2017考研数学线性代数:六大部分解题技巧总结
- 格式:docx
- 大小:12.87 KB
- 文档页数:3
考研线性代数复习有些做题规律考研数学考前复习一定要把解题思路了解清楚,对于重点题型一定要争取把分数拿到手。
为大家精心准备了考研线性代数做题的技巧,欢送大家前来阅读。
1.题设条件与代数余子式Aij或A*有关,那么立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。
2.假设涉及到A、B是否可交换,即AB=BA,那么立即联想到用逆矩阵的定义去分析。
3.假设题设n阶方阵A满足f(A)=0,要证aA+bE可逆,那么先分解出因子aA+bE再说。
4.假设要证明一组向量a1,a2,...,as线性无关,先考虑用定义再说。
5.假设AB=0,那么将B的每列作为Ax=0的解来处理再说。
6.假设由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。
7.假设A的特征向量ζ0,那么先用定义Aζ0=λ0ζ0处理一下再说。
8.假设要证明抽象n阶实对称矩阵A为正定矩阵,那么用定义处理一下再说。
(一)根底阶段(3月-6月)1.目标:不留死角地复习每个知识点。
2.阶段重点:按照教材逐一梳理每个章节的每个知识点,并做课后习题。
3.复习建议:(1)明确所报考数一、数二还是数三,准备相应教材。
(2)按照章节顺序结合大纲梳理教材,不留死角和空白。
(3)对于重要的定理、公式,不能够仅停留在“看懂了”的层面上,一定要自己亲手推导其证明过程。
(4)每天学习新内容前要复习前面的内容,准备一个记题本,将复习过程中碰到的不懂的知识点记录下与做错的习题成错题集。
(5)注意顺序:一定要先看书后做题,此阶段不要做难题。
(二)强化阶段(7月-8月)1.学习目标:熟悉考研数学题,分清重难点。
2.阶段重点:通过大量练习,归纳常见题型,总结解题思路和方法。
3.复习建议:(1)这一时期考生每天学习数学的时间尽量集中在一起,保证每日至少3个小时连续复习时间。
(2)可以买一本考研数学辅导书,先做练习题。
学会归纳题型与常考知识点,把重点、难点以及错题做成笔记,以便以后复习。
经济数学·线性代数:解题方法技巧归纳
常见的解题方法技巧:
1.高斯消元法:用于解决线性方程组的方法,通过
消去未知数的系数,使方程组的每一行的未知数
只有一个。
2.高斯-约旦消元法:用于解决线性方程组的方法,
通过消去未知数的系数,使方程组的每一行的未
知数只有一个,并通过交换方程的顺序来解决无
解或多解的情况。
3.矩阵消元法:用于解决线性方程组的方法,将方
程组写成矩阵形式,通过消去未知数的系数,使
矩阵的每一行的未知数只有一个。
4.高斯-约旦分解法:用于解决线性方程组的方法,
通过将方程组写成两个矩阵的乘积的形式。
5.广义逆矩阵法:用于解决线性方程组的方法,通
过求出矩阵的广义逆(也叫做伪逆),将方程组写
成矩阵的形式,求解未知数的值。
6.矩阵的特征值与特征向量:用于解决矩阵的本征
值问题的方法,通过求解矩阵的特征方程,求得
矩阵的特征值与特征向量,并利用它们来求解其
他问题。
7.奇异值分解:用于解决矩阵的奇异值分解问题的
方法,将矩阵分解为三个矩阵的乘积的形式,并利用它们来求解其他问题。
8.广义逆矩阵的求法:用于求解矩阵的广义逆(也叫做伪逆)的方法,包括计算机辅助的方法和数学计算的方法。
线性代数求解方法和技巧线性代数是数学中重要的一个分支,研究向量空间、线性变换和线性方程组等内容。
在实际问题中,我们常常需要用线性代数的方法来解决问题,因此掌握线性代数的求解方法和技巧对于理解和应用数学是非常重要的。
首先,我们讨论线性方程组的求解方法。
线性方程组是由一组线性方程组成的方程组,其中每个方程的未知数的次数都为1。
对于n个未知数和m个方程的线性方程组,我们有以下几种常用的求解方法:1. 列主元消元法:这是最常用的线性方程组求解方法之一。
它的基本思想是通过行变换将线性方程组化为一个三角形式,进而求解得到方程组的解。
在进行行变换时,要选择合适的列主元,即选择主元元素绝对值最大的一列作为主元素。
2. 矩阵求逆法:对于一个可逆的n阶方阵A,我们可以通过求A的逆矩阵来求解线性方程组Ax=b。
具体地,我们首先通过高斯消元法将方程组化为三角形式,然后根据三角形式的矩阵求逆公式来求解x。
3. LU分解法:对于一个n阶非奇异矩阵A,我们可以将其分解为一个下三角矩阵L和一个上三角矩阵U的乘积,即A=LU。
接着,我们可以通过LU分解来求解线性方程组Ax=b。
具体地,我们首先通过LU分解将方程组化为Lc=b和Ux=c两个方程组,然后依次求解这两个方程组得到x的值。
除了以上的求解方法,还有一些线性方程组的特殊情况和对应的求解方法:1. 齐次线性方程组:如果线性方程组右边的常数项都为0,即b=0,那么我们称为齐次线性方程组。
对于齐次线性方程组,其解空间是一个向量空间。
我们可以通过高斯消元法来求解齐次线性方程组,先将其化为三角形式,然后确定自由未知量的个数,最后确定解空间的基底。
2. 奇异线性方程组:如果线性方程组的系数矩阵A是奇异矩阵,即det(A)=0,那么我们称为奇异线性方程组。
对于奇异线性方程组,其解可能不存在,或者存在无穷多解。
我们可以通过计算矩阵A的秩来确定线性方程组的解的情况。
另外,在实际问题中,我们可能会遇到大规模的线性方程组,这时候求解方法和技巧还需要考虑到计算效率的问题。
线性代数题求解答技巧线性代数是一门重要的数学学科,应用广泛,涉及到众多的概念和定理。
解线性代数题有一些技巧和方法可以帮助我们更好地理解问题和找到解答。
在本文中,我将向您介绍一些解线性代数题的技巧。
1. 熟悉基本概念和定理:了解线性代数的基本概念和定理,例如矩阵、行列式、向量空间、线性变换等,对于解题非常重要。
熟悉这些基础知识将帮助您更好地理解问题和找到解答。
2. 理解题目中的关键信息:仔细阅读题目,并理解其中的关键信息和要求。
对于一些复杂的题目,可以将问题进行拆解,将其转化为更简单的子问题来解决。
3. 画图和示意图:对于涉及到向量、矩阵和线性变换的题目,可以尝试画图和示意图以帮助理解问题。
图形可以直观地表示线性变换的作用和向量的变化,有助于更好地理解问题的本质。
4. 利用矩阵运算法则:运用矩阵的基本运算法则,例如加法、减法、乘法和转置等来进行计算。
通过运用这些法则,可以简化计算和转化问题的形式。
5. 找到未知量的线性关系:对于涉及到向量和矩阵的方程组,可以通过列向量和矩阵相乘得到一个线性方程组。
通过求解这个方程组,可以找到未知量之间的线性关系。
6. 利用行列式的性质:行列式是解线性方程的重要工具之一。
了解行列式的性质和计算方法,可以帮助我们更好地理解和解决问题。
通过对行列式的计算,可以判断矩阵是否可逆、线性方程组是否有唯一解等关键问题。
7. 利用向量空间的性质:向量空间是研究向量的重要概念之一。
了解向量空间的性质,例如维数、基、秩等,可以帮助我们更好地理解向量空间的结构和性质,从而解决相关问题。
8. 利用特殊矩阵的性质:对于一些特殊的矩阵,例如对称矩阵、上三角矩阵、对角矩阵等,它们具有一些特殊的性质和特点。
通过利用这些性质,可以简化计算和解决问题。
9. 利用线性变换的性质:线性变换是研究线性代数的重要工具之一。
了解线性变换的性质和运算法则,可以帮助我们更好地理解和解决线性变换的问题。
10. 训练解题技巧:解线性代数题需要一些技巧和经验。
常见的线性代数求解方法
1.列主元消去法
列主元消去法是一种经典的求解线性方程组的方法。
它通过将
方程组转化为上三角矩阵的形式来求解。
这个方法的关键在于选取
主元的策略。
一种常见的选取主元的策略是选择当前列中绝对值最
大的元素作为主元,然后进行消去操作,直到将矩阵转化为上三角
矩阵。
2.高斯-约当消去法
高斯-约当消去法是另一种常见的线性方程组求解方法。
它通
过消去矩阵的下三角部分来将线性方程组转化为上三角矩阵的形式。
这个方法也需要选择主元,常见的选择策略是选取当前行中绝对值
最大的元素作为主元,然后进行消去操作。
3.LU分解法
LU分解法是将矩阵分解为一对矩阵的乘积的方法。
这个方法的思想是先将矩阵分解为一个下三角矩阵和一个上三角矩阵,然后通过求解上三角矩阵和下三角矩阵的两个方程组来求解原始的线性方程组。
4.Jacobi迭代法
Jacobi迭代法是一种迭代求解线性方程组的方法。
它通过将原始的线性方程组转化为一个对角矩阵和另一个矩阵的乘积的形式,然后通过迭代求解这个对角矩阵和另一个矩阵的方程组来逼近线性方程组的解。
5.Gauss-Seidel迭代法
Gauss-Seidel迭代法是另一种迭代求解线性方程组的方法。
它与Jacobi迭代法类似,但是在每一次迭代中,它使用前一次迭代得到的部分解来更新当前的解。
这个方法通常比Jacobi迭代法收敛得更快。
以上是一些常见的线性代数求解方法。
每种方法都有其特点和适用范围,我们可以根据具体情况选择合适的方法来求解线性方程组的问题。
线性代数求解技巧线性代数是数学中的一个重要分支,广泛应用于科学、工程和计算领域。
线性代数的核心是通过矩阵和向量的运算来解决线性方程组、矩阵的特征值和特征向量等问题。
在线性代数中,我们可以采用一些技巧来简化计算和求解问题。
下面将介绍一些常用的线性代数求解技巧。
1. 高斯消元法高斯消元法是求解线性方程组的常用技巧。
这种方法通过矩阵的初等行变换将方程组转化为行阶梯形式,从而简化求解过程。
首先,将方程组表示成增广矩阵的形式,然后通过交换行、乘以非零常数和将一行的倍数加到另一行上的操作,将矩阵转化为行阶梯形式。
接着,通过回代的方式求解出方程组的解。
高斯消元法在实际应用中非常方便,可以高效地求解大规模的线性方程组。
2. LU分解LU分解是将矩阵分解为一个下三角矩阵和一个上三角矩阵的乘积的过程。
LU分解可以简化求解线性方程组的过程,并且在分解完成后,可以通过前向替代和后向替代的方式求解出方程组的解。
LU分解的优点是可以在多次使用同一个系数矩阵的情况下,避免重复计算。
3. 特征值与特征向量特征值和特征向量是矩阵的重要性质,可以用于求解许多线性代数问题。
特征值表示的是矩阵变换后,向量沿着特定方向发生多大变化的量度。
特征向量是在矩阵变换后,仍然保持在同一方向上的向量。
通过求解特征值和特征向量,我们可以得到一些矩阵的重要性质,如矩阵的谱半径和最大特征值等。
4. 奇异值分解奇异值分解是将一个矩阵分解为三个矩阵的乘积的过程。
奇异值分解广泛应用于信号处理、数据压缩和机器学习等领域。
通过奇异值分解,我们可以得到矩阵的奇异值和左、右奇异向量。
奇异值表示了矩阵的重要程度和变换的能力,而奇异向量表示矩阵变换的方向。
奇异值分解可以用于矩阵的降维和矩阵逆的计算等问题。
5. 内积和正交性内积是线性代数中的一个重要运算,它可以表示两个向量的夹角和它们之间的相似度。
内积有许多重要的性质,如对称性、线性性和正定性等。
利用内积的性质,我们可以定义向量的长度、向量的投影和向量的正交性等概念,并解决一些与向量之间的关系有关的问题。
考研数学中的线性代数有很多的复习技巧,掌握这些技巧之后对于提高成绩有着很大的帮助。
考研辅导专家为广大考研学子总结出以下几个技巧:一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。
线性代数的概念很多,重要的有:代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。
往年常有考生没有准确把握住概念的内涵,也没有注意相关概念之间的区别与联系,导致做题时出现错误。
例如,矩阵A=(α1,α2,…,αm)与B=(β1,β2…,βm)等价,意味着经过初等变换可由A得到B,要做到这一点,关键是看秩r(A)与r(B)是否相等,而向量组α1,α2,…αm与β1,β2,…βm等价,说明这两个向量组可以互相线性表出,因而它们有相同的秩,但是向量组有相同的秩时,并不能保证它们必能互相线性表现,也就得不出向量组等价的信息,因此,由向量组α1,α2,…αm与β1,β2,…βm等价,可知矩阵A=(α1,α2,…αm)与B=(β1,β2,…βm)等价,但矩阵A与B等价并不能保证这两个向量组等价。
又如,实对称矩阵A与B合同,即存在可逆矩阵C使CTAC=B,要实现这一点,关键是二次型xTAx与xTBx的正、负惯性指数是否相同,而A与B相似是指有可逆矩阵P使P-1AP=B成立,进而知A与B有相同的特征值,如果特征值相同可知正、负惯性指数相同,但正负惯性指数相同时,并不能保证特征值相同,因此,实对称矩阵A~B A B,即相似是合同的充分条件。
线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有:行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。
考研线性代数有哪些复习技巧及建议考研线性代数有哪些复习技巧及建议新一族考研人奔向考研战场时,其中数学复习成为不少考生的拦路虎,尤其是数学中的线性代数部分,复习起来有一定的难度。
店铺为大家精心准备了考研线性代数复习方法和意见,欢迎大家前来阅读。
考研线性代数复习技巧和建议集锦考研数学试题的题量一般在20-22道之间,一般6道填空题,6道选择题,10道大题。
数学试卷的结构是总共20道题,填空5个,选择5个,大的综合题10个,其中高数6个,线性代数和概率论各2个。
首先填空题命题原则是考查考生最基本的运算,它的难易度一般要求都是容易和中等偏下的。
通过填空题的考察要了解同学快捷准确的能力,这就要求考生平时复习中一定要注意计算的准确。
有的填空题有一些小窍门,要学会总结和积累,做到快捷准确答题。
其次选择题命题原则考两个方面,一是对数学概念的理解,二是对数学方法的掌握。
选择题的难易度是中下等。
前两部分不会有难题,所以应该有个比较高的得分率,考生要针对这部分好好复习。
最后,简答题中数一15到19是微积分,20、21是线性代数,22、23是概率论。
数二15到21是微积分,22、23是线性代数。
在这9道题里应该有1到2个难题,而且出在微积分部分,因为微积分部分题多分多。
考研试卷是按块出题,15到19题难度逐渐上升,21到23题然后再下降,所以在考场上一定要灵活,如果复习的好,这5道微积分就一股作气答完,如果感到棘手就先做容易的题。
线性代数复习技巧指导对于基础一般的考生,不管是线性代数还是数学的其他部分,都要进行一个前期的复习。
考生可以报一个春季数学基础班,春季基础班只在周末上课,战线比较长。
另外不同于强化班连续上课,考生能够抽出一些时间提前预习上课内容,课后也有时间巩固、强化上课内容。
如果能够跟着老师认认真真复习一段时间,我想数学肯定会有很大提高的。
数学的复习离不开做题,所以一定要通过做题巩固所学的概念、原理和方法。
做题时不要找难题、怪题,要针对基本知识点和基本原理多做练习,体会这些知识点和原理的应用。
考研线性代数解题方法汇总(非知识点汇总)行列式的计算消零化基本形法•思想:通过恒等变形变为基本形求解•恒等变形o消零化▪当列/行元素大致相同时,用第一行倍加▪当列/行元素具有递推性质时,用i行倍加i+1行▪相同优先o互换▪变为分块对角矩阵▪变换主/副对角线(变换次数为(n-1)n/2)o展开定理•常见行列式形状o爪形行列式o行和相等行列式▪求法▪1、所有元素向第一列求和▪2、提出第一列公因式▪3、将第一列归零化,视情况采用相应方法加边法•使用场景:无法通过互换、倍加、倍乘化简的行列式•使用方法:每列元素都含有同一参数的项,且该项系数(可以是其他参数)具有规律性数学归纳法与递推法•使用场景:具有递推性质的n阶行列式的证明•第一类归纳法o1、验证n=1时成立o2、假设n=k时成立o3、证明n=k+1时成立•第二类归纳法o1、验证n=1、n=2时成立o2、假设n<k时成立o3、证明n=k时成立•常见行列式形状o三主对角线行列式▪行和相等▪行和不相等用范德蒙德行列式行列式形式与解法总结•特殊形状行列式o爪形行列式o行和相等行列式o三主对角线行列式•多个行/列元素大致相同•行列元素具有递推性质•零的分布有规律•第一列只有两个元素o消去第二个元素o放置两头采用展开定理•具有递推性质的n阶行列式•所有元素都为齐次式余子式和代数余子式的线性组合计算法1:转化为行列式计算法2:用伴随矩阵计算•1、利用 A=|A|A逆计算A•2、由伴随阵的相应元素得到余子式•要求:需要A逆好求,没啥大用特别:所有代数余子式和的计算抽象行列式的计算|A+B|•知列向量o拆分o将向量的线性组合转化为矩阵乘积o将对矩阵的变换过程转化为矩阵乘积•完全抽象•知部分具体矩阵C 或 C的特征值o向|C|、|C+kE|靠拢▪相似:知A~B,可得|A+kE|=|B+kE|▪特征值性质:A+kE的特征值为 A的特征值+k行列式方程•1、将方程化为待求矩阵为因子的因式方程行列式表示的函数和方程求行列式函数f最高次数•化简行列式计算fo观察有差相同的行列,尽可能化零o多项式行列式化为基本型求解求行列式函数f的复合函数求行列式函数f的根或根的个数由行列式函数f的根特征(二重根)求参数行列式在Ax=0上的应用——克拉默法则注意:在求解|A|=0时,使用展开定理直接求因式乘积,不要先求多项式再因式分解,可能很难因式分解|A|=0的证明充要条件•|A|=k|A|o将关于A一次幂的表达式两边取行列式o特别:正交矩阵相关证明【李线代讲义例2.29】•Ax=0有非零解•反证法•存在零特征值o当题目中提到列向量时使用o题目中有A的多项式函数:同乘å•矩阵的秩注意矩阵方阵的幂通用步骤o对角阵o小三角阵o对角线元素相同的三角阵o零分布规则的阵分解为矩阵乘积•1、若给定矩阵向量成比例,则可分解为两向量乘积•2、利用结合律将两向量交换相乘•原理o行向量*列向量=数o列向量*行向量=各行成比例的矩阵利用递推式•使用场景:给定矩阵无法分解•1、依次求矩阵前几次幂,得递推式o形式:A^m=k*A^s(n>m)o注意•2、由递推式用法化简求值o1)从A^n中提出A^s,将其看作催化剂o2)A^s把A^n剩余部分全部转化为k▪转化为(n-s)/(m-s)个k乘积▪当n-s/m-s不是整数时分类讨论利用对角阵•1、求其相似对角阵代入•2、当对角阵元素相同时,求幂不需要求P两方阵和的幂•通过二项式定理展开•特别:对角线元素相同的三角阵o1、将给定矩阵分解为单位阵E和小三角阵B的和o2、用二项式定理展开,消去零项,再求和o背景知识:小三角阵▪对角元素为0的三角阵▪小三角阵的幂=更小三角阵▪小三角阵的”非零对角线到角的线数+1”次幂=O矩阵乘法的可交换性求与其可交换的矩阵•待定系数法o1、假设同阶矩阵B与其可交换o2、列式AB=BA并化简o3、令对应元素相等得解•拆解单位阵法o应用场景:给定矩阵与单位阵相近o1、将给定矩阵呢拆解为单位阵E和矩阵Bo2、求与矩阵B可交换的矩阵证明两矩阵可交换•利用伴随矩阵公式o应用场景:被证明式中含有伴随阵o1、凑出与伴随阵对应的矩阵o2、用公式进行矩阵交换后恢复•利用可逆矩阵公式o应用场景:给定两被证矩阵关系式o1、将已知条件凑出AB=E,证明可逆o2、由可逆矩阵可交换写出交换乘积等式o3、将乘积展开,消去多余项相关结论•对角矩阵与对角矩阵可交换•(E+A)^(-1)与(E-A)可交换对称矩阵和反对称矩阵相关结论•n阶方阵=对称矩阵+反对称矩阵待定证明A可逆并求A逆求数值矩阵A的逆•分块矩阵法求抽象矩阵的逆•分解成多个可逆矩阵的乘积o将待证矩阵分解为已知可逆矩阵的乘积o相关结论分块矩阵的逆•主对角线分块矩阵的逆•副对角线分块矩阵的逆•待定系数法o1、设出逆矩阵,令其与原矩阵相乘为单位阵o2、由对应块相等列方程可逆矩阵的判别验证•证明可逆o证明|A|≠0o特征值全为0部分+特征值全不为0部分证明A=O证明aij=0证明r(A)=0相关结论抽象矩阵式化简先化简条件,再化简被证式用条件将被证式的不可转化单元表出伴随矩阵低阶阵:定义法一般/抽象阵:公式法记忆方阵的行列式常见恒等变换•交换某项乘积顺序o解法:一边消一边补o例:(E+AB)=A(E+BA)A^(-1)•(A^(-1)+B^(-1))=A^(-1)(A+B)B^(-1)矩阵方程技巧•知A*可直接求|A|、A^(-1)•A逆的逆可乘进括号逆中初等矩阵将左乘初等矩阵看作行变换证明正交阵证明ATA=AAT=E,不能只证一部分矩阵的秩与等价矩阵向量向量组的线性表出计算题转化为线性方程组有没有解证明题构造方程组,证明方程组有解•等价证明r(å1,å2,...,ås)=r(å1,å2,...,ås,ç)找出两个条件•å1,å1,...,ås线性无关•å1,å1,...,ås,ç线性相关证明k≠0反证法向量组的线性相关、无关具体相关性计算转化为Ax=0有没有非零解特别•有零向量•向量数>维数•n维n个向量行列式=0•向量数>矩阵秩抽象相关性证明定义法•1、设k1a1+k2a2+...+knan=0•2、恒等变形证明k1 k2 ... kn=0▪同乘使1项为0,需要多次同乘▪同乘后与原式相加减消元o常用条件▪特征向量:不同特征值特征向量线性无关▪基础解系:基础解系线性无关秩•1、将被证向量组以列排为矩阵A•2、证明r(A)=so A若有A=BCo A若有AB=Co A若有AB=O秩向量组极大无关向量组•含一参向量组求极大【李线代讲义例3.21】o拼矩阵、行变换、由参讨论秩求两向量组矩阵计算证明•思路:分别找到表大于和表小于的两个条件•条件o向量o方程组▪解向量的秩=n-r(A)▪若Ax=b、Ax=0有s个线性无关解向量,则s≤n-r(A)▪若AB=O,则r(B)≤n-r(A)其他•已知r(A)求r(B)等价矩阵和等价向量组分别证明向量组1、11可以相互线性表出r(A)=r(B)=r(A,B)当A B其中一个满秩时不需要求r(A,B)A可由B表出,B不能由A表出1、由r(A)<r(A,B)≤n得|A|=0解未知数2、代入看是否满足r(A)<r(B)=r(A,B)向量空间线性方程组齐次线性方程组具体型求解1、将系数矩阵化为含最大单位阵的矩阵2、非单位阵列的位置填写100;010;0013、在解向量其他位置填写填1列元素相反数抽象型求解1、推断r(A)知解向量个数2、找出n-r(A)个å使得Ax=0证明向量组是Ax=0的基础解系1、验证Açi=02、证明ç 1 ç 2 ... çt无关3、说明t=n-r(A)非齐次线性方程组具体型求解一般步骤•1、将增广矩阵化为含最大单位阵的矩阵•2、自由变量赋值o1/选取剩余非单位矩阵列作为自由变量o2/给通解的自由变量列赋值100;010;001o3/给特解的自由变量列赋值000•3、填写其他元素o1/通解解向量其他位置填写填1列元素相反数o2/特解解向量其他位置填写b向量元素含参注意•首先尽量消去参数•不能对某行同乘/除(可能为零)含参项•不能对某行同除含参项后加到另一行(可能为∞)含两参数的分类讨论•1、令|A|=0求出得唯一解参数范围•2、剩余范围画树状图讨论o三个主分支o次分支标准▪r(A)=?=r([A,b])•3、写情况类别o将每种情况对应的路线取交集,得参数范围o无解情况参数范围可取并集,合并为一种o无穷解情况不可合并抽象型求解1、推断解的结构2、找出n-r(A)个线性无关齐次方程解向量3、找出特解A的行向量与Ax=0的解的关系线性方程组系数矩阵列向量和解的关系求两个方程组的公共解两个方程组联立成大方程组求解抽象方程组:证明大方程组有非零解一个方程组+另一方程组的基础解系1、求出方程组的基础解系2、将公共解用两个基础解系分别表示•其中一个基础解系用负系数表示•移项得两个基础解系的线性组合=03、建立新齐次方程组并求解4、代回2步骤式得公共解同解方程组具体型同解必要条件题目•同未知数不同方程数的两个齐次方程组同解求参数步骤•1、由方程式较多的方程组1非满秩求参数•2、将方程组1求解得基础解系•3、将基础解系代入方程组2中求参数•4、验证两方程组秩相同抽象型1、证明方程组(1)的解是(11)的解2、证明方程组(11)的解是(1)的解方程组的几何应用求矩阵AX=B型•将其看作多个同系数矩阵的方程组•1、设X=[x,y,z],x y z为列向量•2、将A、B组成增广矩阵[A,B]求解f(X)=B型(不可化为AX=B)•1、设未知矩阵为具体矩阵•2、代入条件令对应元素相等转化为方程组特征值与特征向量求特征值/向量数值矩阵特征方程法•1、利用特征方程求解特征根o展开公式法▪找到两行/列相乘加满足o一般方法▪1、合并同类项写成降幂多项式▪2、猜根后通过多项式除法进行因式分解•2、带入特征根解齐次线性方程组求特征向量观察法•秩1矩阵•主对角线ai,其他为b抽象矩阵方法•公式法•定义法o思想:将题目条件转化为Aå=kå形式o常见•相似法o背景知识▪P^(-1)AP~B,特征值相同▪B的特征向量=P^(-1)*A的特征向量▪A的特征向量=P*B的特征向量o思想:构造相似阵,求其特征,公式法求原矩阵特征o题目特征▪题目出现‘å1 å2线性无关’,‘Aå1’,‘Aå2’•同乘å法o步骤▪1、对f(A)=0同乘å转化为f(λ)=0,求λ可能值▪2、由’秩’ + ’可相似对角化’ 确定λ题目•‘å1 å2线性无关’,‘Aå1’,‘Aå2’•多项式f(A)=0两个矩阵是否有相同的特征值判断思路特征多项式是否相等常见判断矩阵与转置阵相似矩阵。
2017考研数学线性代数:六大部分解题技巧总结
来源:智阅网
线性代数在考研数学中占有重要的地位,多以计算题为主,证明题为辅。
以下是总结的线性代数解题技巧,以供大家参考。
一、行列式
关于行列式这一块,它在整个考研数学试卷中所占分量不是很大,一般主要是以填空选择题为主,这一块是考研数学中必考内容,它不单单考察行列式的概念、性质、运算,与行列式有关的考题也是很多的,比如在逆矩阵、向量组的线性相关性、方阵的秩、线性方程组解的判断、特征值的求解、正定二次型与正定矩阵的判断等问题中都会用到行列式的有关计算。
因此,对于行列式的计算方法我们一定要熟练掌握。
二、矩阵
关于矩阵这一块:矩阵是线性代数的核心知识,它是后面其他各章节的基础,在向量组、线性方程组、特征值、二次型中均有体现。
矩阵的概念、运算及理论贯穿整个线性代数的知识部分。
这部分的考点涉及到伴随矩、逆矩阵、初等矩阵、矩阵的秩以及矩阵方程,这些内容是有关矩阵知识中的一类常见的试题。
三、向量
关于向量这部分:它既是重点又是难点,主要是因为其比较抽象,因此很多考生对这一块比较陌生,进而就会导致我们同学们在学习理解以及做题上的困难。
这一部分主要是要掌握两类题型:一是关于一个向量能否由一组向量线性表出的问题,二是关于一组向量的线性相关性的问题。
而这两类题型我们一般是与非齐次方程组和齐次方程组一一对应来求解的。
四、线性方程
关于线性方程组这一块;线性方程组在近些年出现的频率较高,几乎每年都有考题,它也是线性代数部分考查的重点内容。
所以对于线性方程组这一部分的内容,同学们一定要掌握。
其常见的题型如下:(1)线性方程组的求解(2)方程组解向量的判别及解的性质(3)齐次线性方程组的基础解系(4)非齐次线性方程组的通解结构(5)两个方程组的公共解、同解问题。
五、特征值、特征向量
关于特征值、特征向量这一块:它也是线性代数的重点内容,在我们考研数学中一般都是题多分值大。
其常见题型如下:(1)数值矩阵的特征值和特征向量的求法(2)抽象矩阵特征值和特征向量的求法(3)判定矩阵的相似对角化(4)由特征值或特征向量反求A(5)有关实对称矩阵的问题。
六、二次型
关于二次型这一块:二次型是与其二次型的矩阵对应的,因此有关二次型的很多问题我们都可以转化为二次型的矩阵问题,所以正确写出二次型的矩阵是这一章节最基础的要求。
而本章节的常见题型如下:(1)二次型表成矩阵形式(2)化二次型
为标准形(3)二次型正定性的判别。
上面我们总结的线性代数各个部分的解题技巧,对我们总结解题方法和技巧,灵活的应对各种体型,有极大的帮助,考生们要认真学习上述的内容,汤家凤编写的2017《考研数学绝对考场最后八套题(数学一)》这本书对我们最后冲刺阶段的学习,模拟演练,帮助很大,考生们要好好利用哦,加油。