平行线的性质教学设计 人教版(优秀教案)
- 格式:doc
- 大小:75.00 KB
- 文档页数:5
人教版七年级下册5.3.1平行线的性质教学设计一、教学背景这一章节是初中数学中的重要内容,是初中阶段固有内容之一。
本节内容是平行线的性质,是进一步提高学生的几何学习水平,培养学生学习几何并进行运用的能力,为高中学习打下基础。
二、教学目标1.了解平行线及其性质2.掌握平行线的判定方法3.理解平行线性质在实践中的运用三、教学方法1.启发法。
通过生活实例与学生交流、讨论、分析问题,引导学生主动发现规律,理解和掌握性质。
2.演示法。
通过画图、举例、模拟等方式,使学生清楚而直观地感受到性质的本质和基本概念。
3.交互式教学法。
在课堂授课中,让学生发现问题,教师及时给予引导和反馈,互相探讨,加深印象。
四、教学过程1. 导入1.蓝色背景幻灯片呈现问题:一本书和一支笔在实物上是不可能同时摆放在同一个平面内的。
请用你的观察能力,试着解释一下。
2.学生进行思考和讨论,教师及时引导,引出平行性质,并与上节课内容对接。
2. 深化1.展示两条不相交的直线和一条横截直线的图形,引导学生描绘其几何形状。
2.教师引导学生观察直线和横线的相对位置。
学生回答“这两条直线可能会有什么关系?” 并予以深入探究。
3.教师呈现两条相交的直线的图形。
蓝色背景幻灯片呈现问题:如何判断两条直线平行?4.启发式教学清晰阐明平行性质,加深对平行性质的认识。
学生自主探索得到假设,教师引导得出定义。
5.通过生活实例和多个角度的讲解掌握平行线的判定方法,梳理学习过的知识点,梳理几何优秀思路,解决学生的疑惑与困惑。
3. 总结1.举例,让学生思考这些性质的应用场景和方法。
2.教师引导学生用不同的方法总结、概括平行性质。
4. 课堂作业请学生人自己动手从生活中找出化解问题的方法,更加深入理解平行线性质,提高维度。
五、教学评估通过课堂练习、课堂互动、互相探讨、小组交流以及单独创造等多种评价方式,检验学生学习效果。
教师班长进行作业的检查和评估,判定教学质量和效果。
人教版数学七年级下册5.3.1《平行线的性质》教学设计3一. 教材分析《平行线的性质》是人教版数学七年级下册第五章第三节的内容,本节课主要让学生掌握平行线的性质,通过探究同位角、内错角和同旁内角的关系,引导学生理解并证明平行线的性质。
本节课的内容是学生进一步认识直线和圆的基础,对于学生形成完善的空间观念和几何思维具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了直线、射线、线段的概念,以及平行线的概念和判定。
在此基础上,学生需要进一步探究平行线的性质,理解并证明同位角、内错角和同旁内角的关系。
由于本节课的内容较为抽象,学生可能对一些概念和证明过程的理解存在困难,因此,在教学过程中,教师需要关注学生的学习情况,及时解答学生的疑问,引导学生进行思考和探究。
三. 教学目标1.理解平行线的性质,掌握同位角、内错角和同旁内角的关系。
2.能够运用平行线的性质解决一些实际问题。
3.培养学生的空间观念和几何思维,提高学生的动手操作能力和数学表达能力。
四. 教学重难点1.平行线的性质2.同位角、内错角和同旁内角的关系3.运用平行线的性质解决实际问题五. 教学方法1.引导探究法:教师引导学生通过观察、操作、思考、讨论等方式,自主探究平行线的性质,培养学生的探究能力和合作精神。
2.案例分析法:教师通过列举实例,让学生理解和运用平行线的性质,提高学生的应用能力。
3.讲解法:教师对一些难点和重点内容进行讲解,帮助学生理解和掌握知识。
六. 教学准备1.教学课件:制作课件,展示平行线的性质和相关的实例。
2.教学素材:准备一些与平行线性质相关的习题,用于巩固和拓展学生的知识。
3.板书设计:设计板书,突出本节课的重点内容。
七. 教学过程1.导入(5分钟)教师通过复习直线、射线、线段的概念,以及平行线的概念和判定,为学生引入本节课的内容。
2.呈现(10分钟)教师展示课件,引导学生观察一些图片,如铁路、公路等,让学生找出其中的平行线。
5.3.1平行线的性质教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级下册(以下统称“教材”)第五章“相交线与平行线”5.3.1平行线的性质,内容包括:平行线的性质;平行线的判定和性质综合应用.2.内容解析《平行线的性质》人教版七年级数学下册的内容,本节课是在学生已经学习了同位角、内错角、同旁内角和平行线的判定的基础上进行教学的.这节课是空间与图形领域的基础知识,在以后的学习中经常要用到.它为今后三角形内角和、三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要。
在这节课的学习中,我先组织学生利用手中的量角器对“两直线平行,同位角相等”这一性质进行验证,再通过课件的演示对学生进行讲解,使学生加深对这一知识点的理解.基于以上分析,确定本节课的教学重点为:掌握平行线的性质,会运用两条直线是平行关系判断角相等或互补二、目标和目标解析1.目标(1)掌握平行线的性质,会运用两条直线是平行关系判断角相等或互补;(2)能够根据平行线的性质进行简单的推理.2.目标解析探索并掌握平行线的性质;能用平行线的性质定理进行简单的计算、证明;知道对平行线的性质和判定进行的区别;经历探索直线平行的性质的过程掌握平行线的三条性质,并能用它们进行简单的推理和计算;经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力;通过生活实际让学生自己发现问题、提出问题,然后进行建模解决问题;通过对平行线性质的探究,使学生初步认识数学与现实生活的密切联系;通过师生的共同活动,促使学生在学习活动中培养良好的情感、合作交流、主动参与的意识,在独立思考的同时能够认识他人.三、教学问题诊断分析在本节课学习之前,学生已经学习了平行线的判定,了解到研究平行线与两条直线被第三条直线所截所形成的角,学生很自然地会想到研究平行线性质也要研究同位角、内错角、同旁内角的关系,所以本节课定理的学习,学生学起来会比较轻松.但独立思考和探究能力还有待培养和提高.从认知结构的角度看,学生已经具备一定的生活经验和数学活动经验,并且对基本几何图形有一定的认识.学生已经学了平行线的判定,具备了探究平行线性质的基础,但在逻辑思维和合作交流的意识方面发展不够均衡.重视学生的自主探究和合作交流以及创新意识的培养,充分利用七年级学生好奇、好强、好胜的心理特点,激发学生勇于探索和合作交流的学习气氛.基于以上学情分析,确定本节课的教学难点为:平行线的判定和性质综合应用.四、教学过程设计复习回顾根据右图,填空:①如果∠1=∠C,那么____∥____()②如果∠1=∠B,那么____∥____()③如果∠2+∠B=180°,那么____∥____()问题:通过上题可知平行线的判定方法是什么?思考:反过来,如果两条直线平行,同位角、内错角、同旁内角各有什么关系呢?合作探究探究:利用坐标纸上的直线或者用直尺和三角尺画两条平行线a∥b,然后,画一条截线c与这两条平行线相交,度量所形成的8个角的度数,把结果填入下表:猜一猜:两条平行线被第三条直线所截,同位角______,内错角______,同旁内角______.能力提升平行线的性质性质1两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.性质2两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.性质3两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.几何语言:性质1:∵a∥b∴∠1=∠3性质2:∵a∥b∴∠2=∠4性质3:∵a∥b∴∠2+∠3=180°自学导航思考:如图,你能根据性质1,说出性质2成立的道理吗?∵a∥b(已知)∴∠1=∠2(_______________________)又∵∠1=____(对顶角相等)∴∠2=∠3(_________)如图,你能根据性质1,说出性质3成立的道理吗?∵a∥b(已知)∴∠1=∠2(两直线平行,同位角相等)又∵∠1+∠3=180°(邻补角定义)∴∠2+∠3=180°(等量代换)能力提升思考:平行线三个性质的条件是什么?结论是什么?它与判定有什么区别?考点解析考点1:平行线的性质1例1.如图,D,E,F分别是三角形ABC三条边上的点,EF//AC,DF//AB,∠B=45°,∠C=60°.则∠EFD等于()A.80°B.75°C.70°D.65°解析:∵EF//AC,∴∠EFB=∠C=60°(两直线平行,同位角相等)∵DF//AB,∴∠DFC=∠B=45°(两直线平行,同位角相等)∴∠EFD=180°-∠EFB-∠DFC=180°-60°-45°=75°.【迁移应用】1.如图,已知直线a//b,c为截线,若∠1=60°,则∠2的度数是()A.30°B.60°C.120°D.150°2.如图,直线a//b,将一把三角尺的直角顶点放在直线b上,若∠1=50°,则∠2的度数是()A.20°B.30°C.40°D.50°3.如图,已知AB//CD,BC是∠ABD的平分线,若∠2=64°,则∠3=______.考点2:平行线的性质2例2.如图,已知AD//BC,∠B=40°,∠DEC=70°,求∠BDE的度数.解:∵AD//BC,∠B=40°,∠DEC=70°∴∠ADB=∠B=40°,∠ADE=∠DEC=70°(两直线平行,内错角相等)∴∠BDE=∠ADE-∠ADB=70°-40°=30°【迁移应用】1.如图,平行线AB,CD被直线EF所截,FG平分∠EFD,若∠EFD=70°则∠EGF的度数是()A.35°B.55°C.70°D.110°2.如图,直线a//b,点C,A分别在直线a,b上,AC⊥BC,若∠1=50°,则∠2的度数为______.3.如图,AB//CD//EF,∠A=54°,∠C=26°,则∠AFC=_______.考点3:平行线的性质3例3.如图,若AB//DE,BC//EF,求∠B+∠E的度数.解:∵AB//DE(已知),∴∠B=∠BCE(两直线平行,内错角相等)∵BC//EF(已知),∴∠BCE+∠E=180°(两直线平行,同旁内角互补)∴∠B+∠E=180°(等量代换)【迁移应用】1.如图,直线m//n,其中∠1=40°,则∠2的度数为()A.130°B.140°C.150°D.160°2.如图,直线a//b,直线c分别交a,b于点A,C,点B在直线b上,AB⊥AC.若∠1=130,则∠2的度数是()A.30°B.40°C.50°D.70°3.如图,已知AB//CD,∠1=∠2,∠EFD=56°,求∠D的度数.解:∵AB//CD,∠EFD=56°∴∠BEF=180°-∠EFD=124°∵∠1=∠2∴∠2=12∠BEF=62°∵AB//CD∴∠D=∠2=62°考点4:利用平行线的性质解决折叠问题例4.如图,将一张长方形纸片(其中AD//BC)沿EF折叠后,使得点A,B分别落在点A′B′的位置.若∠2=56°,求∠1的度数.解:∵AD//BC,∴∠B'FC=∠2=56°(两直线平行,同位角相等)由折叠的性质可知∠1=∠B′FE,又∠1+∠B'FE+∠B′FC=180°∴∠1=∠B'FE=12(80°-∠B′FC)=12×(180°-56°)=62°.【迁移应用】1.如图,将一长方形纸片沿AB折叠,已知∠ABC=36°,则∠D1AD=()A.48°B.66°C.72°D.78°2.如图,把一张对边平行的纸条沿EF折叠,点B,C分别落在点H,G处.若∠FEH=124°,则∠1=______.3.如图,把一张长方形纸片ABCD沿EF折叠,点D,C分别落在点D′,C′的位置上,ED′与BC相交于点G.若∠EFG=55°,求∠1与∠2的度数.解:∵∠EFG=55°,AD//BC,∴∠DEF=∠EFG=55°由折叠的性质得∠DEG=2∠DEF=110°∴∠1=180°-∠DEG=70°∵AD//BC∴∠2=∠DEG=110°考点5:利用平行线的性质解决实际问题例5.一个大门栏杆的平面示意图如图所示,BA垂直于地面AE于点A,CD平行于地面AE.若∠BCD=10°则∠ABC=_______.【解析】如图,过点B作BG//CD,∴∠BCD+∠CBG=180°∴∠CBG=180°-∠BCD=180°-150°=30°∵BA⊥AE,∴∠BAE=90°∵CD//AE,BG//CD,∴BG//AE∴∠ABG+∠BAE=180°∴∠ABG=180°-∠BAE=90°∴∠ABC=∠ABG+∠CBG=90°+30°=120°.【迁移应用】1.如图是超市购物车的侧面示意图,扶手AB与车底CD平行,∠1=100°,∠2=48°,则∠3的度数是()A.52°B.48°C.42°D.62°2.如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB平行,当∠ABM=40°时,∠DCN的度数为(提示:由反射角=入射角,可得∠OBC=∠ABM,∠DCN=∠BCO)() A.40° B.50° C.60° D.80°3.如图是我们生活中经常接触的小刀,刀柄是一个直角梯形(挖去一个半圆),刀片上下是平行的,转动刀片时会形成∠1,∠2,则∠1+∠2=______.考点6:平行线的判定和性质的综合应用例6.如图,已知CE⊥AB,MN⊥AB,∠EDC+∠ACB=180°.试说明:∠1=∠2.解:∵CE⊥AB,MN⊥AB,∴∠CEB=∠MNB=90°,∴MN//CE,∴∠2=∠BCE.∵∠EDC+∠ACB=180°,∴ED//BC,∴∠1=∠BCE,∴∠1=∠2.例7.如图,点F在线段AB上,点E,G在线段CD上,AB//CD.(1)若BC平分∠ABD,∠D=100°,求∠ABC的度数;(2)若∠1=∠2,试说明:AE∥FG.解:(1)∵AB//CD,∴∠ABD+∠D=180°∵∠D=100°,∴∠ABD=180°-∠D=80°.∵BC平分∠ABD∴∠ABC=∠ABD=40°(2)∵AB//CD∴∠1=∠FGC.又∠1=∠2∴∠FCC=∠2∴AE//FG.【迁移应用】1.如图,点Р在直线CD上,∠BAP+∠APD=180°,∠1=∠2.试说明:∠E=∠F.解:∠BAP+∠APD=180°,∴AB//CD,∴∠BAP=∠APC.又∠1=∠2,∠3=∠BAP-∠1,∠4=∠APC-∠2,∴∠3=∠4,∴AE//PF,∴∠E=∠F.2.如图,AB//CD,点F在CD上,延长BC,AF交于点E,∠1=∠2,∠3=∠4.试说明:AD//BE.解:∵AB//CD,∴∠4=∠BAE∵∠3=∠4∴∠3=∠BAE∵∠1=∠2∴∠1+∠CAE=∠2+∠CAE,即∠BAE=∠CAD,∴∠3=∠CAD∴AD//BE.3.如图,∠1+∠2=180°.(1)试说明:AB∥EF;(2)若CD平分∠ACB,∠DEF=∠A,∠BED=60°,求∠EDF的度数.解:(1)∵∠1与∠EFD是邻补角,∴∠1+∠EFD=180°又∠1+∠2=180°∴∠2=∠EFD∴AB//EF.(2)∵AB//EF,∴∠DEF=∠BDE.又∠DEF=∠A∴∠A=∠BDE∴DE//AC∴∠ACB=∠BED=60°∵CD平分∠ACB∴∠ACD=1∠ACB=30°2∵DE//AC∴∠EDF=∠ACD=30°.。
《平行线的性质》优秀教案一、教学目标1. 知识与技能:使学生掌握平行线的性质,能够运用平行线的性质解决实际问题。
2. 过程与方法:通过观察、操作、推理等过程,培养学生的空间观念和逻辑思维能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和创新精神。
二、教学内容1. 平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
2. 平行线的性质:(1)平行线上的对应角相等。
(2)平行线之间的夹角相等。
(3)平行线与截线所形成的内错角相等。
(4)平行线与截线所形成的同位角相等。
三、教学重点与难点1. 教学重点:平行线的性质及其应用。
2. 教学难点:平行线性质的推理和证明。
四、教学方法1. 采用问题驱动法,引导学生主动探究平行线的性质。
2. 利用几何画板等软件,直观展示平行线的性质。
3. 组织小组讨论,培养学生的合作能力。
五、教学过程1. 导入新课:通过生活中的实例,引出平行线的概念。
2. 自主探究:学生独立观察、操作,发现平行线的性质。
3. 小组交流:学生之间分享探究成果,讨论平行线性质的应用。
4. 教师讲解:总结平行线的性质,并进行推理和证明。
5. 练习巩固:设计相关练习题,让学生运用平行线的性质解决问题。
6. 课堂小结:回顾本节课所学内容,总结平行线的性质及应用。
7. 作业布置:布置适量作业,巩固所学知识。
六、教学策略1. 实践操作:提供实物模型和几何画板,让学生动手操作,加深对平行线性质的理解。
2. 案例分析:通过分析实际问题,让学生学会将平行线的性质应用于解决生活中的问题。
3. 思维训练:设计富有挑战性的思考题,培养学生的逻辑思维和解决问题的能力。
七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 作业完成情况:检查学生作业的完成质量,评估学生对平行线性质的掌握程度。
3. 单元测试:进行单元测试,全面评估学生对平行线性质的理解和应用能力。
人教版初中数学平行线的性质教案第一篇:人教版初中数学平行线的性质教案2.3 平行线的性质一、教材分析:本节课是人民教育出版社义务教育课程标准实验教科书(五四学制)七年级上册第2章第3节平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是‚空间与图形‛的重要组成部分。
二、教学目标:1.知识与技能:掌握平行线的性质,能应用性质解决相关问题。
数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
2.解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。
3.情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神。
三、教学重、难点:重点:平行线的性质难点:‚性质1‛的探究过程四、教学方法:‚引导发现法‛与‚动像探索法‛五、教具、学具:教具:多媒体课件学具:三角板、量角器。
六、教学媒体:大屏幕、实物投影七、教学过程:(一)创设情境,设疑激思:1.播放一组幻灯片。
内容:①火车行驶在铁轨上;②游泳池;③横格纸。
2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?学生活动:思考回答。
①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;教师:首先肯定学生的回答,然后提出问题。
问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?引出课题——平行线的性质。
(二)数形结合,探究性质 1.画图探究,归纳猜想任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图)。
问题一:指出图中的同位角,并度量这些角,把结果填入下表:第一组第二组第三组第四组同位角∠1 ∠5 角的度数数量关系学生活动:画图——度量——填表——猜想结论:两直线平行,同位角相等。
问题二:再画出一条截线d,看你的猜想结论是否仍然成立?学生:探究、讨论,最后得出结论:仍然成立。
人教版数学七年级下册教案5.3.1《平行线的性质》一. 教材分析《平行线的性质》是人教版数学七年级下册第5章第3节的内容,本节课主要让学生掌握平行线的性质。
教材通过实例引入平行线的性质,然后引导学生通过观察、猜想、证明等过程,掌握平行线的性质。
教材内容紧密联系学生的生活实际,激发学生的学习兴趣,培养学生观察、思考、动手操作的能力。
二. 学情分析学生在学习本节课之前,已经学习了直线、射线、线段的概念,掌握了直线和射线的性质,能熟练画直线和射线。
但学生对平行线的性质认识不足,需要通过实例来引导他们观察、思考、总结平行线的性质。
三. 教学目标1.知识与技能:让学生掌握平行线的性质,能运用平行线的性质解决实际问题。
2.过程与方法:培养学生观察、思考、动手操作的能力,提高学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神。
四. 教学重难点1.重点:平行线的性质。
2.难点:如何引导学生观察、思考、总结平行线的性质。
五. 教学方法1.采用问题驱动法,引导学生观察、思考、总结平行线的性质。
2.利用小组合作学习,培养学生团队协作精神,提高学生解决问题的能力。
3.通过实例讲解,使学生能将所学知识应用于实际问题中。
六. 教学准备1.准备相关课件,展示平行线的性质。
2.准备实例,让学生观察、思考、总结平行线的性质。
3.准备练习题,巩固所学知识。
七. 教学过程导入(5分钟)教师通过展示实际生活中的平行线例子,如教室里的黑板、书桌、地板等,引导学生观察并提问:“你们能发现这些平行线有什么特点吗?”学生通过观察,激发学习兴趣,发现问题。
呈现(10分钟)教师展示课件,呈现平行线的性质,引导学生猜想并提问:“你们认为平行线有哪些性质呢?”学生通过观察、思考,提出猜想。
操练(15分钟)教师引导学生进行小组合作学习,让学生通过实际操作,证明平行线的性质。
教师巡回指导,解答学生疑问。
巩固(10分钟)教师呈现练习题,让学生运用所学知识解决问题。
《平行线的性质》优秀教案一、教学目标1. 让学生理解平行线的概念,掌握平行线的性质。
2. 培养学生观察、思考、归纳的能力,提高学生解决实际问题的能力。
3. 培养学生合作学习、积极参与的精神,提高学生的数学素养。
二、教学内容1. 平行线的概念:在同一平面内,永不相交的两条直线叫做平行线。
2. 平行线的性质:(1)平行线互相平行。
(2)平行线与横穿它们的直线相交,交角相等。
(3)平行线之间的距离相等。
三、教学重点与难点1. 教学重点:平行线的概念及性质。
2. 教学难点:平行线性质的理解和应用。
四、教学方法1. 采用直观演示法,让学生通过观察、实践,理解平行线的性质。
2. 采用归纳法,引导学生通过观察、讨论,总结出平行线的性质。
3. 运用案例分析法,让学生通过解决实际问题,掌握平行线的性质。
五、教学步骤1. 导入新课:利用图片、生活实例等方式,引导学生了解平行线的概念。
2. 探究平行线的性质:(1)让学生自主尝试画出平行线,观察并总结平行线的性质。
(2)分组讨论,分享各组的发现,引导学生归纳出平行线的性质。
3. 讲解与应用:(1)教师讲解平行线的性质,并结合实例进行解释。
(2)设置练习题,让学生运用平行线的性质解决问题。
4. 总结与拓展:(1)对本节课所学内容进行总结,加深学生对平行线性质的理解。
(2)提出拓展问题,激发学生的学习兴趣,为后续学习做铺垫。
5. 布置作业:设计适量作业,巩固学生对平行线性质的掌握。
六、教学评估1. 课堂提问:通过提问了解学生对平行线概念和性质的理解程度。
2. 练习题反馈:分析学生完成练习题的情况,评估学生对平行线性质的掌握情况。
3. 作业批改:检查学生作业,了解学生对课堂所学知识的巩固程度。
七、教学反思1. 教师总结课堂教学效果,反思教学方法是否适合学生。
2. 针对学生的学习情况,调整教学策略,提高教学效果。
3. 关注学生的学习需求,不断优化教学内容,提升教学质量。
八、教学拓展1. 利用多媒体展示平行线的实际应用场景,让学生感受数学与生活的联系。
人教版七年级数学下册5.3.1.1《平行线的性质》教学设计一. 教材分析《平行线的性质》是人教版七年级数学下册第五章第三节的第一课时内容。
本节课的主要内容是让学生掌握平行线的性质,包括同位角相等、内错角相等、同旁内角互补等。
这些性质是初中数学中的重要知识点,对于学生来说具有很高的实用价值。
在教材中,这些性质是通过实例和图形来进行说明和论证的,使得学生能够在理解的基础上掌握这些性质。
二. 学情分析学生在学习本节课之前,已经学习了直线、射线、线段等基本概念,对于图形的认识和基本的几何知识已经有了一定的基础。
但是,对于平行线的性质,学生可能还比较陌生,需要通过实例和图形来进行理解和掌握。
另外,学生可能对于一些专业术语如“同位角”、“内错角”、“同旁内角”等还不太熟悉,需要在课堂上进行讲解和强化。
三. 教学目标1.知识与技能:让学生掌握平行线的性质,包括同位角相等、内错角相等、同旁内角互补等。
2.过程与方法:通过实例和图形,让学生理解并证明平行线的性质。
3.情感态度与价值观:培养学生的观察能力、思考能力和解决问题的能力,激发学生对数学的兴趣。
四. 教学重难点1.重点:让学生掌握平行线的性质。
2.难点:让学生理解并证明平行线的性质。
五. 教学方法1.情境教学法:通过实例和图形,引导学生观察、思考和解决问题。
2.小组合作学习:让学生在小组内进行讨论和交流,共同解决问题。
3.启发式教学:教师提出问题,引导学生进行思考和回答。
六. 教学准备1.教学课件:制作相关的课件,包括实例、图形、动画等,以便于进行教学展示。
2.教学素材:准备一些相关的实例和图形,以便于进行教学演示。
3.练习题:准备一些练习题,以便于进行课堂巩固和家庭作业的布置。
七. 教学过程1.导入(5分钟)通过一个实际问题引出平行线的性质,激发学生的兴趣。
例如,讲解一个关于道路规划的问题,需要知道两条平行线的性质。
2.呈现(10分钟)通过课件展示平行线的性质,包括同位角相等、内错角相等、同旁内角互补等。
《平行线的性质》(第一课时教学设计)教学分析:(一)教学内容:平行线的性质是空间与图形领域的基础知识。
在以后的学习中经常要用到,这部分内容也是后续内容学习的基础,不但为三角形内角和定理的证明提供了转化的方法,而且为今后学习三角形全等、三角形相似等知识内容奠定了理论基础。
同时本节课学习之前,学生已经了解了平行线的概念以及平行线的判定方法,本节内容则是在原有知识的基础上进行进一步的探究,去发现两条平行线被第三条直线所截,截得的同位角、内错角、同旁内角之间存在着怎样的联系。
综合来看,平行线的性质在教学内容中起着承上启下的基础作用。
(二)教学目标:根据数学课程内容标准要求及教学内容的特点,以及学生的认知水平,确定本节课的教学目标如下:1、理解平行线的性质,掌握他们的图形语言、文字语言、符号语言,并灵活的进行实际应用。
2、经历观察、实验、猜想、验证等数学活动,培养他们分析问题和解决问题的能力。
3、体会几何知识来源于实践并反作用于实践,认识事物的规律是从特殊到一般,再从一般到特殊等辩证唯物主义观点。
(三)教学重、难点分析:平行线的性质是后续知识内容学习的基础,让学生通过数学活动来发现结论,经历知识的“再发现”过程,可以增强学生对平行线性质的认识和理解,培养学生多发面的能力。
因此我将本节课的重点确定为:理解并应用平行线的性质。
由于学生刚刚接触平面图形的相关知识,对于数学活动的方法及思路还不够清晰,在探究时容易出现思维混乱,主题不明。
因此我将本节课的难点确定为:探究平行线的性质。
(四)教学辅助手段利用多媒体(几何画板、实物投影)、学案进行辅助教学第二部分:教学设计:下面各小题填空:第三部分:教学评价:本节课通过回忆已学知识,从而引入新课,衔接得当。
再通过在各环节设置一系列问题,让学生能围绕重、难点展开思考、讨论,进行学习。
在设计上,强调自主学习、注重合作交流,让学生与学生间的交流活动在实践探索过程中进行,使他们通过动手实践、观察分析、合理猜想、合作交流解决问题体验并感悟平行线的性质,使他们在探索过程中感受到学习的快乐,真正成为学习的主人,达到突出重点突破难点的目的。
课题:5.3.1平行线的性质(一)教学任务分析知识技能1.初步掌握平行线的三条基本性质;. 理解并掌握平行线的性质的探究过程。
数学思考通过学生自己探究的过程,使学生更加容易理解平行线的三条基本性质解决问题结合从问题中得出的结论,使学生逐步形成用探究的思想和方法来解决学习中遇到的各种各样的问题。
教学目标情感态度从思考的问题引入激发学生的学习兴趣;使学生通过自己探究得到结论,新情境引入新问题,使学生的探究欲望得到激发。
重点. 学生通过探究学习自己得到结论;. 学生对平行线性质的准确理解.难点. 平行线的判定与性质的区别;. 学会写规范的证明推理过程.板书设计5.3.1平行线的性质(一)一.思考问题四.试一试二.探究问题三.平行线的性质五.练习课后反思教学过程设计问题与情境师生行为设计意图展示问题 利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行。
反过来,如果两条直线平行,同位角、内错角、同旁内角各有什么关系呢?87654321dc ba 度量这些角,把结果填入下表:角∠∠∠∠度数角∠∠∠∠度数各对同位角、内错角、同旁内角的度数之间有什么关系?写出你的猜想:两条平行线被第三条直线所皆,同位角,内错角,同旁内角.再任意画一条截线,同样度量并计算各个角的度数,你的猜想还成立吗?请你总结一下有什么规律?学生思考并讨论学生探究利用坐标纸上的直线或者用直尺和三角尺画两条平行线∥,然后,画一条截线与这两条平行线相交,标出这些角.通过提出的问题,使学生自己思考由两条直线平行可以得到有关同位角、内错角、同旁内角的哪些结论。
训练学生的思维能力训练学生的动手能力及观察总结的能力教学过程设计问题与情境师生行为设计意图得出结论平行线的性质:性质两条平行线被第三条直线所截,同位角相等。
性质两条平行线被第三条直线所截,内错角相等。
性质两条平行线被第三条直线所截,同旁内角相等。
以上结论可以简记为:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角相等。
《平行线的性质》教案一、教学目标:知识与技能:1. 学生能够理解平行线的定义和性质;2. 学生能够运用平行线的性质解决实际问题。
过程与方法:1. 学生通过观察、实验和推理,探索平行线的性质;2. 学生能够运用归纳和演绎的方法,证明平行线的性质。
情感态度价值观:1. 学生培养对数学的兴趣和好奇心;2. 学生培养合作和交流的能力。
二、教学重点:平行线的性质三、教学难点:平行线的性质的证明和应用四、教学准备:课件、黑板、粉笔、直线模型、平行线模型五、教学过程:1. 导入:教师通过展示直线和平行线的模型,引导学生回顾直线的定义和平行线的定义。
2. 探索平行线的性质:教师引导学生观察平行线模型,让学生自己发现平行线的性质。
学生可以分组讨论,分享自己的发现。
3. 证明平行线的性质:教师引导学生运用归纳和演绎的方法,证明平行线的性质。
学生可以分组讨论,共同完成证明过程。
4. 应用平行线的性质:教师给出实际问题,让学生运用平行线的性质解决问题。
学生可以独立思考,也可以分组讨论。
5. 总结:教师引导学生总结平行线的性质,并强调其在几何学中的应用。
6. 作业布置:教师布置相关的练习题,让学生巩固所学知识。
7. 板书设计:平行线的性质同一平面内,不相交的两条直线叫做平行线。
平行线之间的距离相等。
平行线上的对应角相等。
平行线上的内错角相等。
平行线上的同位角相等。
六、教学反思:教师在课后进行教学反思,分析学生的学习情况,教学效果,以及可能需要改进的地方。
教师可以根据学生的作业完成情况和课堂表现来进行评估。
七、评价与反馈:教师对学生的学习情况进行评价,包括学生的理解程度、解决问题的能力、合作交流的能力等。
教师可以通过考试、作业、课堂表现等方式来进行评价。
教师需要给予学生及时的反馈,帮助学生提高。
八、拓展与延伸:教师可以给学生提供一些拓展和延伸的题目,帮助学生深入理解平行线的性质,并能够灵活运用。
这些题目可以包括证明题、应用题等,难度可以适当增加。
人教版七年级数学(下册)第五章相交线与平行线5.3.1 平行线的性质(教案设计)信阳市罗山县第四中学【教学目标】1、知识与技能:使学生熟练掌握两条平行线具有的性质,并根据直线的平行关系得到角之间的关系;2、过程与方法:引导学生通过动手实践、观察、发现,学会逆向思考,掌握两条直线平行时同位角、内错角和同旁内角的特点,并初步学会对照着图形,说明几何推理过程.3、情感态度与价值观:培养学生的探索精神和动手能力,提高学习数学的兴趣.【教学重难点】重点:引导学生通过动手实践、观察、发现平行线的性质并掌握两条直线平行时同位角、内错角和同旁内角的特点;难点:培养学生初步掌握几何推理的能力.【教学方法】启发式教学、多媒体辅助教学【教学过程】一、回顾与思考平行线的判定方法:思考:反过来,如果两条直线平行, 同位角、内错角、同旁内角各有什么关系呢?二、合作交流,探索发现合作交流11、画一画:学生利用坐标纸上的直线,或者用直尺和三角板画两条平行线a//b,再画一条截线c与a、b相交,标出如图所示的角.2、猜一猜:观察∠1~ ∠8中,哪些是同位角?它们的大小有什么关系?说出你的猜想:两条平行线被第三条直线所截,同位角。
3、量一量;学生使用量角器测量每一组同位角的度数并做好记录:。
1.同位角相等2.内错角相等3.同旁内角互补两直线平行(或剪一剪、拼一拼,看每组同位角是否能完全重合)4、验一验:教师通过几何画板任意改变截线c的位置,并演示对应的每组同位角均相等。
5、得出结论:,简单说成:;几何语言:6、典例示范:例1、如图,D是AB上一点,E是AC上一点,∠ADE=60°,∠B=60°,∠AED=40°.(1)DE和BC平行吗?为什么?(2)∠C是多少度?为什么?合作交流21、思考:若两直线平行,内错角之间又有怎样的数量关系?,你能运用所学知识证明你的猜想吗?如图,已知a//b,那么∠2与∠3相等吗?为什么? 2、得出结论:,简单说成:;几何语言:3、典例示范:例2、如图所示,AC∥BD,∠A=70°,∠C=50°,求∠1,∠2,∠3的度数.合作交流31、思考:类似地,已知两直线平行,同旁内角之间的数量关系是什么?2、验证猜想如图,已知a//b,那么∠2与∠4有什么关系呢?为什么?3、得出结论:,简单说成:;几何语言:4、典例示范:例3、如图,是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形的另外两个角的度数分别是多少?【知识小结】平行线的性质:(利用动画游戏的方式检验和加深学生对平行线性质的掌握)三、当堂检测(一)头脑风暴,砸蛋有奖1、判断:若一条直线垂直两条平行线中的一条,则它也垂直另一条。
平行线的性质优秀教案设计平行线的性质优秀教案设计「篇一」七年级数学下册《平行线的性质》教案范文【教学目标】1.经历从性质公理推出性质的过程;2.感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用。
【对话探索设计】〖探索1反过来也成立吗过去我们学过:如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.显然,这两个句子都是正确的。
现在换一个例子:如果一个整数个位上的数字是5,那么它一定能够被5整除.对吗?这句话反过来怎么说?对不对?结论:如果一个句子是正确的,反过来说(因果对调),就未必正确。
〖探索2上一节课,我们学过:同位角相等,两直线平行.反过来怎么说?猜一猜:它还是对的吗?〖探索3(1)用三角尺画两条平行线a、b.说一说:不利用第三条直线能画出两条平行线吗?请画出第三条直线(把它记为c),并说明判定这两条直线平行的根据(公理或定理);(2)在(1)中再画一条直线d与直线a、b都相交,找出其中的一对同位角,用量角器量出它们的度数验证你原来的猜测。
结论:两条平行线被第三条直线所截,同位角相等。
与平行线的判定公理一样,这个结论也是基本事实,即人们在长期实践中总结出来的.结论,我们把它叫做平行线的性质公理,它是平行线的第一条性质。
〖探索4如图,请画直线c截两条平行线a、b;再在图中找出一对内错角.同学们一定能从直觉判断这对内错角也是相等的.也就是说:两条平行线被第三条直线所截,内错角相等.它是平行线的第二条性质。
现在我们来试一试:如何根据性质1说出性质2成立的道理。
如图。
∵a∥b(已知)。
∴∠1=∠3(____________________)。
又∠3=________(对顶角相等)。
∴∠1=∠2(___________)。
以上过程说明了:由性质1可以得出性质2。
〖探索5我们学过判定两直线平行的第三种方法:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.(简单地说:同旁内角互补,两直线平行.)把这条定理反过来,可以简单说成_____________________。
平行线的性质优秀教案教学目标:1.掌握平行线的三条性质,能够进行简单的推理和计算。
2.发展空间观念,能有条理地思考和表达探索过程和结果,增强分析、概括、表达能力。
3.积极参与小组活动,敢于发表自己的看法,并从中获益。
理解事物既普遍联系又相互区别的辩证唯物主义思想。
教学过程:一、复回顾复同位角、内错角、同旁内角的概念及判定直线平行的条件。
复这些内容,为后面研究平行线的性质做好准备。
二、动手操作、探求新知我们要探究的问题是:如果两条直线平行,同位角、内错角、同旁内角又各有什么样的关系呢?活动内容:课本52页的“探究”部分。
如图,直线a与直线b平行。
1.测量同位角∠1和∠5的大小,它们有什么关系?图中还有其他同位角吗?它们的大小有什么关系?2.图中有几对内错角?它们的大小有什么关系?为什么?3.图中有几对同旁内角?它们的大小有什么关系?为什么?4.换另一组平行线试试,你能得到相同的结论吗?具体教学时,可把该探究细分成如下几个活动:1.先测量角的度数,把结果填入表内。
角。
∠1.∠2.∠3.∠4.∠5.∠6.∠7.∠8度数2.根据测量所得的结果作出猜想:同位角具有怎样的数量关系?内错角具有怎样的数量关系?同旁内角呢?3.验证猜测。
另外画一组平行线被第三条直线所截,同样测量并计算各角的度数,检验刚才的猜想是否成立。
如果直线a与b不平行,猜想还成立吗?4.归纳平行线的性质。
性质1:两条平行直线被第三条直线所截,同位角相等。
简称为两直线平行,同位角相等。
性质2:两条平行直线被第三条直线所截,内错角相等。
简称为两直线平行,内错角相等。
性质3:当一条直线与两条平行直线相交时,同旁内角互补。
简称为两直线平行,同旁内角互补。
三、联系XXX,综合应用如图2-18所示,一束平行光线AB射向一个水平镜面后被反射。
此时,我们可以观察到∠1等于∠2,∠3等于∠4.这是因为反射后的光线与水平镜面垂直,形成垂直的角度,使得同旁内角互补的性质得以应用。
平⾏线的性质教案⼈教版(优秀教案)《平⾏线的性质》教案平⾏线的性质(⼀)教学⽬标.经历观察、操作、想像、推理、交流等活动,进⼀步发展空间观念,推理能⼒和有条理表达能⼒。
.经历探索直线平⾏的性质的过程,掌握平⾏线的三条性质,并能⽤它们进⾏简单的推理和计算.重点、难点重点:探索并掌握平⾏线的性质,能⽤平⾏线性质进⾏简单的推理和计算.难点:能区分平⾏线的性质和判定,平⾏线的性质与判定的混合应⽤.教学过程⼀、引导学⽣逆向思维现在同学们已经掌握了利⽤同位⾓相等,或者内错⾓相等,或者同旁内⾓互补, 判定两条直线平⾏的三种⽅法.在这⼀节课⾥:⼤家把思维的指向反过来: 如果两条直线平⾏,那么同位⾓、内错⾓、同旁内⾓的数量关系⼜该如何表达?⼆、实践探究.学⽣画图活动:⽤直尺和三⾓尺画出两条平⾏线∥,再画⼀条截线与直线、相交,标出所形成的⼋个⾓(如课本图)...图中哪些⾓是同位⾓?它们具有怎样的数量关系?图中哪些⾓是内错⾓?它们具有怎样的数量关系?图中哪些⾓是同旁内⾓?它们具有怎样的数量关系?在详尽分析后,让学⽣写出猜想..学⽣验证猜测.学⽣活动:再任意画⼀条截线,同样度量并计算各个⾓的度数,你的猜想还成⽴吗?.师⽣归纳平⾏线的性质,教师板书.c b a4321平⾏线具有性质:性质:两条平⾏线被第三条直线所截,同位⾓相等,简称为两直线平⾏, 同位⾓相等.性质:两条平⾏线被第三条直线所截,内错⾓相等,简称为两直线平⾏, 内错相等.性质:两条直线按被第三条线所截,同旁内⾓互补,简称为两直线平⾏, 同旁内⾓互补.教师让学⽣结合右图,⽤符号语⾔表达平⾏线的这三条性质,教师同时板书平⾏线的性质和平⾏线的判定.平⾏线的性质平⾏线的判定因为∥, 因为∠∠, 所以∠∠所以∥. 因为∥, 因为∠∠, 所以∠∠, 所以∥. 因为∥, 因为∠∠°, 所以∠∠°, 所以∥..教师引导学⽣理清平⾏线的性质与平⾏线判定的区别. 学⽣交流后,师⽣归纳:两者的条件和结论正好相反:由⾓的数量关系(指同位⾓相等,内错⾓相等,同旁内⾓互补), 得出两条直线平⾏的论述是平⾏线的判定,这⾥⾓的关系是条件,两直线平⾏是结论.由已知的两条直线平⾏得出⾓的数量关系(指同位⾓相等,内错⾓相等, 同旁内⾓互补)的论述是平⾏线的性质,这⾥两直线平⾏是条件,⾓的关系是结论. .进⼀步研究平⾏线三条性质之间的关系.教师:⼤家能根据性质,推出性质成⽴的道理吗?结合上图,教师启发分析:考察性质、性质的结论发⽣了什么变化? 学⽣回答∠换成∠,教师再问∠与∠有什么关系?并完成说理过程,教师纠正学⽣错误,规范地给出说理过程. 因为∥,所以∠∠(两直线平⾏,同位⾓相等); ⼜∠∠(对顶⾓相等),所以∠∠.教师说明:这是有两步的说理,第⼀步推理根据平⾏线性质,第⼆步推理的条件不仅有∠∠,还有∠∠.∠∠是根据等式性质.根据等式性质得到的结论可以不写理由. 学⽣仿照以下说理,说出如何根据性质得到性质的道理. .平⾏线性质应⽤.例(课本)如图是⼀块梯形铁⽚的线全部分,量得∠°,∠°, 梯形另外两个⾓分别是多少度?教师把学⽣情况,可启发提问:①梯形这条件如何使⽤?②∠与∠、∠与∠的位置关系如何,数量关系呢?为什么? 讲解按课本.三、巩固练习 .课本练习()..补充:如图是⼀条直线,∠°,∠°,∠°,求∠的度数.E21DCBA本题综合应⽤平⾏线的判定和性质,教师要引导学⽣观察图形,考察已知⾓的数量关系,确定解题的思路. 四、作业 .课本..补充作业: ⼀、判断题..两条直线被第三条直线所截,则同旁内⾓互补.( ).两条直线被第三条直线所截,如果同旁内⾓互补,那么同位⾓相等.( )D C BA.两条平⾏线被第三条直线所截,则⼀对同旁内⾓的平分线互相平⾏.( ) ⼆、填空题..如图(),若∥,则∠∠,∠∠, ∠∠°; 若∥,则∠∠, ∠∠,∠∠°.87654321DC BAFEDC B A() () ().如图(),在甲、⼄两地之间要修⼀条笔直的公路, 从甲地测得公路的⾛向是南偏西°,甲、⼄两地同时开⼯,若⼲天后公路准确接通,则⼄地所修公路的⾛向是,因为. .因为∥∥,所以∥,理由是. .如图()∥,∠∠,则∥.说理如下: 因为∠∠,所以∥( ) ⼜∥,所以∥( ). 三、选择题..∠和∠是直线、被直线所截⽽成的内错⾓,那么∠和∠的⼤⼩关系是( ) .∠∠ .∠>∠; .∠<∠ .⽆法确定.⼀个⼈驱车前进时,两次拐弯后,按原来的相反⽅向前进, 这两次拐弯的⾓度是( ) .向右拐°,再向右拐°; .向右拐°,再向左拐° .向右拐°,再向右拐°; .向右拐°,再向左拐° 四、解答题 .如图,已知:∠°,∠°,∠°,求∠的度数.4321DCBA.如图,已知∥,∠∠,求证平分∠.E21DCB5.3.2平⾏线的性质(第课时)平⾏线的性质(⼆)教学⽬标.经历观察、操作、推理、交流等活动,进⼀步发展空间观念,推理能⼒和有条理表达能⼒. .理解两条平⾏线的距离的含义,了解命题的含义,会区分命题的题设和结论. .能够综合运⽤平⾏线性质和判定解题. 重点、难点重点:平⾏线性质和判定综合应⽤,两条平⾏的距离,命题等概念. 难点:平⾏线性质和判定灵活运⽤. 教学过程⼀、复习引⼊.平⾏线的判定⽅法有哪些?(注意:平⾏线的判定⽅法三种,另外还有平⾏公理的推论).平⾏线的性质有哪些. .完成下⾯填空.已知:如图是的延长线∥∥,若∠°,则∠, ∠,∠.⊥⊥,那么与的位置关系如何?为什么?cba⼆、进⾏新课.例已知:如上图∥⊥,直线与垂直吗?为什么?学⽣容易判断出直线与垂直.鉴于这⼀点,教师应引导学⽣思考:()要说明⊥,根据两条直线互相垂直的意义, 需要从它们所成的⾓中说明某个⾓是°,是哪⼀个⾓?通过什么途径得来?E D C B A()已知⊥,这个“形”通过哪个“数”来说理,即哪个⾓是°.()上述两⾓应该有某种直接关系,如同位⾓关系、内错⾓关系、同旁内⾓关系,你能确定它们吗? 让学⽣写出说理过程,师⽣共同评价三种不同的说理. .实践与探究()下列各图中,已知∥,∠的度数并填⼊表格.通过上述实践,FECBAFECBA() () 教师投影题⽬:学⽣依据题意,画出类似图()、图()的图形,测量并填表,并猜想:∠∠∠.在进⾏说理前,教师让学⽣思考:平⾏线的性质对解题有什么帮助? 教师视学⽣情况进⼀步引导: ①虽然∥,但是∠与∠不是同位⾓,也不是内错⾓或同旁内⾓. 不能确定它们之间关系.②∠与∠是直线、被直线所截⽽成的内错⾓,但是与不平⾏.能不能创造条件,应⽤平⾏线性质,学⽣⾃然想到过点作∥,这样就能⽤上平⾏线的性质,得到∠∠. ③如果要说明∠∠,只要说明与平⾏,你能做到这⼀点吗?以上分析后,学⽣先推理说明, 师⽣交流,教师给出说理过程.FEDCB A作∥,因为∥∥,所以∥(两条直线都与第三条直线平⾏, 这两条直线也互相平⾏). 所以∠∠(两直线平⾏,内错⾓相等).因为∥. 所以∠∠(两直线平⾏,内错⾓相等).所以∠∠∠. ()教师投影课本探究的图(图)及⽂字.①学⽣读题思考:线段1C 2C……5C 都与两条平⾏线的横线和2C 垂直吗?它们的长度相等吗?②学⽣实践操作,得出结论:线段1C 2C……5C 同时垂直于两条平⾏直线和2C,并且它们的长度相等.③师⽣给两条平⾏线的距离下定义.学⽣分清线段1C 的特征:第⼀点线段1C 两端点分别在两条平⾏线上,即它是夹在这两条平⾏线间的线段,第⼆点线段1C 同时垂直这两条平⾏线. 教师板书定义:(像线段1C)同时垂直于两条平⾏线, 并且夹在这两条平⾏线间的线段的长度,叫做这两条平⾏线的距离.④利⽤点到直线的距离来定义两条平⾏线的距离.F EDCBA教师画∥,在上任取⼀点,作⊥,垂⾜为.学⽣思考是否垂直直线?垂线段的长度是平⾏线、的距离吗? 这两个问题学⽣不难回答,教师归纳:两条平⾏线间的距离可以理解为:两条平⾏线中,⼀条直线上任意⼀点到另⼀条直线的距离. 教师强调:两条平⾏线的距离处处相等,⽽不随垂线段的位置改变⽽改变. .了解命题和它的构成.()教师给出下列语句,学⽣分析语句的特点.①如果两条直线都与第三条直线平⾏,那么这条直线也互相平⾏; ②等式两边都加同⼀个数,结果仍是等式; ③对顶⾓相等;④如果两条直线不平⾏,那么同位⾓不相等.这些语句都是对某⼀件事情作出“是”或“不是”的判断. ()给出命题的定义.判断⼀件事情的语句,叫做命题.教师指出上述四个语句都是命题,⽽语句“画∥”没有判断成分,不是命题.教师让学⽣举例说明是命题和不是命题的语句. ()命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项. ②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论. 有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式. 师⽣共同分析上述四个命题的题设和结论,重点分析第②、③语句.第②命题中,“存在⼀个等式”⽽且“这等式两边加同⼀个数”是题设, “结果仍是等式”是结论。
平行线的性质
一、学生知识状况分析
学生技能基础:在学习本课之前,学生对平行线的性质已经比较熟悉,也有了初步的逻辑推理能力,特别是上一节课的学习,使学生对简单的证明步骤有了更为清楚的认识,这为今天的学习奠定了一个良好的基础.
活动经验基础:在以往的几何学习中,学生对动手操作、猜想、说理、讨论等活动形式比较熟悉,本节课主要采取学生分组交流、讨论等学习方式,学生已经具备必要的基础.
二、教学任务分析
在以前的几何学习中,主要是针对几何概念、运算以及几何的初步证明(说理),在学生的头脑中还没有形成一个比较系统的几何证明体系,上一节课安排的《为什么它们平行》和本节课安排的《如果两条直线平行》旨在让学生从简单的几何证明(平行线的判定与性质)入手,逐步形成一个更为清晰的证明思路,为此,本课时的教学目标是:
.认识平行线的三条性质。
.能熟练运用这三条性质证明几何题。
.进一步理解和总结证明的步骤、格式、方法.
.了解两定理在条件和结构上的区别,体会正逆的思维过程.
. 进一步发展学生的合情推理能力,培养学生的逻辑思维能力。
三、教学过程分析
本节课的设计分为四个环节:情境引入——探索与应用——反馈练习——反思与小结
第一环节:情境引入
活动内容:
一条公路两次拐弯后,和原来的方向相同,第一次拐的角∠是°,第二次拐的角∠是多少度?
说明:这是一个实际问题,要求出∠的度数,需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.
活动目的:
通过对一个实际问题的解决,引出平行线的性质。
教学效果:
由于学生对平行线的性质比较熟悉,因此,在学生回忆起这些知识后,能很快解决实际问题。
第二环节:探索与应用
活动内容:
①画出直线的平行线,结合画图过程思考画出的平行线,被第三条直线所截的同位角的关系是怎样的?
②平行公理:两直线平行同位角相等.
③两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?
∵∥(已知),
∴∠=∠(两条直线平行,同位角相等)
∵∠=∠(对顶角相等),
∴∠∠(等量代换).
师:由此我们又得到了平行线有怎样的性质呢?
学生活动:同学们积极举手回答问题.
教师根据学生叙述,给出板书:两条平行线被第三条直线所截,内错角相等.师:下面请同学们自己推导同旁内角是互补的.并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.师生共同订正推导过程并写出第三条性质,形成正确板书.
∵∥(已知)
∴∠∠(两直线平行,同位角相等)
∵∠+∠°(邻补角定义)
∴∠∠=°(等量代换)
即:两条平行线被第三条直线所截,同旁内角互补,简单说成,两直线平行,同旁内角互补
师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:
∵∥,
∴∠∠(两直线平行,同位角相等).
∵∥(已知),
∴∠=∠(两直线平行,内错角相等).
∵∥(已知),
∴∠∠=°.(两直线平行,同旁内角互补)
(板书在三条性质对应位置上)
活动目的:
通过对平行线性质的探索,使学生对证明的步骤、格式有更进一步的认识,认识证明的必要性。
教学效果:
在前面复习引入的基础上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也激励了学生的学习兴趣.
第三环节:课堂练习
活动内容:
①已知平行线、被直线所截
()若∠°,可以知道∠是多少度吗?为什么?
()若∠°,可以知道∠是多少度吗?为什么?
()若∠°,可以知道∠是多少度吗,为什么?
②变式训练:如图是梯形有上底的一部分,已知量得∠°,∠=°,梯形另外两个角各是多少度?
解:∵∥(梯形定义),
∴∠∠=°.∠+∠=°(两直线平行,同旁内角互补),
∴∠°∠=°°°.
∴∠=°∠=°°°.
③变式练习:如图,已知直线经过点,∥,∠=°,∠=°
()∠等于多少度?为什么?
()∠等于多少度?为什么?
()∠、∠+∠+∠各等于多少度?
④如图,、、、在同一直线上,∥.
()∠=°时,∠、∠各等于多少度?为什么?
()∠°时,∠、∠各等于多少度?为什么?
活动目的:
通过学生对证明的螺旋式上升的认识,更认识到数学严密性与证明的必要性,做到每一步都有根有据。
教学效果:
在教师不给任何提示的情况下,学生独立完成,把理由写成推理格式.对于学习困难一点的同学允许他们相互之间讨论后,再试着在练习本上写出解题过程.对学生中出现的不同解法给予肯定,培养学生的解题能力.
第四环节:课堂反思与小结
活动内容:
①归纳两直线平行的判定与性质
②总结证明的一般思路及步骤
活动目的:
使学生认识到平行线的判定与性质是一对互逆定理,并由感性认识上升到理性认识,归纳总结出证明题的一般思路及步骤。
教学效果:
应让学生积极讨论,说出平行线的判定及性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由已知直线平行,得到角相等或互补的结论是平行线的性质,能通过具体实例,使学生在有充足的感性认识的基础上上升到理性认识,总结出平行线性质与判定的不同,总结证明的一般步骤,养成严谨的推理习惯.
课后练习:课本第页的习题第,,题
四、教学反思
语言是思维的工具,要学好证明,必须学会语言的表达和运用,初学几何证明题时,学生对于几何语言不甚清楚,几何语言分为文字语言、符号语言和图形语言,老师有必要强调:将图形语言和符号语言相结合是学好证明的基本功,画图时按要求将符合题意的图形画出来。
但要注意以下几点:
()注意所画图形的多种情况;
()能根据题意画出简单的图形,掌握“题”与“图”的对应关系,一般图形不要画成特殊图形,否则就意味着人为增加了已知条件,反之,特殊图形也不要画成一般图形,这两种做法都没有真实的表达题意;
()图形力求准确,便于观察,有利于解题。