发动机原理课程大作业
- 格式:docx
- 大小:110.73 KB
- 文档页数:7
一、实训目的通过本次实训,使学生了解和掌握发动机的基本工作原理,熟悉发动机各个组成部分的结构、作用及工作过程,提高学生的动手能力和实际操作技能。
二、实训内容1. 发动机概述发动机是汽车的动力源,其主要作用是将燃料燃烧产生的热能转化为机械能,推动汽车运行。
发动机按照工作原理可分为四冲程发动机和二冲程发动机,按照燃料类型可分为汽油机和柴油机。
2. 发动机结构及工作原理(1)四冲程汽油机四冲程汽油机的工作过程包括进气、压缩、做功和排气四个冲程。
1)进气冲程:活塞从上止点向下止点运动,进气门开启,排气门关闭。
空气和汽油混合气被吸入气缸。
2)压缩冲程:活塞从下止点向上止点运动,进气门和排气门关闭。
混合气被压缩,压力和温度升高。
3)做功冲程:火花塞点火,混合气燃烧产生高温高压气体,推动活塞向下运动,将热能转化为机械能。
4)排气冲程:活塞从下止点向上止点运动,排气门开启,进气门关闭。
燃烧后的废气被排出气缸。
(2)四冲程柴油机四冲程柴油机的工作过程与汽油机类似,但在做功冲程中,柴油通过喷油器喷入气缸,在高压下自行燃烧。
1)进气冲程:活塞从上止点向下止点运动,进气门开启,排气门关闭。
空气被吸入气缸。
2)压缩冲程:活塞从下止点向上止点运动,进气门和排气门关闭。
空气被压缩,压力和温度升高。
3)做功冲程:柴油通过喷油器喷入气缸,在高压下自行燃烧,产生高温高压气体,推动活塞向下运动。
4)排气冲程:活塞从下止点向上止点运动,排气门开启,进气门关闭。
燃烧后的废气被排出气缸。
3. 发动机各个组成部分(1)曲柄连杆机构:将活塞的直线运动转化为曲轴的旋转运动,输出机械能。
(2)配气机构:控制进气门和排气门的开启与关闭,使气缸内气体流动正常。
(3)燃油供给系统:将燃油雾化后喷入气缸,与空气混合燃烧。
(4)点火系统:汽油机通过火花塞点火,柴油机通过高压喷油器自行燃烧。
(5)冷却系统:将发动机产生的热量散发出去,保持发动机正常工作温度。
第二章发动机的性能指标1.研究理论循环的目的是什么?理论循环与实际循环相比,主要作了哪些简化?答:目的:1.用简单的公式来阐明内燃机工作过程中各基本热力参数间的关系,明确提高以理论循环热效率为代表的经济性和以平均有效压力为代表的动力性的基本途径2.确定循环热效率的理论极限,以判断实际内燃机经济性和工作过程进行的完善程度以及改进潜力3.有利于分析比较发动机不同循环方式的经济性和动力性简化:1.以空气为工质,并视为理想气体,在整个循环中工质的比热容等物理参数为常数,均不随压力、温度等状态参数而变化2.将燃烧过程简化为由外界无数个高温热源向工质进行的等容、等压或混合加热过程,将排气过程即工质的放热视为等容放热过程3.把压缩和膨胀过程简化成理想的绝热等熵过程,忽略工质与外界的热交换及其泄露等的影响4.换气过程简化为在上、下止点瞬间开和关,无节流损失,缸内压力不变的流入流出过程。
2.简述发动机的实际工作循环过程。
四冲程发动机的实际循环由进气、压缩、燃烧、膨胀、排气组成3.排气终了温度偏高的原因可能是什么?有流动阻力,排气压力>大气压力,克服阻力做功,阻力增大排气压力增大,废气温度升高。
负荷增大Tr增大;n升高Tr增大,∈+,膨胀比增大,Tr减小。
4.发动机的实际循环与理论循环相比存在哪些损失?试述各种损失形成的原因。
答:1.传热损失,实际循环中缸套内壁面、活塞顶面、气缸盖底面以及活塞环、气门、喷油器等与缸内工质直接接触的表面始终与工质发生着热交换2.换气损失,实际循环中,排气门在膨胀行程接近下止点前提前开启造成自由排气损失、强制排气的活塞推出功损失和自然吸气行程的吸气功损失3.燃烧损失,实际循环中着火燃烧总要持续一段时间,不存在理想等容燃烧,造成时间损失,同时由于供油不及时、混合气准备不充分、燃烧后期氧不足造成后燃损失以及不完全燃烧损失4.涡流和节流损失实际循环中活塞的高速运动使工质在气缸产生涡流造成压力损失。
一、实训目的本次实训旨在通过实际操作,使学生掌握汽车发动机的基本原理、构造及拆装方法,提高学生的动手能力,巩固课堂所学理论知识,为后续课程的学习奠定基础。
二、实训内容1. 发动机原理及构造(1)发动机概述发动机是汽车的动力源,将燃料的化学能转化为机械能,驱动汽车行驶。
根据燃料不同,发动机可分为汽油发动机、柴油发动机和混合动力发动机等。
(2)发动机基本构造发动机主要由以下部分组成:1)曲柄连杆机构:将活塞的往复运动转化为曲轴的旋转运动。
2)配气机构:控制气门的开闭,实现进气、排气过程。
3)燃油供给系统:将燃油喷入气缸,与空气混合燃烧。
4)冷却系统:为发动机提供冷却,防止过热。
5)润滑系统:为发动机各运动部件提供润滑,减少磨损。
6)点火系统:点燃混合气,使发动机工作。
7)排放系统:减少发动机排放的污染物。
2. 发动机拆装(1)发动机拆装步骤1)发动机的分解首先,将发动机放置在安全、平整的工作台上。
按照以下顺序进行拆卸:①拆卸分电器、火花塞;②拆卸化油器总成;③拆卸进气歧管;④拆卸排气歧管;⑤拆卸发动机皮带和正时带、法兰盘等,水泵总成等;⑥拆卸气缸盖罩;⑦拆卸凸轮轴;⑧拆卸汽缸盖;⑨拆卸气门组;⑩拆卸机油滤清器、真空阀等附件;⑪拆卸油底壳;⑫拆卸机滤器、机油泵;⑬拆卸活塞连杆组;⑭拆卸曲轴飞轮组。
2)零部件的解体根据拆卸顺序,对各个零部件进行解体。
例如,水泵的解体(了解内部结构)、配气机构的解体(观察气门、挺柱、气门座等)、机油泵的解体、活塞连杆组的解体等。
(2)发动机的组装1)零部件的检查与清洗在组装前,对拆卸下来的零部件进行检查,确保无损坏。
对需要清洗的零部件进行清洗,去除油污、灰尘等。
2)发动机的组装按照拆卸的相反顺序,将零部件进行组装。
注意各部件的装配关系,确保装配正确。
三、实训心得1. 通过本次实训,我对汽车发动机的原理、构造及拆装方法有了更深入的了解,提高了自己的动手能力。
2. 在实训过程中,我学会了正确使用拆装工具和仪器,掌握了发动机各零部件的拆卸、检查和组装方法。
可编辑修改精选全文完整版发动机原理与构造习题解答一、发动机的工作原理和总体构造1、汽车发动机通常是由哪些机构与系统组成?它们各有什么功用?(1) 曲柄连杆机构:进行热功转换。
曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。
它由机体组、活塞连杆组和曲轴飞轮组等组成。
在作功行程中,活塞承受燃气压力在气缸内作直线运动,通过连杆转换成曲轴的旋转运动,并从曲轴对外输出动力。
而在进气、压缩和排气行程中,飞轮释放能量又把曲轴的旋转运动转化成活塞的直线运动。
(2) 配气机构:控制进、排气门的开启时刻及延续时间。
配气机构的功用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程。
配气机构大多采用顶置气门式配气机构,一般由气门组、气门传动组和气门驱动组组成。
(3) 燃料供给系统:汽油机:由化油器向气缸供给由汽油与空气混合的混合气。
柴油机:由喷油泵提供雾状柴油,通过喷油器喷入气缸。
汽油机燃料供给系的功用是根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧后的废气从气缸内排出到大气中去;柴油机燃料供给系的功用是把柴油和空气分别供入气缸,在燃烧室内形成混合气并燃烧,最后将燃烧后的废气排出。
(4) 润滑系统:减少相对运动部件的摩擦阻力,减轻磨损。
润滑系的功用是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦,减小摩擦阻力,减轻机件的磨损。
并对零件表面进行清洗和冷却。
润滑系通常由润滑油道、机油泵、机油滤清器和一些阀门等组成。
(5) 冷却系统:降低气缸及高温部件的高温,使发动机保持正常的工作温度。
冷却系的功用是将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。
水冷发动机的冷却系通常由冷却水套、水泵、风扇、水箱、节温器等组成。
(7) 点火系统:(汽油机独有)在压缩行程接近上止点时,点火系即在火花塞电极间产生电火花以点燃混合气。
发动机原理习题1. 问题:什么是发动机?答案:发动机是一种能够将燃料的化学能转化为机械能的设备。
它是驱动车辆或机械运转的核心部件。
2. 问题:请简述内燃机的工作原理。
答案:内燃机是一种常见的发动机类型,工作原理如下:a. 压缩冲程:活塞由曲轴推向气缸,将气体压缩至高压状态。
b. 燃烧冲程:燃料被喷入气缸并点燃,产生爆炸将活塞推向下。
c. 排气冲程:废气通过打开的排气门排出气缸。
d. 进气冲程:新鲜空气通过进气门进入气缸。
3. 问题:请说明发动机利用何种机构实现循环工作?答案:发动机利用曲轴机构实现循环工作。
曲轴与活塞通过连杆相连,在发动机工作过程中,曲轴通过活塞的上下运动将燃烧冲程转化为旋转运动,从而驱动机械运转。
4. 问题:发动机是如何实现点火的?答案:大多数内燃机使用火花塞进行点火。
火花塞通过电活性材料产生火花,点燃进入气缸的混合气体。
点火时机由点火系统控制,确保燃烧在正确的时机发生。
5. 问题:发动机中的供油系统有什么作用?答案:供油系统负责供应燃料并控制供油量。
燃料通过喷油器喷入气缸,在燃烧冲程中与空气混合并点燃。
供油系统还需要根据运行状态调整供油量,以确保发动机的高效运行。
6. 问题:发动机中的冷却系统有什么作用?答案:冷却系统用于控制发动机的温度,防止过热。
冷却系统通过循环冷却液来吸收和散发发动机的热量,确保发动机保持在适宜的工作温度范围内。
7. 问题:发动机的排气系统的功能是什么?答案:排气系统负责将废气从气缸排出。
废气通过排气门进入排气管,并流向排气管末端,最终排入大气中。
排气系统还可以减少噪音和排放有害气体的数量。
8. 问题:发动机如何实现可变气门正时?答案:可变气门正时技术可以根据发动机负荷和转速调整气门的开启和关闭时间。
这一技术通过液压或电子控制系统,改变进气和排气门的开启和关闭时间,以提高发动机的燃烧效率和动力输出。
9. 问题:请简要介绍涡轮增压器在发动机中的应用。
答案:涡轮增压器通过利用废气能量来增加进气气压,提高发动机的动力输出。
北航航空发动机原理大作业航空发动机是飞机最核心的部件之一,它负责提供动力以便飞机能够在空中顺利飞行。
北航航空发动机原理大作业旨在深入研究航空发动机的工作原理,包括结构、工作循环、燃烧过程以及相关技术等方面。
本文将围绕这些内容进行详细的阐述。
航空发动机的结构一般包括压缩机、燃烧室、涡轮和喷管等组成部分。
首先,压缩机负责将来自外界的空气加压,使其增加密度,为燃烧提供充足的氧气。
然后,在燃烧室中燃烧燃料与氧气的混合物,产生高温高压的燃气。
接着,燃气驱动涡轮旋转,通过轴向流动推动涡轮转子。
最后,高速的喷气流通过喷管喷出,产生向后的推力,推动飞机向前飞行。
航空发动机的工作循环一般采用布雷顿循环。
该循环由四个过程组成:进气、压缩、燃烧和排气。
在进气过程中,空气被压缩机压缩,增加了密度和温度。
接着,燃料被喷射到燃烧室中,与压缩空气混合燃烧,释放出大量的热能。
然后,燃烧产生的高温高压气体驱动涡轮旋转,将一部分动能转化为机械功,用于驱动压缩机和其他系统工作。
最后,燃烧产物通过喷口排出,形成喷气流,产生推力。
航空发动机的燃烧过程是发动机组成中较为重要的一个环节。
燃烧室是燃烧过程的主要场所,其中燃料与空气发生充分混合和燃烧。
燃烧的质量和稳定性直接关系到发动机的性能和效率。
为了实现燃烧的充分,燃烧室通常具有特殊的结构设计,如喷嘴、涡流室和火花塞等。
喷嘴的作用是将燃料细小雾化,并与空气充分混合,以促进燃烧。
涡流室则通过旋转气流的方式,使燃料和氧气更好地混合,并提高燃烧效率。
火花塞则在适当的时间点产生火花,引燃燃料,使燃烧开始。
航空发动机还涉及到多种相关技术。
例如,超音速进气技术可以通过进气道中的激波冷却进气空气并提高压力,提高发动机的性能。
燃烧室冷却技术可以通过将冷却剂喷射到燃烧室壁面,降低燃烧室温度,延长发动机寿命。
另外,航空发动机还涉及到调节和控制系统,如油门控制、温度控制和故障监测等,以确保发动机的正常运行和安全性。
发动机原理课后答案一、简介发动机是内燃机的一种,是将化学能转化为机械能的设备。
在汽车、船舶、飞机等交通工具中起着至关重要的作用。
本文将解答与发动机原理相关的问题,帮助读者更好地理解发动机工作原理。
二、发动机工作循环发动机的工作循环一般分为四个阶段:进气、压缩、燃烧和排气。
以下是各个阶段的详细解答:1. 进气阶段在进气阶段,活塞下行,气门打开,气缸内的空气通过进气门进入到气缸内。
此时,活塞的下行运动将气缸内原有的废气向外排放。
2. 压缩阶段进气阶段结束后,活塞开始向上行进,气门关闭,气缸内的空气被压缩。
在这个阶段内,燃油被喷射到气缸内,待燃烧。
3. 燃烧阶段在压缩阶段的顶点,点火塞向气缸内喷射电火花,引发燃料的点火。
燃料和压缩空气混合后,发生爆炸反应,推动活塞向下运动。
这个过程产生的能量就是发动机输出的动力。
4. 排气阶段在燃烧阶段结束后,活塞再次向上运动,气门打开,把燃烧产生的废气从气缸中排出。
同时,进入下一个工作循环。
三、发动机类型发动机根据燃料类型和工作原理的不同,可以分为多种类型。
以下是其中几种常见的发动机类型的解答:1. 汽油发动机汽油发动机是最常见的发动机类型之一,它使用汽油作为燃料。
在燃烧室内,汽油和空气混合后被点火,产生爆炸推动活塞运动。
2. 柴油发动机柴油发动机也是一种常见的发动机类型,它使用柴油作为燃料。
与汽油发动机不同的是,柴油发动机是通过高温高压使柴油受热并自燃的原理来推动活塞运动。
3. Wankel发动机Wankel发动机是一种利用旋转活塞的往复运动转换为旋转运动的发动机。
通过曲轴,将活塞的旋转运动转化为输出的动力。
四、发动机的原理发动机运行的关键原理有许多,包括燃烧原理、气缸压力和活塞运动等。
以下是几个常见的发动机原理问题的解答:1. 为什么发动机需要冷却系统?发动机在燃烧过程中产生大量的热量,如果不能及时散热,将会导致发动机过热,引起损坏。
冷却系统通过流动的冷却液吸热并散热,保持发动机的温度适宜。
第一章1简述发动机的实际工作循环过程。
发动机的实际循环是由进气、压缩、燃烧、膨胀和排气五个过程组成的,较理论循环复杂很多。
1) 进气过程。
为了使发动机连续运转,必须不断吸入新鲜工质,此时进气门开启,排气门关闭,活塞由上止点向下止点移动。
、2) 压缩过程。
此时进排气门均关闭,活塞由下止点向上止点移动,缸内工质受到压缩,温度、压力不断上升,增大作功过程的温差,获得最大限度的膨胀比,提高热功转化效率,为燃烧过程创造有利条件。
3) 燃烧过程。
此时进排气门均关闭,活塞处在上止点前后,作用是将燃料的化学能转变为热能,使工质的压力、温度升高。
4) 膨胀过程。
也称作功过程,此时进排气门均关闭,高温、高压的工质推动活塞,由上止点向下止点移动而膨胀作功,气体的压力和温度也随即迅速降低。
5) 排气过程。
当膨胀过程接近终了时,排气门打开,废气开始靠自身压力自由排气,膨胀过程结束后,活塞由下止点返回上止点,将气缸内的废气排除。
2画出四冲程发动机实际循环的示功图,它与理论示功图有什么不同?说明指示功的概念和意义。
图a、b分别为柴油机和汽油机实际循环和理论循环的示功图比较,理论循环中假设工质比热容是定值,而实际气体随温度等因素影响会变大,而且实际循环中还存在泄露损失。
换气损失燃烧损失等,这些损失的存在,会导致实际循环放热率低于理论循环。
指示功时指气缸内完成一个工作循环所得到的有用功Wi,指示功Wi反映了发动机气缸在一个工作循环中所获得的有用功的数量。
3 提高发动机实际工作循环热效率的基本途径是什么?可采取哪些基本措施?提高实际循环热效率的基本途径为:减小工质传热损失,燃烧损失,换气损失,不完全燃烧损失,工质流动损失,工质泄漏损失,提高工质的绝热指数。
可采取的基本措施是:1)减小燃烧室面积,缩短后燃气能减小传热损失。
2)采用最佳点火提前角和供油提前角能减少提前燃烧损失或后燃损失。
3)采用多气门,最佳配气相位和最优进排气系统能减少换气损失。
汽车发动机原理习题含答案汽车发动机是现代交通工具的核心部件之一,它的原理和工作方式对于理解汽车的运行机制至关重要。
为了帮助读者更好地理解汽车发动机的原理,本文将通过一系列习题来探讨发动机的工作原理,并提供相应的答案。
习题一:什么是汽车发动机的工作循环?列举常见的工作循环类型。
答案:汽车发动机的工作循环是指发动机在工作过程中,活塞在气缸内完成的一系列往复运动。
常见的工作循环类型包括四冲程循环(四冲程发动机)和两冲程循环(两冲程发动机)。
习题二:四冲程发动机的工作原理是什么?简要描述每个冲程的作用。
答案:四冲程发动机的工作原理包括进气冲程、压缩冲程、爆燃冲程和排气冲程。
进气冲程是活塞从上死点向下运动,气门打开,进气门打开,汽油和空气混合物进入气缸;压缩冲程是活塞向上运动,气门关闭,混合物被压缩;爆燃冲程是混合物被点火燃烧,推动活塞向下运动;排气冲程是活塞向上运动,气门打开,废气排出气缸。
习题三:请简要说明汽车发动机的点火系统是如何工作的。
答案:汽车发动机的点火系统通过产生高压电流来点燃混合物。
点火系统包括点火线圈、点火开关、分电器和火花塞。
当点火开关打开时,点火线圈产生高压电流,经过分电器分配到各个火花塞。
当活塞达到爆燃冲程时,点火线圈产生高压电流,通过火花塞的电极产生火花,点燃混合物。
习题四:什么是汽车发动机的排气系统?它的主要作用是什么?答案:汽车发动机的排气系统是指将燃烧产生的废气排出发动机的系统。
它的主要作用是排除废气,保持发动机的正常运行。
排气系统包括排气管、消声器和尾气净化器。
废气经过排气管排出,消声器起到减少噪音的作用,尾气净化器则对废气进行净化,减少对环境的污染。
习题五:请简要描述汽车发动机的润滑系统是如何工作的。
答案:汽车发动机的润滑系统通过提供润滑油来减少发动机零部件之间的摩擦和磨损。
润滑系统包括机油泵、机油滤清器和机油通道。
机油泵将机油从油底壳抽吸起来,通过机油滤清器过滤后,沿着机油通道进入发动机各个零部件,形成润滑膜,减少零部件之间的摩擦。
发动机原理课程作业
题目:曲柄连杆机构的运动分析
姓名:***
班级:1208107
学号:**********
一、前言(绪论)
1.1曲柄连杆机构的作用
曲柄连杆机构的作用是提供燃烧场所,把燃料燃烧后产生的气体作用在活塞顶上的膨胀压力转变为曲轴旋转的转矩,不断输出动力。
(1)将气体的压力变为曲轴的转矩
(2)将活塞的往复运动变为曲轴的旋转运动
(3)把燃烧作用在活塞顶上的力转变为曲轴的转矩,以向工作机械输出机械能. 1.2曲柄连杆机构的分类及其对发动机性能的影响
内燃机中采用曲柄连杆机构的型式很多,按运动学观点可分为三类,即:中心曲柄连杆机构、偏心曲柄连杆机构和主副连杆式曲柄连杆机构。
(1)中心曲柄连杆机构
其特点是气缸中心线通过曲轴的旋转中心,并垂直于曲柄的回转轴线。
这种型式的曲柄连杆机构在内燃机中应用最为广泛。
一般的单列式内燃机,采用并列连杆与叉形连杆的V形内燃机,以及对置式活塞内燃机的曲柄连杆机构都属于这一类,较为常用。
(2)偏心曲柄连杆机构
其特点是气缸中心线垂直于曲轴的回转中心线,但不通过曲轴的回转中心,气缸中心线距离曲轴的回转轴线具有一偏移量e。
这种曲柄连杆机构可以减小膨胀行程中活塞与气缸壁间的最大侧压力,使活塞在膨胀行程与压缩行程时作用在气缸壁两侧的侧压力大小比较均匀。
(3)主副连杆式曲柄连杆机构
其特点是内燃机的一列气缸用主连杆,其它各列气缸则用副连杆,这些连杆的下端不是直接接在曲柄销上,而是通过副连杆销装在主连杆的大头上,形成了“关节式”运动,所以这种机构有时也称为“关节曲柄连杆机构”。
在关节曲柄连杆机构中,一个曲柄可以同时带动几套副连杆和活塞,这种结构可使内燃机长度缩短,结构紧凑,广泛的应用于大功率的坦克和机车用V形内燃机。
1.3曲柄连杆机构对发动机性能的影响
曲柄连杆机构是内燃机中的主要受力部件,曲柄连杆机构的工作环境非常恶劣,
曲柄连杆机构面临的是高温、高压、高速、和化学腐蚀。
曲柄每转一周(二冲程内燃机)或者两周(四冲程内燃机)为一个变化周期。
实际上,内燃机的工况是不断变化的,特别是作为车用动力时。
因此,作用在曲柄连杆机构上的力是随着工况的不断变化而变化的。
内燃机的工况一般由转速和功率来衡量。
内燃机曲柄连杆机构的设计是为了解决工作过程中惯性力的平衡以及改进结构来减少活塞对汽缸壁的侧压力,并且降低内燃机内的振动,但内燃机工作环境的瞬变使得这些都非常困难。
在工作过程中,活塞顶部受力变化十分复杂,上下运动时活塞对汽缸壁产生很大的侧压力,这样就降低了内燃机的工作效率,活塞环也容易磨损;连杆做复杂的平面运动并且质量较大,平面运动产生的惯性力也不能忽视,连杆长度的微小变化也对机构产生很大的影响;曲轴飞轮的模态对内燃机的布置方式和工作场合的约束因素较多,设计难点较大。
传统的方法是对结构进行简化计算并与样机试验结合进行设计。
这种方法得到的结构存在着很大的误差,且劳动强度大,开发周期长,浪费人力和物力。
现在设计都是借助计算机辅助设计手段,降低劳动强度,缩短开发周期。
但仍有一些难题无法解决,如机构连接处动摩擦和零件变形等,有待进一步完善。
二、运动规律(活塞位移、速度、加速度)分析计算及模拟
设计中心曲柄连杆尺寸如下,确定曲柄半径R=43.2mm,连杆长度L=144mm,λR/L=0.3,在1/3~1/5之间。
额定转速5200r/min=544.54rad/s。
图1 曲柄连杆机构运动简图
2.1活塞位移
假设在某一时刻,曲柄转角为α,并按顺时针方向旋转,连杆轴线在其运动平面内偏离气缸轴线的角度为β,如图1 所示。
当α=︒0时,活塞销中心A 在最上面的位置A 1,此位置称为上止点。
当α=180︒时,A 点在最下面的位置A 2,此位置称为下止点。
此时活塞的位移x 为: x=A A 1=AO O A -1=(r+l ))cos cos (βαl r +-
=)]cos 1(1)cos 1[(βλα-+
-r (1)
式中:λ—连杆比。
式(1)可进一步简化,由图2.1可以看出:
βαsin sin l r = 即 αλαβsin sin sin ==l
r 又由于 αλββ222sin 1sin 1cos -=-= (2) 将式(2)带入式(1)得:
x=)]sin 1(1
cos 1[22αλλ
α-+-r (3)
式(3)是计算活塞位移x 的精确公式,为便于计算,可将式(3)中的根号按牛顿二项式定理展开,得: ----=-αλαλαλαλ6642222sin 16
1sin 81sin 1sin 1… 考虑到λ≤ 1∕3,其二次方以上的数值很小,可以忽略不计。
只保留前两项,则
αλαλ2222sin 2
11sin 1-≈- (4) 将式(4)带入式(3)得
)sin 2cos 1(2αλ
α+-=r x (5)
2.2活塞的速度
将活塞位移公式(1)对时间t 进行微分,即可求得活塞速度v 的精确值为 =v )cos 2sin 2(sin β
αλαω+=⨯=r dt da da dx dt dx (6) 将式(5)对时间t 微分,便可求得活塞速度得近似公式为:
212sin 2sin )2sin 2(sin v v r r r v +=+=+≈αλ
ωαωαλ
αω (7)
从式(7)可以看出,活塞速度可视为由αωsin 1r v =与αωλ2sin )2(2r v =两部分简谐运动所组成。
当︒=0α或︒180时,活塞速度为零,活塞在这两点改变运动方向。
当︒=90α时,ωr v =,此时活塞得速度等于曲柄销中心的圆周速度。
2.3活塞的加速度
将式(6)对时间t 微分,可求得活塞加速度的精确值为:
]cos 2sin 4cos 2cos [cos 3232β
αλβαλαω++=⨯==r dt da da dv dt dv a (8) 将式(7)对时间t 为微分,可求得活塞加速度的近似值为:
212222cos cos )2cos (cos a a r r r a +=+=+≈αλωαωαλαω (9) 因此,活塞加速度也可以视为两个简谐运动加速度之和,即由αωcos 21r a =与αλω2cos 22r a =两部分组成。
三、 结论
⎪⎪⎭⎫ ⎝⎛⨯+-⨯=+
-=αααλα22sin 23.0cos 143.2)sin 2cos 1(r x ⎪⎪⎭
⎫ ⎝⎛⨯+⨯⨯=+≈αααλαω2sin 23.0sin 544.5443.2)2sin 2(sin r v ()αααλαω2cos 3.0cos 54.5442.43)2cos (cos 22⨯+⨯⨯=+≈r a 利用matlab 绘图得到如下曲线。
图2位移转角曲线图3速度转角曲线
图4加速度转角曲线。