变计易受温度影响的不足,具有高稳定性,适用于各种场合,被测介质范围宽,还克服了传统粘贴式带来的精度低、迟滞大、蠕变等缺点,具有精度高、可靠性高、体积小的特点,广泛用于航空、石油、化工、医疗等领域。
四、集成传感器
集成传感器的优势是传统传感器无法达到的,它不仅仅是一个简单的传感器,其将辅助电路中的元件与传感元件同时集成在一块芯片上,使之具有校准、补偿、
自诊断和网络通信的功能,它可降低成本、增加产量,美国LUCAS、NOVASENSOR 公司开发的这种血压传感器,每星期能生产1万只。
五、智能化传感器
智能化传感器是一种带微处理器的传感器,是微型计算机和传感器相结合的成果,它兼有检测、判断和信息处理功能,与传统传感器相比有很多特点:
•具有判断和信息处理功能,能对测量值进行修正、误差补偿,因而提高测量精度;
•可实现多传感器多参数测量;
•有自诊断和自校准功能,提高可靠性;
•测量数据可存取,使用方便;
•有数据通信接口,能与微型计算机直接通信。
把传感器、信号调节电路、单片机集成在一芯片上形成超大规模集成化的高级智能传感器。
美国HONY WELL公司ST-3000型智能传感器,芯片尺寸才有
3×4×2mm3,采用半导体工艺,在同一芯片上制成CPU、EPROM、静压、压差、温度等三种敏感元件。
智能化传感器的研究与开发,美国处于领先地位。
美国宇航局在开发宇宙飞船时称这种传感器为灵巧传感器(Smart Sensor),在宇宙飞船上这种传感器是非常重要的。
我国在这方面的研究与开发还很落后,主要是因为我国半导体集成电路工艺水平有限。
传感器的发展日新月异,特别是80年代人类由高度工业化进入信息时代以来,传感器技术向更新、更高的技术发展。
美国、日本等发达国家的传感器技术发展最快,我国由于基础薄弱,传感器技术与这些发达国家相比有较大的差距。
因此,我们应该加大对传感器技术研究、开发的投入,使我国传感器技术与外国差距缩短,促进我国仪器仪表工业和自化化技术的发展。