离心泵特性曲线的测定
- 格式:docx
- 大小:94.15 KB
- 文档页数:5
实验四 离心泵特性曲线的测定一. 实验目的1.熟悉离心泵的构造和操作;2.掌握离心泵在一定转速下特性曲线的测定方法。
二. 基本原理离心泵的主要性能参数有流量Q 、压头H 、效率η和轴功率N 。
在一定转速下,离心泵的输液能力(流量)可以通过调节出口阀门使之从零至最大值间变化。
而且,当其流量变化时,泵的压头、功率及效率也随之变化。
因此,要正确选择和使用离心泵,就必须掌握流量变化时,其压头、效率和功率的变化规律,即查明离心泵的特性曲线。
用实验方法测出某离心泵在一定转速下的Q 、H 、N 、η,并做出H-Q 、N-Q 、η-Q 曲线,称为该离心泵的特性曲线。
1. 流量Q 的测定泵的流量可以用容积法或标准流量计测量。
本实验采用涡轮流量计测量离心泵的流量。
涡轮流量计显示表显示的是瞬时流量值,单位是升/秒。
2. 泵的压头H 的测定离心泵的压头是指泵对单位重量流体所提供的有效能量,单位为m 。
在进口真空表和出口压力表两测压点截面间列伯努利方程,忽略阻力损失,两测压点处管径一致时,有:)(H 1212Z Z gp g p -+-=ρρ m若两侧压表头在同一水平处,上式变为:gp p H ρ12-=m (4—1)式中:p2---离心泵的出口压力表示值,Pa ; -p1--离心泵的入口真空表示值,Pa ; ρ---离心泵输送液体的密度,kg/m3。
3. 轴功率N 的测定离心泵的轴功率是泵轴所需的功率,也是电机传给泵轴的功率。
本实验装置采用马达-天平测功器测定此轴功率。
马达-天平测功器是水泵实验常用的测功方法之一,其有准确和使用可靠的优点。
它是在拖动泵的交流电动机外壳(定子)两端加装轴承,使外壳能自由转动。
外壳连有测功臂和平衡锤,后者用以调整零位。
当电动机带动水泵运转时,由于反作用力的作用会使外壳反方向旋转;此反向力矩相同。
如果在测功臂上加上适当的砝码,即可保持外壳不转动。
此时所加砝码重量乘以测功臂长度,就是电动机输出的转矩,即电动机输出的功率为:7.97310006081.92N PLn PLn =⨯⨯=π kW (4-2)式中:P---测功臂上所加砝码的数量,kg ; L---测功臂长度,m ;本装置L=0.4869m; n---转速,转/分。
离心泵特性曲线的测定实验数据处理及相关分析结果离心泵特性曲线是评估离心泵性能的一种核心参数,通常需要进行实验测定并对数据进行处理分析。
本文将介绍对离心泵特性曲线测定实验数据的处理方法以及相关分析结果。
实验数据处理方法1. 绘制静态吸头曲线将泵出口阀门完全关闭,打开泵进口阀门,以每隔10mmHg为间隔连续测量泵入口总压和进口压差,记录数据并计算出对应的泵进口流量(Q)和压头(H),即可绘制静态吸头曲线。
2. 绘制节点管路损失曲线3. 绘制系统特性曲线在绘制系统特性曲线之前,需要通过A/R泄流阀调节管道流量,并测量相应的流量、总压和压差数据。
然后,根据测得的数据计算出对应的流量和压头,并绘制系统特性曲线。
绘制离心泵特性曲线需要结合前面的三条曲线绘制。
首先,以节点管路损失曲线上的任意一点作为起点,在该点的纵坐标值处标记绘制一点。
接着,以该点的流量和压力值,到系统特性曲线上找到对应的点并标记绘制一个点。
然后,再以该点的流量和压力值到静态吸头曲线上找到对应的点并标记绘制一个点。
最后,将这三个点用一条平滑的曲线连接起来,即可得到离心泵特性曲线。
相关分析结果可以通过分析静态吸头曲线来评估离心泵的最大吸头高度,并判断泵是否出现气穴、空气泡等问题。
在曲线中,当吸头高度超过一定范围时,泵的效率会显著下降,严重时会导致泵的故障。
通过分析节点管路损失曲线,可以评估离心泵的出口压力损失和流量变化对泵的影响,以及找出出现管道阻塞、泄漏等故障的原因。
在曲线中,当流量增加时,管路损失也会随之增加,如果损失过大,就会导致泵出口压力不足,甚至出现反流等问题。
通过分析系统特性曲线,可以评估离心泵的运行能力和稳定性,并找出系统中供水主管道和回水主管道的配管是否合理。
在曲线中,当流量增加时,泵的工作点会向左上方移动,同时泵的效率和出口压力也会降低。
4. 离心泵特性曲线综合分析离心泵特性曲线可以评估离心泵的性能、流量范围、运行稳定性等指标,并进行泵的选型和运行参数设计。
离心泵性能特性曲线的测定姓名:郭政 班级:环科院应用化学1班 学号:20121337031 实验日期:2015-5-72.1实验目的(1)了解离心泵结构与特性,学会离心泵的操作;(2)测定恒定转速下离心泵的流量(V)与有效扬程(H e )、轴功率(N a )、及总效率(η)之间的曲线关系。
(3)掌握离心泵流量调节的方法(阀门、转速和泵组合方式)和涡轮流量传感器及智能流量积算仪的工作原理和使用方法。
2.2实验原理流体经过离心泵后流体的机械能会获得增值。
离心泵的特性曲线实质上是流体流经离心泵时机械能按一定规律变化的宏观表现形式,其内容是表达在一定转速n 下离心泵的流量V 与其扬程H e 、轴功率Na 和效率η之间的定量关系,这些函数关系目前还无法分别用数学模型进行表达,只能通过实验测定的方法才能得到。
2.2.1离心泵流量V 的测量实验时,采用涡轮流量计测量流体在管道内的流量,用智能流量积算仪直接显示出流体流量V 的数值, 其单位为m 3/h.2.2.2 离心泵扬程H 的测定与计算在离心泵的进口1截面至离心泵的出口2截面间列机械能守恒方程:gu Z g p H g u Z g p e 2222222111++=+++ρρ (2-1) 当离心泵的进、出管管径相同,且压力表和真空表的安装高度差可忽略不计时,由式(2-1)可导出离心泵扬程的计算公式: gp p g p p H e ρρ表表1212+=-=(2-2) 由式(2-2)可知,只要分别测出压力表和真空表的数值表2p 和表1p ,就可计算出泵的扬程H e (m )。
2.2.3 离心泵轴功率a N 的计算本实验主要采用马达天平测量泵轴转矩M 的方法来计算泵的轴功率,计算公式如下: 60281.9602nPL n M N a ππ⋅=⋅= (2-3) 由式(2-3)可知,只要测出测功臂上所加砝码重量P (Kg )、测功臂长L(m)及相应的泵的转速n (r.p.m ), 就可计算出泵的轴功率a N (W)。
实验7 离心泵特性曲线测定实验一、实验目的1. 熟悉离心泵的结构、性能、操作和调节方法,掌握离心泵的工作原理。
2. 掌握离心泵特性曲线的测定方法。
测定单级离心泵在恒定转速下的特性曲线,绘制H e-q V、N a-q V、η-q V曲线,分析离心泵的额定工作点。
3. 掌握离心泵流量调节的方法。
4. 掌握离心泵特性曲线的影响因素。
5. 了解常用的测压仪表。
二、实验原理离心泵是一种液体输送机械,主要构件为旋转的叶轮、固定的泵壳和轴封装置。
离心泵泵体内的叶轮固定在泵轴上,叶轮上有若干弯曲的叶片,泵轴在外力带动下旋转,叶轮同时旋转,泵壳中央的吸入口与吸入管路相连接,侧旁的排出口和排出管路相连接。
启动前,须灌液排出泵壳内的气体,防止出现气缚现象。
启动电机后,泵轴带动叶轮一起高速旋转,充满叶片之间的液体也随着旋转,在惯性离心力的作用下液体从叶轮中心被抛向外缘的过程中便获得了能量,使叶轮外缘的液体静压强提高,同时也增大了动能。
液体离开叶轮进入壳体,部分动能变成静压能,进一步提高了静压能。
流体获得能量的多少,不仅取决于离心泵的结构和转速,而且和流体的密度有关。
当离心泵内存在空气,空气的密度远比液体小,相应获得的能量不足以形成所需的压强差,液体无法输送,该现象称为“气缚”。
为了保证离心泵的正常操作,在启动前必须在离心泵和吸入管路内充满液体,并确保运转过程中尽量不使空气漏入。
离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H e、轴功率P a及效率η与液体流量q V之间的关系曲线,如图6-10所示,它是流体在泵内流动规律的宏观表现形式。
离心泵的特性曲线与离心泵的设计、加工情况有关,而泵内部流动情况复杂,难以用数学方法计算,只能依靠实验测定。
图6-10 离心泵的特性曲线1. 流量的测定本实验用涡轮流量计测量液体的流量。
测量时,从仪表显示仪上读取的数据是涡轮的频率f ,液体的体积流量为:Cfq V =(6-20) 式中:f 为涡轮流量计的脉冲频率,Hz ;C 为涡轮流量计的流量系数,脉冲数/升。
化⼯原理实验1离⼼泵特性曲线的测定实验⼀:离⼼泵特性曲线的测定本实验要求掌握:离⼼泵特性曲线的概念离⼼泵性能参数的测定⽅法流量 Q的测定扬程H的测定轴功率N的测定效率η转速n的测定离⼼泵特性曲线的概念:离⼼泵的主要性能参数有流量Q(也叫送液能⼒)、扬程H(也叫压头)、轴功率 N和效率η。
在⼀定的转速下,离⼼泵的扬程H、轴功率N和效率η均随实际流速Q的⼤⼩⽽改变。
通常⽤⽔经过实验测出Q-H、Q-N及Q-η之间的关系,并以三条曲线分别表⽰出来,这三条曲线就称之为离⼼泵的特性曲线。
离⼼泵的特性曲线是确定泵适宜的操作条件和选⽤离⼼泵的重要依据。
但是,离⼼泵的特性曲线⽬前还不能⽤解析⽅法进⾏精确计算,仅能通过实验来测定,⽽且离⼼泵的性能全都与转速有关;在实际应⽤过程中,⼤多数离⼼泵⼜是在恒定转速下运⾏,所以我们要学习离⼼泵恒定转速下特性曲线的测定⽅法。
思考题:1、试从所测实验数据分析离⼼泵在启动时为什么要关闭出⼝阀?答:关闭出⼝阀是为了让泵能正常运⾏起来。
因为,离⼼泵在启动前是没有⽔的,⽽在其启动后,扬程会很低,流量却很⼤,使离⼼泵的功率也很⼤,容易超载,使泵的电机及线路损坏。
2、启动离⼼泵之前为什么要引⽔灌泵?如果灌泵后依然启动不起来,你认为可能的原因是什么?答:启动离⼼泵之前要引⽔灌泵是为了避免⽓缚现象的发⽣。
如果发⽣⽓缚现象,会使离⼼泵⽆法输出液体。
如果,引⽔灌泵后仍然⽆法启动,那就有可能离⼼泵坏了。
3、为什么⽤泵的出⼝阀调节流量?这种⽅法有什么优缺点?是否还有其他⽅法调节流量?答:在固定的转速下扬程是固定的的情况下,离⼼泵可以通过调节出⼝阀就是调节导流⾯积来改变流量,这个⽅法⽐较简单可⾏,但是,同时较为消耗能量。
我们也可以使⽤变频器调节电机转速来调节流量,⼜能减少能量,节约⽤电。
4、离⼼泵泵启动后,出⼝阀如果不开,压⼒表读数是否会不断上升?为什么?答:是。
因为离⼼泵的进⼝和出⼝是有间隙的,达到⼀定压⼒后,⽔只在出⼝和进⼝处循环,所以压⼒会上升到⼀定程度就不再上升并保持在这个压⼒上。
离心泵特性曲线的测定实验一、实验内容测定一定转速下离心泵的特性曲线。
二、实验目的1、了解离心泵的结构特点,熟悉并掌握离心泵的工作原理和操作方法。
2、掌握离心泵特性曲线的测定方法。
三、基本原理泵是输送液体的机械。
工业选泵时,一般根据生产工艺要求的扬程和流量,考虑输送液体的性质和蹦的结构特点及工作特性,来决定绷得类型和型号。
对一定的类型的泵而言,蹦的特性主要是指泵在一定转速下,其扬程、功率和效率与流量的关系。
离心泵的特性,通常与泵的结构、泵的转速以及输送液体的性质有关,影响因素很多。
因此,离心泵的特性只能采用饰演的方法实际测定。
如果在泵的进口管和出口管处分别安装上真空表和压力表,则可根据柏努 利方程得到扬程的计算公式:gu u h g P P H e 22122012-++-=ρ ①式①中,h 0—两测压点截面之间的垂直距离,m ; P 1——真空表所处截面的绝对压力,MPa ; P 2——压力表所处截面的绝对压力,MPa ; u 1—泵进口管流速,m/s ; u 2—泵出口管流速,m/s ;H e —泵的实际扬程,m 。
由于压力表和真空表的读数均是表示两测压点处的表压,因此,式①可表示为:gu u h H H H e 221220-+++=真压 ②其中, gP H ρ2=压 ③ gP H ρ1=真 ○4 式③、 ○4中的 P 2 和 P 1 分别是压力表和真空表的显示值。
离心泵的效率为泵的有效功率与轴功率之比值,轴N N e=η ○5 式○5中,η—离心泵的效率;Ne —离心泵的有效功率,kW ; N 轴—离心泵的轴功率,kW 。
有效功率可用下式计算][W g Q H N e e ρ= ○6 或][102KW Q H N e e ρ=○7 泵的轴功率是由泵配置的电机提供的,而输入电机的电能在转变成机械能时亦存在一定的损失,因此,工程上有意义的是测定离心泵的总效率(包括电机效率和传动效率)。
电总N N e=η ○8 实验时,使泵在一定转速下运转,测出对应于不同流量的扬程、电机输入功 率、效率等参数值,将所得数据整理后用曲线表示,即得到泵的特性曲线。
实验四 离心泵特性曲线测定实验一、实验目的:1、熟悉离心泵的结构与操作方法,了解压力、流量的测量方法。
2、掌握离心泵特性曲线的测定方法、表示方法,加深对离心泵性能的了解。
二、实验内容:1、熟悉离心泵的结构与操作。
2、手动(或计算机自动采集数据和过程控制)测定某型号离心泵在一定转速下,Q (流量)与H (扬程)、N (轴功率)、η(效率)之间的特性曲线。
一、 实验原理:A 、离心泵性能的测定:离心泵是最常见的液体输送设备。
对于一定型号的泵在一定的转速下,离心泵的扬程H 、轴功率N 及效率η均随流量Q 的改变而改变。
通常通过实验测出Q-H 、Q-N 及Q-η关系,并用曲线表示之,称为特性曲线。
特性曲线是确定泵的适宜操作条件和选用泵的重要依据。
本实验中使用的即为测定离心泵特性曲线的装置,具体测定方法如下:1、H 的测定:在泵的吸入口和压出口之间以1N 流体为基准列柏努利方程出入入出入出入出出入出出出入入入)--+-+-+-=+++=+++f f H gu u g P P Z Z H H gu g P Z H g u g P Z 2(222222ρρρ (4-1)上式中出入-f H 是泵的吸入口和压出口之间管路内的流体流动阻力(不包括泵体内部的流动阻力所引起的压头损失),当所选的两截面很接近泵体时,与柏努利方程中其它项比较,出入-f H 值很小,故可忽略。
于是上式变为:gu u g P P Z Z H 2(22入出入出入出)-+-+-=ρ (4-2)将测得的高差)入出Z Z -(和入出PP -的值以及计算所得的u 入,u 出代入式4-2即可求得H 的值。
2、 N 的测定:功率表测得的功率为电动机的输入功率。
由于泵由电动机直接带动,传动效率可视为1.0,所以电动机的输出功率等于泵的轴功率。
即: 泵的轴功率N =电动机的输出功率,kw电动机的输出功率=电动机的输入功率×电动机的效率。
泵的轴功率=功率表的读数×电动机效率,kw 。
实验二离心泵特性曲线的测定实验一实验内容测定一定转速下离心泵特性曲线二实验目的1 了解离心泵的结构特点, 熟悉并掌握离心泵的工作原理和操作方法。
2 掌握离心泵特性曲线的测定方法三基本原理离心泵特性, 通常与泵的结构、泵的转数以及所输送的液体有关, 影响因素很多, 只能采用实验的方法实际测定。
根据伯努利方程得到扬程的计算公式He=P2gρ−P1gρ+h0+u22−u122g式中,h-二测压点截面之间的垂直距离, m 此次实验中h=0P1-真空表处截面的绝对压力, Mpa;P2-压力表处截面的绝对压力, Mpa U1-泵进口管流速, m/s;U2-出口管流速, m/s;He-泵的实际扬程离心泵的效率为泵的有效功率与轴功率之比值: ŋ=NeN轴式中ŋ-离心泵的效率;Ne-离心泵的有效功率, kw;N轴-离心泵的轴功率, kw。
有效功率可按下式计算:Ne= HeQρg[W]输入电机的电能在转变为机械能时存在一定的损失, 因此工程上有意义的是测定离心泵的总效率:ŋ总=ŋ轴ŋ电在此次实验中ŋ总≈1实验时, 使泵在一定转速下运转, 测出对应于不同流量的扬程、电机输入功率、效率等参数值, 将所得数据整理后用曲线表示, 即得到泵的特性曲线。
四实验设计流量用涡轮流量计测定, 计算式为: Q=f/ξ其中- Q流量, L/s;f-流量计的转子频率;ξ-涡轮流量计的仪表系数电机功率采用数字仪表测量:N电=15*显示读数(kw)水的温度由温度计测定, 温度及安装在泵出口管路的上方五实验装置及流程主要设备: 离心泵, 循环水箱, 涡轮流量计, 流量调节阀, 压力表, 真空表, 温度计1-水槽 2-真空表 3-压力表 4-离心泵 5-功率表 6-温度计 7-涡轮流量计 8-控制阀设备及流程说明实验装置及流程如上图所示, 由离心泵和进出口管路、压力表、真空表、涡轮流量计、和调节控制阀组成测试系统。
试验物料为自来水, 为节约起见, 配置水箱循环使用, 由这次试验的装置可以看到实验开始时不需要灌泵, 流量通过控制阀调节, 通过涡轮流量计测量其大小。
离心泵特性曲线的测定
一、实验目的
1.熟悉离心泵的操作,了解离心泵的结构和特性,掌握实验组织方法。
2.掌握离心泵特性曲线的测定方法。
3.掌握离心泵的流量调节方法,了解电动调节阀、变频器、差压变送器等的工作原理。
二、基本原理
对一定类型的泵来说,泵的特性曲线主要是指在一定转速下,泵的扬程 (H )、轴功率(P ) 和效率 (η ) 与流量 ( q v ) 之间的关系。
由于离心泵的结构和流体本身的非理想性以及流体在流动过程中的种种阻力损失,至今为止,还难以推出扬程的纯理论计算式。
因此,一般采用实验的方法测定扬程,即泵的特性曲线由实验测得。
对图3-1所示的系统,分别取泵的进出口为1-1截面与2-2截面,建立机械能衡算式:
g
p ρ1
+ z 1 + g u 221+ H = g p ρ2
+ z 2 + g
2u 2
2 (3-1)
H =
g
u g u z z g p g p 222
12
21212-+-+-ρρ
∴ H =
g
u g u h g p g p 222
12212-++-ρρ (3-2)
式中: h 0 — 表示泵出口和进口间的位差,m ;
ρ— 流体密度,kg/m 3 ; g — 重力加速度 m/s 2;
p 1、p 2 — 分别为泵进、出口的真空度和表压,Pa ; u 1、u 2 — 分别为泵进、出口的流速,m/s ;
从式(3-2)可见,计算出泵进出管路上的压差、位差和速度差,就可计算出泵提供给液体
的扬程。
按照管路特性曲线和泵特性曲线的交点作为泵工作点的原理,改变管路阻力可以通过调节阀门开度加以实现,使管路特性曲线上的工作点发生移动,再将一系列移动的工作点的轨迹连接起来,就是泵的扬程曲线。
泵的有效功率 (P e ) 和效率 (η ) 分别由下面(3-3)和 (3-4) 式计算: g Hq P ρ= (3-3)
P g Hq P P //ρη== (3-4)
其中P 代表轴功率,即泵轴传递给泵的功率。
由式 (3-3) 和 (3-4) 求取的数据同样可以绘出泵的轴功率和效率曲线。
泵的特性曲线是在定转速下的实验测定所得。
但是,实际上感应电动机在转矩改变时,其转速会有变化,这样随着流量q v 的变化,多个实验点的转速n 将有所差异,因此在绘制特性曲线之前,须将实测数据换算为某一定转速n '下(可取离心泵的额定转速)的数据。
换算关系如下(比例定律):
流量 n
n q
q '
=' (3-5) 扬程 2
)(
n
n H H '=' (3-6) 轴功率 3
)(
n
n P P '=' (3-7) 效率 ηρρη==''=
'P
g qH P g H q ' (3-8) 方程式 (3-2) 表明,实验组织方法是:实验装置中在泵的进出口管上分别装有真空表 p 1
和压力表p 2;由温度计测量流体温度,从而确定流体的密度ρ;由功率表计量电机输入功率,由电机效率即可计算泵的输入功率P ;管路中需安装流量计,确定流体的流速u ;欲改变u 需阀门控制(手动或自动改变阀门的开度)。
三、实验流程图和实验步骤
(1)手动离心泵实验装置 a 、实验流程图
图3-1 离心泵特性曲线测定流程示意图
实验装置流程见图3-1,由低位水箱、泵进口真空表、泵、泵出口压力表、流量计、调节阀等组成了一个循环回路。
装置参数见下表3-1。
表3-1手动离心泵实验装置参数
b、实验步骤
1、关闭引水阀、排气,启动泵。
2、实验布点:实验顺序从大到小,即将阀门开至最大时,作为第一组实验数据,共
采集12~16组数据。
实验布点服从大流量多布点,小流量少布点规则,原因是离心泵效率极值点出现在大流量时。
前七组数据按流量显示仪读数每下降约0.2L/s布一个实验点,以后实验数据布点约下降0.4L/s。
注意:若发现流量显示仪读数达不到零,可采用将调节阀开至最大,再快速关闭调节阀,流量显示仪读数将为零,可能此读数不久还会上升,上升的数据不采集,以零计。
此时其余的仪表读数不随显示仪读数而变。
3、停泵:实验结束前,关闭泵出口阀,再关闭泵的电源。
4、上机进行数据处理。
c、实验数据记录
表3-2 离心泵原始数据
水温:℃
(2)自动离心泵实验装置
a、实验流程图
离心泵特性曲线测定装置具有在线操作功能,实验装置示意图见图3-2。
装置中泵进出口管径相同均为40cm,泵进出口测压点高度差h0 =0.2m。
b、实验步骤
1、灌泵:清洗水箱,并加装实验用水。
给离心泵灌水,排出泵内气体。
2、检查电源和信号线是否与控制柜连接正确,检查各阀门开度和仪表自检情况,试开状态下检查电机和离心泵是否正常运转。
3、数据的测定:实验时,逐渐打开调节阀以增大流量,待各仪表读数显示稳定后,读取相应数据。
(离心泵特性实验部分,主要获取实验参数为:流量q v、泵进口压力p1、泵出口压力p2、电机功率P电、泵转速n,及流体温度t和两测压点间高度差h0。
)
4、停泵:测取10组左右数据后,可以停泵,同时记录下设备的相关数据(如离心泵型号,额定流量、扬程和功率等)。
注意事项:
1、一般每次实验前,均需对泵进行灌泵操作,以防止离心泵气缚。
同时注意定期对泵进行保养,防止叶轮被固体颗粒损坏。
2、泵运转过程中,勿触碰泵主轴部分,因其高速转动,可能会缠绕并伤害身体接触部位。
图3-2 实验装置示意图
c、实验数据记录
表3-3 离心泵原始实验数据记录表
装置号:,离心泵型号,额定流量,额定扬程,额定功率,流体温度t 。
四、思考题
1、测定离心泵特性曲线的意义有那些?
2、试从所测实验数据分析离心泵在启动时为什么要关闭出口阀门?
3、启动离心泵之前为什么要引水灌泵?如果灌泵后依然启动不起来,你认为可能的原因是什么?
4、为什么用泵的出口阀门调节流量?这种方法有什么优缺点?是否还有其他方法调节流量?
5、泵刚启动后,出口阀如果不开,压力表和真空表读数如何变化?为什么?
6、正常工作的离心泵,在其进口管路上安装流量调节阀是否合理?为什么?。