中考《圆》专题复习训练有答案
- 格式:doc
- 大小:1.43 MB
- 文档页数:44
中考数学总复习《圆的综合题》练习题(附答案)班级:___________姓名:___________考号:_____________一、单选题1.在平面直角坐标系xOy中以点(3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离2.如图,在平面直角坐标系xOy中以原点O为圆心的圆过点A(13,0)直线y=kx-3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22B.24C.10√5D.12√33.如图,四边形ABCD内接于⊙O,若∠BOD=100°,则∠DCB等于()A.90°B.100°C.130°D.140°4.如图,在正五边形ABCDE中连接AD,则∠DAE的度数为()A.46°B.56°C.36°D.26°5.如图,PA、PB为∠O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交∠O 于点D.下列结论不一定成立的是()A.△BPA为等腰三角形B.AB与PD相互垂直平分C.点A,B都在以PO为直径的圆上D.PC为△BPA的边AB上的中线6.如图,四边形ABCD内接于半径为6的∠O中连接AC,若AB=CD,∠ACB=45°,∠ACD=12∠BAC,则BC的长度为()A.6 √3B.6 √2C.9 √3D.9 √27.如图,点A,B,D,C是∠O上的四个点,连结AB,CD并延长,相交于点E,若∠BOD=20°,∠AOC=90°,则∠E的度数为()A.30°B.35°C.45°D.55°8.∠ABC中∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB,BC分别交于点E,D,则AE的长为()A.95B.125C.185D.3659.如图,AB为∠O的直径,点C在∠O上,若∠B=60°,则∠A等于()A.80°B.50°C.40°D.30°10.两个圆的半径分别是2cm和7cm,圆心距是5cm,则这两个圆的位置关系是() A.外离B.内切C.相交D.外切11.已知正三角形的边长为12,则这个正三角形外接圆的半径是()A.B.C.D.12.一个扇形的弧长为4π,半径长为4,则该扇形的面积为()A.4πB.6πC.8πD.12π二、填空题13.在Rt∠ABC中∠C=90°,AB=5,BC=4,求内切圆半径14.如图,∠C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内弧OB上一点,∠BMO=120°,则∠C的半径为.15.一个立体图形的三视图如图所示,根据图中数据求得这个立体图形的侧面积为.16.一个半径为5cm的球形容器内装有水,若水面所在圆的直径为8cm,则容器内水的高度为cm.17.如图,在直角坐标系中以点P为圆心的圆弧与x轴交于A,B两点,已知P(4,2)和A(2,0),则点B的坐标是.18.下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作法:如图①作射线AB;②在射线AB取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;③以C为圆心,OC C为半径作弧,与⊙O交于点D,作射线AD.则∠DAB即为所求的角.请回答:该尺规作图的依据是.三、综合题19.如图,在△ABC中AC=BC=BD,点O在AC边上,OC为⊙O的半径,AB是⊙O 的切线,切点为点D,OC=2,OA=2√2.(1)求证:BC是⊙O的切线;(2)求阴影部分的面积.20.如图,△ABC内接于⊙O,CD是直径,∠CBG=∠BAC,CD与AB相交于点E,过点E作EF⊥BC,垂足为F,过点O作OH⊥AC,垂足为H,连接BD、OA.(1)求证:直线BG与⊙O相切;(2)若BEOD=54,求EFAC的值.21.如图,四边形ABCD 内接于∠O,BD是∠O的直径,过点A作∠O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE∠CD;(2)已知AE=4cm,CD=6cm,求∠O的半径.22.如图,∠O是∠ABC的外接圆,BC为∠O的直径,点E为∠ABC的内心,连接AE并延长交∠O 于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为∠O的切线.23.公元前5世纪,古希腊哲学家阿那克萨哥拉因“亵渎神灵罪”而被投人监狱,在狱中他对方铁窗和圆月亮产生了兴趣.他不断变换观察的位置,一会儿看见圆比正方形大,一会儿看见正方形比圆大,于是伟大的古希腊尺规作图几何三大问题之--的化圆为方问题诞生了:作一个正方形,使它的面积等于已知圆的面积(1)设有一个半径为√3的圆,则这个圆的周长为,面积为,作化圆为方得到的正方形的边长为(计算结果保留π)(2)由于对尺规作图的限制(只能有限次地使用没有刻度的直尺和圆规进行作图),包括化圆为方在内的几何三大问题都已被证明是不可能的.但若不受标尺的限制,化圆为方并非难事。
初三数学中考复习 圆专题训练题一、选择题1.如图,BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ︵=BC ︵,∠AOB =60°,则∠BDC 的度数是( D )A .60°B .45°C .35°D .30°2.如图所示,AB 是⊙O 的直径,点C 为⊙O 外一点,CA ,CD 是⊙O 的切线,A ,D 为切点,连接BD ,AD.若∠ACD =30°,则∠DBA 的大小是( D )A .15°B .30°C .60°D .75°3.如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D,C.若∠ACB=30°,AB=3,则阴影部分的面积是( C )A.32 B.π6 C.32-π6 D.33-π64.已知⊙O的半径为10 cm,弦AB∥CD,AB=12 cm,CD=16 cm,则AB和CD 的距离为( C )A.2 cm B.14 cm C.2 cm或14 cm D.10 cm或20 cm5.如图,从一块直径为24 cm的圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A,B,C在圆周上,将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是( C )A.12 cm B.6 cm C.3 2 cm D.2 3 cm二、填空题6.如图,⊙O的直径CD=20 cm,AB是⊙O的弦,AB⊥CD,垂足为M,若OM =6 cm,则AB的长为__16__cm.7.如图,⊙O是△ABC的内切圆,若∠ABC=70°,∠ACB=40°,则∠BOC=__125°.8.如图,把一个圆锥沿母线OA 剪开,展开后得到扇形AOC ,已知圆锥的高h 为12 cm ,OA =13 cm ,则扇形AOC 中AC ︵的长是__10π__cm(计算结果保留π).9.如图,AB 是半圆O 的直径,点C ,D 是半圆O 的三等分点,若弦CD =2,则图中阴影部分的面积为__2π3__.10.如图,在矩形ABCD 中,AB =3,AD =4,将矩形ABCD 绕点D 顺时针旋转90°得到矩形A ′B ′C ′D ,则点B 经过的路径与BA ,AC ′,C ′B ′所围成封闭图形的面积是__25π4+12__(结果保留π).三、解答题11.一条排水管的截面如图所示,已知排水管的半径OA =1 m ,水面宽AB =1.2 m ,某天下雨后,水管水面上升了0.2 m ,求此时排水管水面的宽CD.解:如图,作OE ⊥AB 于E ,交CD 于F ,∵AB =1.2 m ,OE ⊥AB ,OA =1 m ,OE =0.8 m ,∵水管水面上升了0.2 m ,∴OF =0.8-0.2=0.6 m ,∴CF =OC 2-OF 2=0.8 m ,∴CD =1.6 m12.如图,AB 是⊙O 的直径,点P 是弦AC 上一动点(不与A ,C 重合),过点P 作PE ⊥AB ,垂足为E ,射线EP 交AC ︵于点F ,交过点C 的切线于点D.(1)求证:DC =DP ;(2)若∠CAB =30°,当F 是AC ︵的中点时,判断以A ,O ,C ,F 为顶点的四边形是什么特殊四边形?说明理由.解:(1)连接OC ,∵∠OAC =∠ACO ,PE ⊥OE ,OC ⊥CD ,∴∠APE =∠PCD ,∵∠APE =∠DPC ,∴∠DPC =∠PCD ,∴DC =DP (2)以A ,O ,C ,F 为顶点的四边形是菱形;∵∠CAB =30°,∴∠B =60°,∴△OBC 为等边三角形,∴∠AOC =120°,连接OF ,AF ,∵F 是AC ︵的中点,∴∠AOF =∠COF =60°,∴△AOF 与△COF 均为等边三角形,∴AF =AO =OC =CF ,∴四边形OAFC 为菱形13.如图,AB 是⊙O 的直径,C ,G 是⊙O 上两点,且AC =CG ,过点C 的直线CD ⊥BG 于点D ,交BA 的延长线于点E ,连接BC ,交OD 于点F.(1)求证:CD 是⊙O 的切线; (2)若OF FD =23,求∠E 的度数;(3)连接AD ,在(2)的条件下,若CD =3,求AD 的长.解:(1)连接OC ,AC ,CG ,∵AC =CG ,∴AC ︵=CG ︵,∴∠ABC =∠CBG ,∵OC =OB ,∴∠OCB =∠OBC ,∴∠OCB =∠CBG ,∴OC ∥BG ,∵CD ⊥BG ,∴OC ⊥CD ,∴CD 是⊙O 的切线(2)∵OC ∥BD ,∴△OCF ∽△DBF ,△EOC ∽△EBD ,∴OC BD =OF DF =23,∴OC BD =OE BE =23,∵OA =OB ,∴AE =OA =OB ,∴OC =12OE ,∵∠ECO =90°,∴∠E =30° (3)过A 作AH ⊥DE 于H ,∵∠E =30°,∴∠EBD =60°,∴∠CBD =12∠EBD =30°,∵CD =3,∴BD =3,DE =33,BE =6,∴AE =13BE =2,∴AH =1,∴EH =3,∴DH =23,在Rt △DAH 中,AD =AH 2+DH 2=12+(23)2=13。
中考数学总复习《圆综合解答题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________ 1.如图△ABC内接于⊙O AB、CD是⊙O的直径E是DA长线上一点且∠CED=∠CAB.(1)求证:CE是⊙O的切线;求线段CE的长.(2)若DE=3√5tanB=122.如图在△ABC中AB=AC以AB为直径作⊙O交BC于点D.过点D作DE⊥AC 垂足为E延长CA交⊙O于点F.(1)求证:DE是⊙O的切线;⊙O的半径为5 求线段CF的长.(2)若tanB=123.如图△ABC内接于⊙O直径DE⊙AB于点F交BC于点M DE的延长线与AC的延长线交于点N连接AM.(1)求证:AM=BM;(2)若AM⊙BM DE=8 ⊙N=15° 求BC的长.4.如图△ABC内接于⊙O AB是⊙O的直径D是⊙O上的一点CO平分∠BCD CE⊥AD垂足为E AB与CD相交于点F.(1)求证:CE是⊙O的切线;时求CE的长.(2)当⊙O的半径为5sinB=355.如图1 锐角△ABC内接于⊙O⊙BAC=60°若⊙O的半径为2√3.(1)求BC的长度;(2)如图2 过点A作AH⊙BC于点H若AB+AC=12 求AH的长度.6.如图AB是⊙O的直径M是OA的中点弦CD⊥AB于点M过点D作DE⊥CA交CA的延长线于点E.(1)连接AD则∠AOD=_______;(2)求证:DE 与⊙O 相切;(3)点F 在BC ⏜上 ∠CDF =45° DF 交AB 于点N .若DE =6 求FN 的长.7.如图 AB 是⊙O 的直径 点C 为⊙O 上一点 OF ⊥BC 垂足为F 交⊙O 于点E AE 与BC 交于点H 点D 为OE 的延长线上一点 且∠ODB =∠AEC .(1)求证:BD 是⊙O 的切线(2)求证:CE 2=EH ⋅EA(3)若⊙O 的半径为52 sinA =35 求BH 和DF 的长. 8.如图 在⊙ABC 中 ⊙C=90° 点O 在AC 上 以OA 为半径的⊙O 交AB 于点D BD 的垂直平分线交BC 于点E 交BD 于点F 连接DE .(1)求证:直线DE 是⊙O 的切线(2)若AB=5 BC=4 OA=1 求线段DE 的长.9.如图 AB 是⊙O 的直径 弦CD 与AB 交于点E 过点B 的切线BP 与CD 的延长线交于点P 连接OC CB .(1)求证:AE ·EB =CE ·ED(2)若⊙O 的半径为 3 OE =2BE CE DE =95 求tan∠OBC 的值及DP 的长.10.如图菱形ABCD中AB=4以AB为直径作⊙O交AC于点E过点E作EF⊥AD于点F.(1)求证:EF是⊙O的切线(2)连接OF若∠BAD=60°求OF的长.(3)在(2)的条件下若点G是⊙O上的一个动点则线段CG的取值范围是什么?11.如图点C在以AB为直径的半圆O上(点C不与A B两点重合)点D是弧AC的中点DE⊥AB于点E连接AC交DE于点F连接OF过点D作半圆O的切线DP 交BA的延长线于点P.(1)求证:AC∥DP(2)求证:AC=2DE的值.(3)连接CE CP若AE⊙EO=1⊙2求CECP12.如图1 AB为⊙O直径CB与⊙O相切于点B D为⊙O上一点连接AD OC若AD//OC.(1)求证:CD为⊙O的切线(2)如图2 过点A作AE⊥AB交CD延长线于点E连接BD交OC于点F若AB=3AE=12求BF的长.13.已知:如图在⊙O中∠PAD=∠AEP AF=CF AB是⊙O的直径CD⊥AB于点G.(1)求证:AP是⊙O的切线.(2)若AG=4tan∠DAG=2求△ADE的面积.(3)在(2)的条件下求DQ的长.14.如图已知AB是⊙O的直径点E是⊙O上异于A B的点点F是弧EB的中点连接AE AF BF过点F作FC⊙AE交AE的延长线于点C交AB的延长线于点D⊙ADC的平分线DG交AF于点G交FB于点H.(1)求证:CD是⊙O的切线(2)求sin⊙FHG的值(3)若GH=4√2HB=2 求⊙O的直径.15.如图⊙O的两条弦AB、CD互相垂直垂足为E且AB=CD.(1)求证:AC=BD.(2)若OF⊥CD于F OG⊥AB于G问四边形OFEG是何特殊四边形?并说明理由.(3)若CE=1,DE=3求⊙O的半径.16.【问题提出】如图1 △ABC为⊙O内接三角形已知BC=a圆的半径为R 探究a R sin∠A之间的关系.【解决问题】如图2 若∠A为锐角连接BO并延长交⊙O于点D连接DC则∠A=∠D在△DBC中BD为⊙O的直径BC=a所以BD=2R,∠BCD=90°.所以在Rt△DBC中建立a R sin∠D的关系为________________.所以在⊙O内接三角形△ABC中a R sin∠A之间的关系为________________.类比锐角求法当∠A为直角和钝角时都有此结论.【结论应用】已知三角形△ABC中∠B=60°,AC=4则△ABC外接圆的面积为________.17.已知AB为⊙O的直径PA PC是⊙O的的切线切点分别为A C过点C作CD//AB交⊙O于D.(1)如图当P D O共线时若半径为r求证CD=r(2)如图当P D O不共线时若DE=2CE=8求tan∠POA.18.如图1 已知矩形ABCD中AB=2√3AD=3 点E为射线BC上一点连接DE以DE为直径作⊙O(1)如图2 当BE=1时求证:AB是⊙O的切线(2)如图3 当点E为BC的中点时连接AE交⊙O于点F连接CF求证:CF=CD (3)当点E在射线BC上运动时整个运动过程中CF长度是否存在最小值?若存在请直接写出CF长度的最小值若不存在请说明理由.19.已知四边形ABCD为⊙O的内接四边形直径AC与对角线BD相交于点E作CH⊥BD于H CH与过A点的直线相交于点F∠FAD=∠ABD.(1)求证:AF为⊙O的切线(2)若BD平分∠ABC求证:DA=DC(3)在(2)的条件下N为AF的中点连接EN若∠AED+∠AEN=135°⊙O 的半径为2√2求EN的长.20.如图1 直线l1⊥l2于点M以l1上的点O为圆心画圆交l1于点A B交l2于点C D OM=4 CD=6 点E为弧AD上的动点CE交AB于点F AG⊙CE 于点G连接DG AC AD.(1)求⊙O的半径长(2)若⊙CAD=40° 求劣弧弧AD的长(3)如图2 连接DE是否存在常数k使CE−DE=k·EG成立?若存在请求出k的值若不存在请说明理由(4)若DG⊙AB则DG的长为(5)当点G在AD的右侧时请直接写出⊙ADG面积的最大值.参考答案1.(1)证明:⊙AB是⊙O的直径⊙∠ACB=90°⊙∠CAB+∠B=90°⊙∠CED=∠CAB∠B=∠D⊙∠CED+∠D=90°⊙∠DCE=∠ACB=90°⊙CD⊥CE⊙CD是⊙O的直径即OC是⊙O半径⊙CE是⊙O的切线(2)由(1)知CD⊥CE在Rt△ABC和Rt△DEC中⊙∠B=∠D tanB=12⊙tan∠B=tan∠D=CECD =12⊙CD=2CE在Rt△CDE中CD2+CE2=DE2DE=3√5⊙(2CE)2+CE2=(3√5)2解得CE=3(负值舍去)即线段CE的长为3.2.解:(1)⊙OB=OD⊙∠ABC=∠ODB⊙AB=AC⊙∠ABC=∠ACB⊙∠ODB=∠ACB⊙OD∥AC⊙DE⊥AC OD是半径⊙DE⊥OD⊙DE是⊙O的切线.(2)连接BF AD⊙⊙O的半径为5 AB为直径⊙AB=10∠ADB=90°∠BFC=90°⊙tanB=1设AD=x则BD=2x2在Rt△ABD中由勾股定理得:AD2+BD2=AB2即x2+(2x)2=102解得:x=2√5或x=−2√5(舍去)⊙BD=2x=4√5⊙AB=AC∠ADB=90°⊙BD=CD⊙BC=2BD=8√5由(1)知OD∥AC⊙∠ODB=∠C⊙OB=OD⊙∠B=∠ODB=∠C⊙tanC=tanB=1即CF=2BF2在Rt△BCF中BF2+CF2=BC2即BF2+(2BF)2=(8√5)2解得BF=8或BF=−8(舍去)⊙CF=2BF=16.3.(1)证明:⊙直径DE⊙AB于点F⊙AF=BF⊙AM=BM(2)连接AO BO如图由(1)可得AM=BM⊙AM⊙BM⊙⊙MAF=⊙MBF=45°⊙⊙CMN=⊙BMF=45°⊙AO=BO DE⊙AB∠AOB⊙⊙AOF=⊙BOF=12⊙⊙N=15°⊙⊙ACM=⊙CMN+⊙N=60° 即⊙ACB=60°∠AOB.⊙⊙ACB=12⊙⊙AOF=⊙ACB=60°.⊙DE=8⊙AO=4.得AF=2√3在Rt⊙AOF中由sin∠AOF=AFAO在Rt⊙AMF中AM=√2AF=2√6.得BM= AM=2√6得CM=2√2在Rt⊙ACM中由tan∠ACM=AMCM⊙BC=CM+BM=2√2+2√6.4.(1)证明:⊙弧AC=弧AC⊙∠ADC=∠B.⊙OB=OC⊙∠B=∠OCB.⊙CO平分∠BCD⊙∠OCB=∠OCD⊙∠ADC=∠OCD.⊙CE⊥AD⊙∠ADC+∠ECD=90°⊙∠OCD+∠ECD=90°即CE⊥OC.⊙OC为⊙O的半径⊙CE是⊙O的切线.(2)连接OD得OD=OC⊙∠ODC=∠OCD.⊙∠OCD=∠OCB=∠B⊙∠ODC=∠B⊙CO=CO⊙△OCD≌△OCB⊙CD=CB.⊙AB是⊙O的直径⊙∠ACB=90°⊙AC=AB⋅sinB=10×35=6⊙CB=√AB2−AC2=√102−62=8⊙CD=8⊙CE=CD⋅sin∠ADC=CD⋅sinB=8×35=245.5.解:(1)连接OB OC过点O作OD⊙BC于点D⊙BD =CD =12BC⊙⊙A =60°⊙⊙BOC =2⊙A =120°⊙OB =OC⊙⊙OBC =⊙OCB =180°−∠BOC2=30°⊙OB =2√3⊙BD =OB •cos30°=2√3×√32=3⊙BC =2BD =6.(2)设点G 为此三角形ABC 内切圆的圆心(角平分线的交点) 过G 分别向ABAC BC 作垂线GM GN GQ⊙GM =GN =GQ CQ =CN BQ =BM AM =AN⊙AM +AN =AB +AC -BC =6⊙AM =AN =3.在Rt △AGM 中⊙⊙GAM =30°⊙GM =√3⊙S △ABC =12BC •AH =S △ABG +S △BCG +S △ACG=12AB •GM +12BC •GQ +12AC •GN=12GM(AB+AC+CB)=9√3∵BC=6, S△ABC=12BC•AH⊙AH=3√3.6.(1)解:如图1 连接OD AD⊙AB是⊙O的直径CD⊥AB⊙AB垂直平分CD⊙M是OA的中点⊙OM=12OA=12OD⊙cos∠DOM=OMOD =12⊙∠DOM=60°即∠AOD=60°故答案为:60°(2)解:⊙CD⊥AB AB是⊙O的直径⊙CM=MD⊙M是OA的中点⊙AM=MO又⊙∠AMC=∠DMO⊙△AMC≌△OMD⊙∠ACM=∠ODM⊙CA∥OD⊙DE⊥CA⊙∠E=90°⊙∠ODE=180°−∠E=90°⊙DE⊥OD⊙DE与⊙O相切(3)如图2 连接CF CN⊙OA⊥CD于M⊙M是CD中点⊙NC=ND⊙∠CDF=45°⊙∠NCD=∠NDC=45°⊙∠CND=90°⊙∠CNF=90°由(1)可知∠AOD=60°∠AOD=30°⊙∠ACD=12在Rt△CDE中∠E=90°∠ECD=30°DE=6=12⊙CD=DEsin30°在Rt△CND中∠CND=90°∠CDN=45°CD=12⊙CN=CD•sin45°=6√2⊙∠AOD=60°,OA=OD⊙△OAD是等边三角形⊙∠OAD=60°∠CAD=2∠OAD=120°⊙∠CFD=180°−∠CAD=60°在Rt△CNF中∠CNF=90°∠CFN=60°CN=6√2 =2√6.⊙FN=CNtan60°7.(1)证明:如图1所示⊙∠ODB=∠AEC∠AEC=∠ABC⊙∠ODB=∠ABC⊙OF⊥BC⊙∠BFD=90°⊙∠ODB+∠DBF=90°⊙∠ABC+∠DBF=90°即∠OBD=90°⊙BD⊥OB⊙AB是⊙O的直径⊙BD是⊙O的切线(2)证明:连接AC如图2所示⊙OF⊥BC⊙弧BE=弧CE⊙∠CAE=∠ECB⊙∠CEA=∠HEC⊙△AEC ∽△CEH⊙CE EH =EACE⊙CE 2=EH ⋅EA(3)解:连接BE 如图3所示⊙AB 是⊙O 的直径⊙∠AEB =90°⊙⊙O 的半径为52 sin∠BAE =35 ⊙AB =5 BE =AB ⋅sin∠BAE =5×35=3 ⊙EA =√AB 2−BE 2=4⊙弧BE =弧CE⊙BE =CE =3⊙CE 2=EH ⋅EA⊙EH =94⊙在Rt △BEH 中 BH =√BE 2+EH 2=√32+(94)2=154 ⊙∠A =∠C⊙sinC =sinA⊙OF ⊥BC 垂足为F⊙在Rt △CFE 中 FE =CE ⋅sinC =3×35=95 ⊙CF =√CE 2−EF 2=√32−(95)2=125 ⊙BF =CF =125⊙OF =√BO 2−BF 2=√(52)2−(125)2=710 ⊙∠ODB =∠ABC⊙tan∠ODB =tan∠ABC⊙BFDF =OFBF⊙BF 2=OF ⋅DF⊙(125)2=710DF ⊙DF =28835.8.解:(1)连接OD 如图⊙EF 垂直平分BD⊙ED=EB⊙⊙EDB=⊙B⊙OA=OD⊙⊙A=⊙ODA⊙⊙A+⊙B=90°⊙⊙ODA+⊙EDB=90°⊙⊙ODE=90°⊙OD⊙DE⊙直线DE 是⊙O 的切线(2)作OH⊙AD 于H 如图 则AH=DH 在Rt △OAB 中 sinA=BC AB =45在Rt △OAH 中 sinA=OH OA =45⊙OH=45⊙AH=√12−(45)2=35⊙AD=2AH=65 ⊙BD=5﹣65=195⊙BF=12BD=1910在Rt⊙ABC 中 cosB=45 在Rt⊙BEF 中 cosB=BF BE =45⊙BE=54×1910=198 ⊙线段DE 的长为198.9.((1)证明:连接AD∵∠A =∠BCD ∠AED =∠CEB ∴ΔAED ∽ΔCEB∴ AECE =EDEB∴AE ·EB =CE ·ED(2)解:∵⊙O 的半径为 3 ∴OA =OB =OC =3∵OE =2BE∴OE =2 BE =1 AE =5 ∵ CEDE =95 ∴设CE =9x DE =5x∵AE ·EB =CE ·ED∴5×1=9x ·5x解得:x 1=13 x 2=−13(不 合题意舍去) ∴CE =9x =3 DE =5x =53 过点C 作CF ⊥AB 于F∵OC =CE =3∴OF =EF =12OE =1∴BF =2在RtΔOCF中∵∠CFO=90°∴CF2+OF2=OC2∴CF=2√2在RtΔCFB中∵∠CFB=90°∴tan∠OBC=CFBF =2√22=√2∵CF⊥AB于F∴∠CFB=90°∵BP是⊙O的切线AB是⊙O的直径∴∠EBP=90°∴∠CFB=∠EBP在ΔCFE和ΔPBE中{∠CFB=∠PBE EF=BE ∠FEC=∠BEP∴ΔCFE≅ΔPBE(ASA)∴EP=CE=3∴DP=EP−ED=3−53=43.10.:解:(1)证明:如图连接OE.⊙四边形ABCD是菱形∴∠CAD=∠CAB∵OA=OE∴∠CAB=∠OEA∴∠CAD=∠OEA∴OE∥AD∵EF⊥AD∴OE⊥EF又⊙OE是⊙O的半径⊙EF是⊙O的切线.(2)解:如图连接BE.⊙AB是⊙O的直径∴∠AEB=90°∵∠BAD=60°∴∠CAD=∠CAB=30°在Rt△ABE中AE=AB·cos30°=2√3在Rt△AEF中EF=AE·sin30°=√3AB=2在Rt△OEF中OE=12⊙OF=√OE2+EF2=√4+3=√7.(3)解:如图过点C作CM垂直AB交AB延长线于点M由(2)知∠BAD=60°∴∠ACB=∠CAB=30°,∠CBM=60°∴AB=BC=4,BM=2,CM=2√3∴AM=6,OM=6−2=4.⊙OC=√OM2+CM2=√42+(2√3)2=2√7⊙CG近=2√7−2CE远=2√7+2⊙线段CG的取值范围是:2√7−2≤CG≤2√7+211.(1)证明:连接OD∵D为弧AC的中点∴OD⊥AC又∵DP为⊙O的切线∴OD⊥DP∴AC∥DP(2)证明:∵DE⊥AB∴∠DEO=90°由(1)可知OD⊥AC设垂足为点M∴∠OMA=90°∴∠DEO=∠OMA AC=2AM又∵∠DOE=∠AOM OD=OA∴△ODE≌△OAM(AAS)∴DE=AM∴AC=2AM=2DE(3)解:连接OD OC CE CP∵∠ODP=∠OED=90°∠DOE=∠DOP ∴△DOE∽△POD∴ODOP =OEOD∴OD2=OE⋅OP ∵OC=OD∴OC2=OE⋅OP∴OCOE =OPOC又∵∠COE=∠POC ∴△COE∽△POC∴CECP =OEOC∵AE:EO=1:2∴OEOA =23∴OEOC =23∴CECP =23.12.解:(1)连接OD⊙CB与⊙O相切于点B⊙OB⊥BC⊙AD//OC⊙∠A=∠COB,∠ADO=∠DOC⊙OA=OD⊙∠A=∠ADO=∠COB=∠DOC⊙△DOC≌△BOC(SAS)⊙∠ODC=∠OBC=90°⊙OD⊥DC又OD为⊙O半径⊙CD为⊙O的切线(2)解:设CB=x⊙AE⊥EB⊙AE为⊙O的切线⊙CD CB为⊙O的切线⊙ED=AE=4,CD=CB=x,∠DOC=∠BCO⊙BD⊥OC过点E作EM⊥BC于M则EM=12,CM=x−4⊙(4+x)2=122+(x−4)2解得x=9⊙CB=9⊙OC=√62+92=3√13⊙AB是直径且AD⊙OC⊙⊙OFB=⊙ADB=⊙OBC=90°又⊙⊙COB=⊙BOF⊙⊙OBF⊙⊙OCB⊙OB BF =OCBC⊙BF=OB⋅BCOC =6×93√13=1813√1313.(1)证明:如图所示连接AC ⊙AB是⊙O的直径CD⊥AB⊙弧AD=弧AC⊙∠AEP=∠ADC⊙∠PAD=∠AEP⊙∠PAD=∠ADC⊙AP∥CD⊙AP⊥AB⊙AB是⊙O的直径⊙AP是⊙O的切线(2)解:如图所示连接BD⊙AF=CF⊙∠FAC=∠FCA⊙弧CE=弧AD⊙弧AD=弧AC⊙弧AD=弧AC=弧CE⊙∠ADG=∠QDG⊙AB⊥CD⊙∠AGD=∠QGD=90°又⊙OG=OG⊙△AGD≌△OGD(ASA)⊙QG=AG=4∠DQG=∠DAG=2在Rt△ADG中tan∠DAG=DGAG⊙DG=2AG=8⊙QD=√DG2+QG2=4√5连接OD过点E作EH⊥AB于H设圆O的半径为r则OG=r−4在Rt△ODG中由勾股定理得OD2=OG2+DG2⊙r2=(r−4)2+82解得r=10⊙AB=20⊙BQ=12⊙∠AEQ=∠DBQ,∠EAQ=∠BDQ⊙△AQE∽△DQB⊙QE BQ =AQDQ即QE12=84√5⊙QE=12√55⊙∠EQH=∠DQG=∠DAG⊙在Rt△EQH中tan∠EQH=EHQH=2⊙EH=2QH⊙EH2+QH2=QE2⊙4QH2+QH2=1445⊙QH=125⊙EH=245⊙S△ADE=S△ADQ+S△AEQ=12AQ⋅DG+12AQ⋅EH=12×8×8+12×8×245=70.4.(3)解:由(2)得DQ=4√5.14.(1)证明:连接OF.⊙OA=OF⊙⊙OAF=⊙OF A⊙EF̂=FB̂,⊙⊙CAF=⊙F AB⊙⊙CAF=⊙AFO⊙OF∥AC⊙AC⊙CD⊙OF⊙CD⊙OF是半径⊙CD是⊙O的切线.(2)⊙AB是直径⊙⊙AFB=90°⊙OF⊙CD⊙⊙OFD=⊙AFB=90°⊙⊙AFO=⊙DFB⊙⊙OAF=⊙OF A⊙⊙DFB=⊙OAF⊙GD平分⊙ADF⊙⊙ADG=⊙FDG⊙⊙FGH=⊙OAF+⊙ADG⊙FHG=⊙DFB+⊙FDG⊙⊙FGH=⊙FHG=45°⊙sin⊙FHG=sin45°=√22(3)解:过点H作HM⊙DF于点M HN⊙AD于点N.⊙HD平分⊙ADF⊙HM=HNS△DHF⊙S△DHB= FH⊙HB=DF ⊙DB⊙⊙FGH是等腰直角三角形GH=4√2⊙FH=FG=4⊙DF DB =42=2设DB=k DF=2k⊙⊙FDB=⊙ADF⊙DFB=⊙DAF ⊙⊙DFB⊙⊙DAF⊙DF2=DB•DA⊙AD=4k⊙GD平分⊙ADF⊙FG AG =DFAD=12⊙AG=8⊙⊙AFB=90° AF=12 FB=6∴AB=√AF2+BF2=√122+622=6√5⊙⊙O的直径为6√515.(1)证明:⊙AB=CD⊙弧AB=弧CD⊙弧AB−弧BC=弧CD−弧BC即弧AC=弧BD⊙AC=BD(2)解:四边形OFEG是正方形.理由如下:⊙AB⊥CD OF⊥CD OG⊥AB⊙∠AED=∠OGE=∠OFE=90°⊙四边形OFEG是矩形.如图连接OA OD.⊙OF⊥CD OG⊥AB⊙CF=DF AG=BG.⊙CD=AB⊙AG=DF.⊙OG=√OA2−AG2OF=√OD2−DF2OA=OD⊙OG=OF⊙四边形OFEG是正方形(3)解:⊙CE=1 DE=3⊙CD=4⊙CF=DF=2⊙EF=CF-CE=2-1=1.⊙四边形OFEG是正方形⊙OF=EF=1.在Rt△OED中OD=√OF2+DF2=√5⊙⊙O的半径为√5.16.:解:【解决问题】如图连接BO并延长交⊙O于点D连接DC则∠A=∠D 在△DBC中⊙BD为⊙O的直径BC=a⊙BD=2R,∠BCD=90°⊙sinD=BCBD =a2R⊙sinA=a2R故答案为:sinD=a2R sinA=a2R【结论应用】解:设△ABC外接圆的半径为R ⊙∠B=60°,AC=4⊙sinB=AC2R⊙√3 2=42R解得:R=43√3⊙△ABC外接圆的面积为π×(43√3)2=163π.故答案为:163π17.(1)证明:连接OC⊙PA PC是⊙O的切线切点分别为A C ⊙PA=PC∠PAO=∠PCO=90°在RtΔPAO和RtΔPCO中{PA=PCPO=PO⊙RtΔPAO≌RtΔPCO(HL)⊙∠POA=∠POC⊙CD//AB⊙∠CDO=∠DOA⊙∠CDO=∠COD⊙CD=OC=r(2)解:设OP交CD于E连接OC过O作OH⊥CD于点H由(1)可知RtΔPAO≌RtΔPCO⊙∠POA=∠POC⊙CD//AB⊙∠CEO=∠EOA⊙∠CEO=∠COE⊙CE=CO=8⊙CD=CE+ED=10⊙OH⊥CD⊙CH=DH=5⊙EH=DH−DE=3在RtΔCHO中⊙OH=√OC2−CH2=√82−52=√39在RtΔOHE中⊙tan∠POA=tan∠HEO=OHEH =√393⊙tan∠POA=√393.18.解:(1)如图过点O作OM⊥AB且OM的反向延长线交CD于点N.由题意可知四边形BCNM为矩形⊙MN=AD=3⊙O为圆心即O为DE中点⊙N为DC中点即线段ON为△DEC中位线又⊙CE=BC−BE=3−1=2⊙ON=12CE=1⊙OM=MN -ON=3-1=2.在Rt △DEC 中 DE =√CD 2+CE 2=√(2√3)2+22=4. ⊙OD=DE=OM=2.即AB 为⊙O 的切线.(2)设⊙O 与AD 交于点G 连接CG EG DF FG ⊙DE 为直径⊙∠EGD =∠EFD =90°.⊙∠GEC =90°⊙CG 为直径.⊙∠CFG =∠CDG =90°⊙E 为BC 中点⊙G 为AD 中点在Rt △AFD 中 FG 为中线⊙AG=DG=FG在Rt △CFG 和Rt △CDG 中 {FG =DG CG =CG⊙△CFG ≅△CDG(HL).⊙CF=CD .(3)如图 取AD 中点H 连接CH FH FD .由(2)可知FH =12AD =32 在Rt △CDH 中 CH =√CD 2+HD 2=√(2√3)2+(32)2=√572 ⊙CF ≥CH −FH =√572−32. ⊙当F 点在CH 上时CF 长有最小值 最小值为√572−32.19.解:(1)⊙AC 为⊙O 的直径⊙⊙ADC =90°⊙⊙DAC +⊙DCA =90°.⊙弧AD =弧AD⊙⊙ABD =⊙DCA .⊙⊙F AD =⊙ABD⊙⊙F AD =⊙DCA⊙⊙F AD +⊙DAC =90°⊙CA ⊙AF⊙AF 为⊙O 的切线.(2)连接OD .⊙弧AD =弧AD⊙⊙ABD=1⊙AOD.2⊙弧DC=弧DC⊙DOC.⊙⊙DBC=12⊙BD平分⊙ABC⊙⊙ABD=⊙DBC⊙⊙DOA=⊙DOC⊙DA=DC.(3)连接OD交CF于M作EP⊙AD于P.⊙AC为⊙O的直径⊙⊙ADC=90°.⊙DA=DC⊙DO⊙AC⊙⊙F AC=⊙DOC=90° AD=DC=√(2√2)2+(2√2)2=4 ⊙⊙DAC=⊙DCA=45° AF⊙OM.⊙AO=OCAF.⊙OM=12⊙⊙ODE+⊙DEO=90° ⊙OCM+⊙DEO=90°⊙⊙ODE=⊙OCM.⊙⊙DOE=⊙COM OD=OC⊙⊙ODE⊙⊙OCM⊙OE=OM.设OM=m⊙OE =m AE =2√2−m AP =PE =2−√22m⊙DP =2+√22m . ⊙⊙AED +⊙AEN =135° ⊙AED +⊙ADE =135°⊙⊙AEN =⊙ADE .⊙⊙EAN =⊙DPE⊙⊙EAN ⊙⊙DPE⊙AE DP =AN PE ⊙2√2−m 2+√22m =m2−√22m⊙m =2√23⊙AN =2√23 AE =4√23由勾股定理得:NE =2√103.20.解:(1)连接OD⊙AB 是⊙O 的直径 l 1⊥l 2 CD =6⊙CM =DM =12CD =3在Rt △DOM 中 OM =4⊙OD=√OM2+CM2=5即⊙O的半径长为5(2)⊙AB是⊙O的直径l1⊥l2⊙弧BC=弧BD⊙∠BAD=∠BAC=12∠CAD=20°⊙∠BOD=2∠BAD=40°⊙∠AOD=180°−∠BOD=140°⊙劣弧弧AD的长为140×π×5180=35π9(3)存在常数k=2理由如下:如图在CG上截取CH=DE连接AH AE⊙AB垂直平分CD⊙AC=AD又⊙⊙ACH=⊙ADE⊙⊙ACH⊙⊙ADE(SAS)⊙AH=AE⊙ AG⊙HE⊙HG=EG⊙CE-DE=2EG⊙k=2(4)⊙DG⊙AB⊙⊙CFM⊙⊙CGD⊙FM DG =CFCG=CMCD=12⊙CF=FG DG=2FM⊙⊙CMF=⊙AGF⊙CFM=⊙AFG ⊙⊙CFM⊙⊙AFG⊙CF AF =FMFG⊙FM×AF=CF×FG=CF2设FM=x则AF=9-x⊙x(9−x)=32+x2解得:x=32或3⊙DG=3或6(5)如图取AC的中点P当PG⊙AD时⊙ADG的面积最大在Rt△AMC中⊙CMA=90° CM=3 AM=OA+OM=5+4=9⊙AD=AC=√CM2+AM2=√32+92=3√10在Rt△AGC中⊙CGA=90° 点P为AC的中点⊙PG=12AC=3√102过点C作CN⊙AD于点N在Rt⊙CDN和Rt⊙ADM中⊙⊙CND=⊙AMD=90° ⊙CDN=⊙ADM ⊙Rt⊙CDN~Rt⊙ADM⊙CN AM =CDAD⊙CN=AM⋅CDAD =9×63√10=9√105设PG交AD于点K ⊙PK⊙AD CN⊙AD ⊙PK⊙CN⊙⊙APK⊙⊙CAN⊙PK CN =APAC=12⊙PK=12CN=9√1010⊙GK=PG−PK=3√102−9√1010=3√105⊙⊙ADG面积的最大值为12AD⋅GK=12×3√10×3√105=9.。
中考数学复习《圆》专题训练-附带有答案一、选择题1.下列有关圆的一些结论:①平分弧的直径垂直于弧所对的弦;②平分弦的直径垂直于弦;③在同圆或等圆中,相等的弦所对的圆周角相等;④同弧或等弧所对的弦相等,其中正确的有()A.①④B.②③C.①③D.②④2.在同一平面内,已知⊙O的半径为3cm,OP=4cm,则点P与⊙O的位置关系是()A.点P在⊙O圆外B.点P在⊙O上C.点P在⊙O内D.无法确定3.如图,AB是⊙O的直径,C是⊙O上一点.若∠BOC=66°()A.66°B.33°C.24°D.30°4.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠CDA=118°,则∠C的度数为()A.32°B.33°C.34°D.44°5.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=26°,则∠D等于()A.26°B.48°C.38°D.52°6.如图,四边形ABCD内接于⊙O,∠C=100°,那么∠A是()A.60°B.50°C.80°D.100°7.如图,AB为⊙O的直径,C是⊙O上的一点,若∠BCO=35°,AO=2,则AC⌢的长度为()A.29πB.59πC.πD.79π8.如图,点A、B、C、D、E都是⊙O上的点AC⌢=AE⌢,∠D=130°则∠B的度数为()A.130°B.128°C.115°D.116°二、填空题9.半径为6的圆上,一段圆弧的长度为3π,则该弧的度数为°.10.如图,在△ABC中,∠ACB= 130°,∠BAC=20°,BC=2.以C为圆心,CB为半径的圆交AB于点D,则BD的长为.11.如图,⊙O是△ABC的外接圆,BC是⊙O的直径,AB=AC.∠ABC的平分线交AC于点D,交⊙O于点E,连结CE.若CE= √2,则BD的长为.12.如图,四边形ABCD为⊙O的内接四边形,若∠ADC=85°,则∠B=.13.如图,在△ABC中∠ACB=90°,O为BC边上一点CO=2.以O为圆心,OC为半径作半圆与AB边交π,则阴影部分的面积为.于E,且OE⊥AB.若弧CE的长为43三、解答题14.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,OD交AC于点E,OD∥BC(1)求证:AD=CD;(2)若AC=8,DE=2,求BC的长.15.如图,AB是⊙O的直径,F为⊙O上一点,AC平分∠FAB交⊙O于点C.过点C作CD⊥AF交AF的延长线于点D.(1)求证:CD是⊙O的切线.(2)若DC=3,AD=9,求⊙O半径.⌢上一点,AG与DC的延长线交于点F.16.已知,如图,AB是⊙O的直径,弦CD⊥AB于点E,G是AC(1)如CD=8,BE=2,求⊙O的半径长;(2)求证:∠FGC=∠AGD.17.如图,在△ABC中AB=AC,以底边BC为直径的⊙O交两腰于点D,E .(1)求证:BD=CE;⌢的长.(2)当△ABC是等边三角形,且BC=4时,求DE18.如图,在△ABC中,经过A,B两点的⊙O与边BC交于点E,圆心O在BC上,过点O作OD⊥BC交⊙O 于点D,连接AD交BC于点F,且AC=FC.(1)试判断AC与⊙O的位置关系,并说明理由;(2)若FC=√3,CE=1.求图中阴影部分的面积(结果保留π).参考答案1.A2.A3.B4.C5.C6.C7.D8.C9.9010.2√311.2√212.95°π13.4√3−4314.(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OD∥BC∴∠AEO=∠ACB=90°⌢=CD⌢∴AD∴AD=CD;(2)解:∵OD⊥AC,AC=8AC=4∴AE=12设⊙O的半径为r∵DE=2∴OE=OD﹣DE=r﹣2在Rt△AEO中,AE2+OE2=AO2∴16+(r﹣2)2=r2解得:r=5∴AB=2r=10在Rt△ACB中,BC=√AB2−AC2=√102−82=6∴BC的长为6.15.(1)证明:连接OC∵AC平分∠FAB∴∠FAC=∠CAO∵AO=CO∴∠ACO=∠CAO∴∠FAC=∠ACO∴AD∥OC∵CD⊥AF∴CD⊥OC∵OC为半径∴CD是⊙O的切线;(2)解:过点O作OE⊥AF于EAF,∠OED=∠EDC=∠OCD=90°∴AE=EF=12∴四边形OEDC为矩形∴CD=OE=3,DE=OC设⊙O的半径为r,则OA=OC=DE=r∴AE=9﹣r∵OA2﹣AE2=OE2∴r2﹣(9﹣r)2=32解得r=5.∴⊙O半径为5.16.(1)解:连接OC.设⊙O的半径为R.∵CD⊥AB∴DE=EC=4在Rt △OEC中,∵OC2=OE2+EC2∴R2=(R−2)2+42解得R=5.(2)解:连接AD∵弦CD⊥AB̂ = AĈ∴AD∴∠ADC=∠AGD∵四边形ADCG是圆内接四边形∴∠ADC=∠FGC∴∠FGC=∠AGD.17.(1)证明:∵AB=AC∴∠B=∠C⌢=BE⌢∴CD⌢=CE⌢∴BD∴BD=CE;(2)解:连接OD、OE∵△ABC 是等边三角形∴∠B =∠C =60°∴∠COD =120°∴∠COD +∠BOE =∠COE +∠DOE +∠BOD +∠DOE =240° ∴∠DOE =240°−180°=60°∵BC =4∴⊙O 的半径为 2∴DE ⌢ 的长 =60π×2180=2π3 .18.(1)解:AC 与⊙O 的相切,理由如下∵AO =DO∴∠D =∠OAD∵CF =CA∴∠CAF =∠CFA又∵∠CFA =∠OFD∴∠CAF =∠OFD∵OD ⊥BC∴∠OFD +∠ODF =90°∴∠CAF +∠OAF =90°∴OA ⊥AC∵OA 是半径∴AC 是⊙O 的切线∴ AC 与⊙O 的相切;(2)解:过A 作AM ⊥BC 于M ,如图设OA=OE=r∵FC=√3,CE=1在Rt△CAO中AO=r,AC=FC=√3,OC=OE+EC=r+1AO2+AC2=OC2∴r2+(√3)2=(r+1)2解得r=1∴OC=OE+EC=2∴AO=12 OC∴∠C=30°∴∠AOC=60°∴∠AOB=180−∠AOC=120°在Rt△CAM中AM=12AC=12FC=√32∴S△AOB=12⋅OB⋅AM=12×1×√32=√34∴S扇形AOB=120360π×1=π3∴S阴影部分=S△AOB−S扇形AOB=π3−√34.。
圆(一)一、选择题1.如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()A.30°B.45°C.60°D.75°2.如图,在⊙O中,=,∠AOB=50°,则∠ADC的度数是()A.50°B.40°C.30°D.25°3.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.55°B.60°C.65°D.70°4.如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()A.∠A=∠D B.=C.∠ACB=90°D.∠COB=3∠D5.如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°6.如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于()A.32°B.38°C.52°D.66°7.如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠BOD的度数是()A.25°B.30°C.40°D.50°8.如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为()A.15°B.18°C.20°D.28°9.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30°B.45°C.60°D.70°10.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A.80°B.90°C.100° D.无法确定11.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100° D.80°或100°12.如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为上一点,且=,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;②∠MAN=90°;③=;④∠ACM+∠ANM=∠MOB;⑤AE=MF.其中正确结论的个数是()A.2 B.3 C.4 D.513.如图,点A,B,C是⊙O上的三点,已知∠AOB=100°,那么∠ACB的度数是()A.30°B.40°C.50°D.60°14.如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是()A.22°B.26°C.32°D.68°15.如图,AB是⊙O的直径,C、D是⊙O上的两点,分别连接AC、BC、CD、OD.若∠DOB=140°,则∠ACD=()A.20°B.30°C.40°D.70°16.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为()A.50°B.80°C.100° D.130°17.如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为()A.30°B.35°C.40°D.45°18.如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A.50°B.80°C.100° D.130°二、填空题19.如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤AE=BC,其中正确的序号是.20.将量角器按如图所示的方式放置在三角形纸板上,使顶点C在半圆上,点A、B的读数分别为100°、150°,则∠ACB的大小为度.21.如图所示,A、B、C三点均在⊙O上,若∠AOB=80°,则∠ACB=°.22.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径是4,sinB=,则线段AC的长为.23.如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=48°,则∠C的度数为.24.如图,点O为所在圆的圆心,∠BOC=112°,点D在BA的延长线上,AD=AC,则∠D=.25.如图,点A,B,C是⊙O上的点,AO=AB,则∠ACB=度.三、解答题(共5小题)26.已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.(1)求BD的长;(2)求图中阴影部分的面积.27.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.28.如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.29.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF 并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)30.如图,⊙O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交⊙O于点D.(1)求的长.(2)求弦BD的长.圆(一)参考答案与试题解析一、选择题1.如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()A.30°B.45°C.60°D.75°【考点】圆周角定理;含30度角的直角三角形.【专题】几何图形问题.【分析】由⊙O的直径是AB,得到∠ACB=90°,根据特殊三角函数值可以求得∠B的值,继而求得∠A和∠D的值.【解答】解:∵⊙O的直径是AB,∴∠ACB=90°,又∵AB=2,弦AC=1,∴sin∠CBA=,∴∠CBA=30°,∴∠A=∠D=60°,故选:C.【点评】本题考查的是圆周角定理及直角三角形的性质,比较简单,但在解答时要注意特殊三角函数的取值.2.如图,在⊙O中,=,∠AOB=50°,则∠ADC的度数是()A.50°B.40°C.30°D.25°【考点】圆周角定理;垂径定理.【分析】先求出∠AOC=∠AOB=50°,再由圆周角定理即可得出结论.【解答】解:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=50°,∴∠AOC=50°,∴∠ADC=∠AOC=25°,故选D.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.3.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.55°B.60°C.65°D.70°【考点】圆周角定理.【分析】连接OB,要求∠BAO的度数,只要在等腰三角形OAB中求得一个角的度数即可得到答案,利用同弧所对的圆周角是圆心角的一半可得∠AOB=50°,然后根据等腰三角形两底角相等和三角形内角和定理即可求得.【解答】解:连接OB,∵∠ACB=25°,∴∠AOB=2×25°=50°,由OA=OB,∴∠BAO=∠ABO,∴∠BAO=(180°﹣50°)=65°.故选C.【点评】本题考查了圆周角定理;作出辅助线,构建等腰三角形是正确解答本题的关键.4.如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()A.∠A=∠D B.=C.∠ACB=90°D.∠COB=3∠D【考点】圆周角定理;垂径定理;圆心角、弧、弦的关系.【分析】根据垂径定理、圆周角定理,进行判断即可解答.【解答】解:A、∠A=∠D,正确;B、,正确;C、∠ACB=90°,正确;D、∠COB=2∠CDB,故错误;故选:D.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧,也考查了圆周角定理,解集本题的关键是熟记垂径定理和圆周角定理.5.如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°【考点】圆周角定理.【专题】计算题.【分析】先根据半圆(或直径)所对的圆周角是直角得到∠ACB=90°,再利用互余得∠ACD=90°﹣∠DCB=70°,然后根据同弧或等弧所对的圆周角相等求解.【解答】解:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°﹣∠DCB=90°﹣20°=70°,∴∠DBA=∠ACD=70°.故选D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.6.如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于()A.32°B.38°C.52°D.66°【考点】圆周角定理.【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,即可求得∠ADB的度数,继而求得∠A的度数,又由圆周角定理,即可求得答案.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=52°,∴∠A=90°﹣∠ABD=38°;∴∠BCD=∠A=38°.故选:B.【点评】此题考查了圆周角定理以及直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.7.如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠BOD的度数是()A.25°B.30°C.40°D.50°【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】由“等弧所对的圆周角是所对的圆心角的一半”推知∠DOB=2∠C,得到答案.【解答】解:∵在⊙O中,直径CD垂直于弦AB,∴=,∴∠DOB=2∠C=50°.故选:D.【点评】本题考查了圆周角定理、垂径定理.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为()A.15°B.18°C.20°D.28°【考点】圆周角定理.【专题】计算题.【分析】连结OB,如图,先根据圆周角定理得到∠BOC=2∠A=144°,然后根据等腰三角形的性质和三角形内角和定理计算∠BCO的度数.【解答】解:连结OB,如图,∠BOC=2∠A=2×72°=144°,∵OB=OC,∴∠CBO=∠BCO,∴∠BCO=(180°﹣∠BOC)=×(180°﹣144°)=18°.故选B.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰三角形的性质.9.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30°B.45°C.60°D.70°【考点】圆周角定理.【专题】计算题.【分析】先根据圆周角定理得到∠ABC=∠AOC,由于∠ABC+∠AOC=90°,所以∠AOC+∠AOC=90°,然后解方程即可.【解答】解:∵∠ABC=∠AOC,而∠ABC+∠AOC=90°,∴∠AOC+∠AOC=90°,∴∠AOC=60°.故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A.80°B.90°C.100° D.无法确定【考点】圆周角定理;坐标与图形性质.【分析】由∠AOB与∠ACB是优弧AB所对的圆周角,根据圆周角定理,即可求得∠ACB=∠AOB=90°.【解答】解:∵∠AOB与∠ACB是优弧AB所对的圆周角,∴∠AOB=∠ACB,∵∠AOB=90°,∴∠ACB=90°.故选B.【点评】此题考查了圆周角定理.此题比较简单,解题的关键是观察图形,得到∠AOB 与∠ACB是优弧AB所对的圆周角.11.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100° D.80°或100°【考点】圆周角定理.【分析】首先根据题意画出图形,由圆周角定理即可求得答案∠ABC的度数,又由圆的内接四边形的性质,即可求得∠ABC的度数.【解答】解:如图,∵∠AOC=160°,∴∠ABC=∠AOC=×160°=80°,∵∠ABC+∠AB′C=180°,∴∠AB′C=180°﹣∠ABC=180°﹣80°=100°.∴∠ABC的度数是:80°或100°.故选D.【点评】此题考查了圆周角定理与圆的内接四边形的性质.此题难度不大,注意数形结合思想与分类讨论思想的应用,注意别漏解.12.如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为上一点,且=,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;②∠MAN=90°;③=;④∠ACM+∠ANM=∠MOB;⑤AE=MF.其中正确结论的个数是()A.2 B.3 C.4 D.5【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】根据AB⊥MN,垂径定理得出①③正确,利用MN是直径得出②正确,==,得出④正确,结合②④得出⑤正确即可.【解答】解:∵MN是⊙O的直径,AB⊥MN,∴AD=BD,=,∠MAN=90°(①②③正确)∵=,∴==,∴∠ACM+∠ANM=∠MOB(④正确)∵∠MAE=∠AME,∴AE=ME,∠EAF=∠AFM,∴AE=EF,∴AE=MF(⑤正确).正确的结论共5个.故选:D.【点评】此题考查圆周角定理,垂径定理,以及直角三角形斜边上的中线等于斜边的一半等知识.13.如图,点A,B,C是⊙O上的三点,已知∠AOB=100°,那么∠ACB的度数是()A.30°B.40°C.50°D.60°【考点】圆周角定理.【专题】计算题;压轴题.【分析】根据图形,利用圆周角定理求出所求角度数即可.【解答】解:∵∠AOB与∠ACB都对,且∠AOB=100°,∴∠ACB=∠AOB=50°,故选C【点评】此题考查了圆周角定理,熟练掌握圆周角定理是解本题的关键.14.如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是()A.22°B.26°C.32°D.68°【考点】圆周角定理.【分析】先根据圆周角定理求出∠BOC的度数,再根据等腰三角形的性质即可得出结论.【解答】解:∵∠A与∠BOC是同弧所对的圆周角与圆心角,∠A=68°,∴∠BOC=2∠A=136°.∵OB=OC,∴∠OBC==22°.故选A.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.15.如图,AB是⊙O的直径,C、D是⊙O上的两点,分别连接AC、BC、CD、OD.若∠DOB=140°,则∠ACD=()A.20°B.30°C.40°D.70°【考点】圆周角定理.【分析】根据∠DOB=140°,求出∠AOD的度数,根据圆周角定理求出∠ACD的度数.【解答】解:∵∠DOB=140°,∴∠AOD=40°,∴∠ACD=∠AOD=20°,故选:A.【点评】本题考查的是圆周角定理,掌握一条弧所对的圆周角是这条弧所对的圆心角的一半是解题的关键.16.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为()A.50°B.80°C.100° D.130°【考点】圆周角定理;圆内接四边形的性质.【分析】首先根据圆周角与圆心角的关系,求出∠BAD的度数;然后根据圆内接四边形的对角互补,用180°减去∠BAD的度数,求出∠BCD的度数是多少即可.【解答】解:∵∠BOD=100°,∴∠BAD=100°÷2=50°,∴∠BCD=180°﹣∠BAD=180°﹣50°=130°故选:D.【点评】(1)此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,要熟练掌握.(2)此题还考查了圆内接四边形的性质,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).17.如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为()A.30°B.35°C.40°D.45°【考点】圆周角定理.【分析】先根据OA=OC,∠ACO=45°可得出∠OAC=45°,故可得出∠AOC的度数,再由圆周角定理即可得出结论.【解答】解:∵OA=OC,∠ACO=45°,∴∠OAC=45°,∴∠AOC=180°﹣45°﹣45°=90°,∴∠B=∠AOC=45°.故选D.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.18.如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A.50°B.80°C.100° D.130°【考点】圆周角定理.【分析】首先在上取点D,连接AD,CD,由圆周角定理即可求得∠D的度数,然后由圆的内接四边形的性质,求得∠ABC的度数.【解答】解:如图,在优弧上取点D,连接AD,CD,∵∠AOC=100°,∴∠ADC=∠AOC=50°,∴∠ABC=180°﹣∠ADC=130°.故选D.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.二、填空题19.如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤AE=BC,其中正确的序号是①②④.【考点】圆周角定理;等腰三角形的判定与性质;弧长的计算.【专题】压轴题.【分析】根据圆周角定理,等边对等角,等腰三角形的性质,直径对的圆周角是直角等知识,运用排除法逐条分析判断.【解答】解:连接AD,AB是直径,则AD⊥BC,又∵△ABC是等腰三角形,故点D是BC的中点,即BD=CD,故②正确;∵AD是∠BAC的平分线,由圆周角定理知,∠EBC=∠DAC=∠BAC=22.5°,故①正确;∵∠ABE=90°﹣∠EBC﹣∠BAD=45°=2∠CAD,故④正确;∵∠EBC=22.5°,2EC≠BE,AE=BE,∴AE≠2CE,③不正确;∵AE=BE,BE是直角边,BC是斜边,肯定不等,故⑤错误.综上所述,正确的结论是:①②④.故答案是:①②④.【点评】本题考查了圆周角定理,等腰三角形的判定与性质以及弧长的计算等.利用了圆周角定理,等边对等角,等腰三角形的性质,直径对的圆周角是直角求解.20.将量角器按如图所示的方式放置在三角形纸板上,使顶点C在半圆上,点A、B的读数分别为100°、150°,则∠ACB的大小为25度.【考点】圆周角定理.【专题】计算题.【分析】连接OA,OB,根据题意确定出∠AOB的度数,利用圆周角定理即可求出∠ACB 的度数.【解答】解:连接OA,OB,由题意得:∠AOB=50°,∵∠ACB与∠AOB都对,∴∠ACB=∠AOB=25°,故答案为:25【点评】此题考查了圆周角定理,熟练掌握圆周角定理是解本题的关键.21.如图所示,A、B、C三点均在⊙O上,若∠AOB=80°,则∠ACB=40°.【考点】圆周角定理.【专题】计算题.【分析】直接根据圆周角定理求解.【解答】解:∠ACB=∠AOB=×80°=40°.故答案为40.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.22.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径是4,sinB=,则线段AC的长为2.【考点】圆周角定理;解直角三角形.【专题】计算题.【分析】连结CD如图,根据圆周角定理得到∠ACD=90°,∠D=∠B,则sinD=sinB=,然后在Rt△ACD中利用∠D的正弦可计算出AC的长.【解答】解:连结CD,如图,∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠B,∴sinD=sinB=,在Rt△ACD中,∵sinD==,∴AC=AD=×8=2.故答案为2.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.23.如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=48°,则∠C的度数为42°.【考点】圆周角定理.【分析】根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.【解答】解:∵OA=OB,∠OBA=48°,∴∠OAB=∠OBA=48°,∴∠AOB=180°﹣48°×2=84°,∴∠C=∠AOB=42°,故答案为:42°.【点评】此题综合运用了三角形的内角和定理以及圆周角定理.解决本题的关键是熟记一条弧所对的圆周角等于它所对的圆心角的一半.24.如图,点O为所在圆的圆心,∠BOC=112°,点D在BA的延长线上,AD=AC,则∠D=28°.【考点】圆周角定理;等腰三角形的性质.【分析】由AD=AC,可得∠ACD=∠ADC,由∠BAC=∠ACD+∠ADC=2∠D,可得∠BAC的度数,由∠D=∠BAC即可求解.【解答】解:∵AD=AC,∴∠ACD=∠ADC,∵∠BAC=∠ACD+∠ADC=2∠D,∴∠BAC=∠BOC=×112°=56°,∴∠D=∠BAC=28°.故答案为:28°.【点评】本题主要考查了圆周角及等腰三角形的性质,解题的关键是找出∠D与∠BOC 的关系.25.如图,点A,B,C是⊙O上的点,AO=AB,则∠ACB=150度.【考点】圆周角定理;等边三角形的判定与性质;圆内接四边形的性质.【分析】根据AO=AB,且OA=OB,得出△OAB是等边三角形,再利用圆周角和圆心角的关系得出∠BAC+∠ABC=30°,解答即可.【解答】解:∵点A,B,C是⊙O上的点,AO=AB,∴OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°,∴∠BAC+∠ABC=30°,∴∠ACB=150°,故答案为:150【点评】此题考查了圆心角、圆周角定理问题,关键是根据AO=AB,且OA=OB,得出△OAB是等边三角形.三、解答题26.已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.(1)求BD的长;(2)求图中阴影部分的面积.【考点】圆周角定理;勾股定理;扇形面积的计算.【分析】(1)由AB为⊙O的直径,得到∠ACB=90°,由勾股定理求得AB,OB=5cm.连OD,得到等腰直角三角形,根据勾股定理即可得到结论;(2)根据S阴影=S扇形﹣S△OBD即可得到结论.【解答】解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∵BC=6cm,AC=8cm,∴AB=10cm.∴OB=5cm.连OD,∵OD=OB,∴∠ODB=∠ABD=45°.∴∠BOD=90°.∴BD==5cm.(2)S阴影=S扇形﹣S△OBD=π•52﹣×5×5=cm2.【点评】本题考查了圆周角定理,勾股定理,等腰直角三角形的性质,扇形的面积,三角形的面积,连接OD构造直角三角形是解题的关键.27.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.【考点】圆周角定理;圆心角、弧、弦的关系.【专题】计算题.【分析】(1)根据等腰三角形的性质由BC=DC得到∠CBD=∠CDB=39°,再根据圆周角定理得∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,所以∠BAD=∠BAC+∠CAD=78°;(2)根据等腰三角形的性质由EC=BC得∠CEB=∠CBE,再利用三角形外角性质得∠CEB=∠2+∠BAE,则∠2+∠BAE=∠1+∠CBD,加上∠BAE=∠CBD,所以∠1=∠2.【解答】(1)解:∵BC=DC,∴∠CBD=∠CDB=39°,∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,∴∠BAD=∠BAC+∠CAD=39°+39°=78°;(2)证明:∵EC=BC,∴∠CEB=∠CBE,而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,∴∠2+∠BAE=∠1+∠CBD,∵∠BAE=∠BDC=∠CBD,∴∠1=∠2.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰三角形的性质.28.如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:等边三角形;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.【考点】圆周角定理;全等三角形的判定与性质;等边三角形的判定与性质;垂径定理.【分析】(1)利用圆周角定理可得∠BAC=∠CPB,∠ABC=∠APC,而∠APC=∠CPB=60°,所以∠BAC=∠ABC=60°,从而可判断△ABC的形状;(2)在PC上截取PD=AP,则△APD是等边三角形,然后证明△APB≌△ADC,证明BP=CD,即可证得;(3)过点P作PE⊥AB,垂足为E,过点C作CF⊥AB,垂足为F,把四边形的面积转化为两个三角形的面积进行计算,当点P为的中点时,PE+CF=PC从而得出最大面积.【解答】证明:(1)△ABC是等边三角形.证明如下:在⊙O中∵∠BAC与∠CPB是所对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)在PC上截取PD=AP,如图1,又∵∠APC=60°,∴△APD是等边三角形,∴AD=AP=PD,∠ADP=60°,即∠ADC=120°.又∵∠APB=∠APC+∠BPC=120°,∴∠ADC=∠APB,在△APB和△ADC中,,∴△APB≌△ADC(AAS),∴BP=CD,又∵PD=AP,∴CP=BP+AP;(3)当点P为的中点时,四边形APBC的面积最大.理由如下,如图2,过点P作PE⊥AB,垂足为E.过点C作CF⊥AB,垂足为F.=AB•PE,S△ABC=AB•CF,∵S△APB=AB•(PE+CF),∴S四边形APBC当点P为的中点时,PE+CF=PC,PC为⊙O的直径,∴此时四边形APBC的面积最大.又∵⊙O的半径为1,∴其内接正三角形的边长AB=,=×2×=.∴S四边形APBC【点评】本题考查了圆周角定理、等边三角形的判定、三角形的面积公式以及三角形的全等的判定与性质,正确作出辅助线,证明△APB≌△ADC是关键.29.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF 并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)【考点】圆周角定理;全等三角形的判定与性质;扇形面积的计算.【分析】(1)解直角三角形求出OB,求出AB,根据圆周角定理求出∠ACB,解直角三角求出AC即可;(2)求出△ACF和△AOF全等,得出阴影部分的面积=△AOD的面积,求出三角形的面积即可.【解答】解:(1)∵OF⊥AB,∴∠BOF=90°,∵∠B=30°,FO=2,∴OB=6,AB=2OB=12,又∵AB为⊙O的直径,∴∠ACB=90°,∴AC=AB=6;(2)∵由(1)可知,AB=12,∴AO=6,即AC=AO,在Rt△ACF和Rt△AOF中,∴Rt△ACF≌Rt△AOF,∴∠FAO=∠FAC=30°,∴∠DOB=60°,过点D作DG⊥AB于点G,∵OD=6,∴DG=3,∴S△ACF +S△OFD=S△AOD=×6×3=9,即阴影部分的面积是9.【点评】本题考查了三角形的面积,全等三角形的性质和判定,圆周角定理,解直角三角形的应用,能求出△AOD的面积=阴影部分的面积是解此题的关键.30.如图,⊙O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交⊙O于点D.(1)求的长.(2)求弦BD的长.【考点】圆周角定理;含30度角的直角三角形;等腰直角三角形;弧长的计算.【分析】(1)首先根据AB是⊙O的直径,可得∠ACB=∠ADB=90°,然后在Rt△ABC中,求出∠BAC的度数,即可求出∠BOC的度数;最后根据弧长公式,求出的长即可.(2)首先根据CD平分∠ACB,可得∠ACD=∠BCD;然后根据圆周角定理,可得∠AOD=∠BOD,所以AD=BD,∠ABD=∠BAD=45°;最后在Rt△ABD中,求出弦BD的长是多少即可.【解答】解:(1)如图,连接OC,OD,,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,在Rt△ABC中,∵,∴∠BAC=60°,∴∠BOC=2∠BAC=2×60°=120°,∴的长=.(2)∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠AOD=∠BOD,∴AD=BD,∴∠ABD=∠BAD=45°,在Rt△ABD中,BD=AB×sin45°=10×.【点评】(1)此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,要熟练掌握.(2)此题还考查了含30度角的直角三角形,以及等腰直角三角形的性质和应用,要熟练掌握.(3)此题还考查了弧长的求法,要熟练掌握,解答此题的关键是要明确:①弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R).②在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位.。
中考数学模拟题汇总《圆》专项练习(附答案)一、选择题1.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于( )A.60°B.70°C.120°D.140°2.如图,⊙O直径为10,圆心O到弦AB的距离OM长为3,那么弦AB长是( )A.4B.6C.7D.83.如图,Rt△ABC中,∠C=90°,AC=4,BC=3.以点A为圆心,AC长为半径作圆.则下列结论正确的是( )A.点B在圆内B.点B在圆上C.点B在圆外D.点B和圆的位置关系不确定4.在平面直角坐标系中,以点(3,2)为圆心,3为半径的圆,一定( )A.与x轴相切,与y轴相切B.与x轴相切,与y轴相交C.与x轴相交,与y轴相切D.与x轴相交,与y轴相交5.有一条弧的长为2πcm,半径为2cm,则这条弧所对的圆心角的度数是( )A.90°B.120°C.180°D.135°6.如图,将△ABC 绕点C 按顺时针旋转60°得到△A ′B ′C,已知AC=6,BC=4,则线段AB 扫过图形面积为( )A.πB.πC.6πD.π7.已知圆锥的底面半径为4cm ,母线长为6cm ,则它的侧面展开图的面积等于( )A.24cm 2B.48cm 2C.24πcm 2D.12πcm 28.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问锯几何?”用现代的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD 垂足为E ,CE =1寸,AB =10寸,求直径CD 的长”,依题意,CD 长为( )A.12寸B.13寸C.24寸D.26寸9.下列关于三角形的外心的说法中,正确的是( )A.三角形的外心在三角形外B.三角形的外心到三边的距离相等C.三角形的外心到三个顶点的距离相等D.等腰三角形的外心在三角形内10.如图,⊙C 过原点O ,且与两坐标轴分别交于点A 、B ,点A 的坐标为(0,4),点M 是第三象限内OB ︵ 上一点,∠BMO =120°,则⊙C 的半径为( )A.4B.5C.6D.2 311.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°.设OP=x,则△PAB的面积y关于x的函数图象大致是( )12.如图,AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是( )A. 5π3-2 3 B.5π3+2 3 C. 23-5π3D. 3+5π3二、填空题13.如图,AB是⊙O的直径,△ACD内接于⊙O,若∠BAC=42°,则∠ADC=______.14.如图,正方形网格中每个小正方形边长都是l,则△ABC的外接圆的圆心坐标为 .15.如图,四边形ABCD为⊙O的内接四边形,连接AC、BO,已知∠CAB=36°,∠ABO=30°,则∠D= .16.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步.”该问题的答案是________步.17.将一个边长为1的正八边形补成如图所示的正方形,这个正方形的边长等于________.(结果保留根号)18.如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1∶r2= .三、解答题19.赵州桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.如图,若桥跨度AB约为40米,主拱高CD约10米,(1)如图1,尺规作图,找到桥弧所在圆的圆心O(保留作图痕迹);(2)如图2,求桥弧AB所在圆的半径R.20.如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD=AB,∠D=30°.(1)求证:直线AD是⊙O的切线;(2)若直径BC=4,求图中阴影部分的面积.21.如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C.(1)若∠ADE=25°,求∠C的度数;(2)若AC=4,CE=2,求⊙O半径的长.22.如图,在△ABC中,以AB为直径的⊙O分别于BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为5,∠CDF=30°,求的长(结果保留π).23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC 的延长线于点G.求证:(1)FC=FG;(2)AB2=BC·BG.24.如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是⊙O的切线;(2)若A为EH的中点,求EFFD的值;(3)若EA=EF=1,求⊙O的半径.参考答案1.D 2.D 3.C. 4.C. 5.C 6.D 7.C8.D. 9.C. 10.A. 11.D. 12.A13.答案为:48°.14.答案为:(172,2).15.答案为:96°.16.答案为:617.答案为:1+ 218.答案为:3∶2;19.解:(1)如图1所示;(2)连接OA.如图2.由(1)中的作图可知:△AOD为直角三角形,D是AB的中点,CD=10,∴AD=0.5AB=20.∵CD=10,∴OD=R﹣10.在Rt△AOD中,由勾股定理得,OA2=AD2+OD2,∴R2=202+(R﹣10)2.解得:R=25.即桥弧AB所在圆的半径R为25米.20.证明:(1)连接OA,则∠COA=2∠B,∵AD =AB ,∴∠B =∠D =30°,∴∠COA =60°,∴∠OAD =180°﹣60°﹣30°=90°,∴OA ⊥AD ,即CD 是⊙O 的切线;(2)∵BC =4,∴OA =OC =2,在Rt △OAD 中,OA =2,∠D =30°,∴OD =2OA =4,AD =23,所以S △OAD =12OA •AD =12×2×23=23,因为∠COA =60°,所以S 扇形COA =2π3,所以S 阴影=S △OAD ﹣S 扇形COA =23﹣2π3.21.解:(1)连接OA ,∵∠ADE =25°,∴由圆周角定理得:∠AOC =2∠ADE =50°,∵AC 切⊙O 于A ,∴∠OAC=90°,∴∠C=180°﹣∠AOC﹣∠OAC=180°﹣50°﹣90°=40°;(2)设OA=OE=r,在Rt△OAC中,由勾股定理得:OA2+AC2=OC2,即r2+42=(r+2)2,解得:r=3,答:⊙O半径的长是3.22.(1)证明:连接OD,如图所示.∵DF是⊙O的切线,D为切点,∴OD⊥DF,∴∠ODF=90°.∵BD=CD,OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∴∠CFD=∠ODF=90°,∴DF⊥AC.(2)解:∵∠CDF=30°,由(1)得∠ODF=90°,∴∠ODB=180°﹣∠CDF﹣∠ODF=60°.∵OB=OD,∴△OBD是等边三角形,∴∠BOD=60°,∴的长===π.23.证明:(1)如解图,∵EF∥BC,AB⊥BG,∴EF⊥AD.∵E是AD的中点,∴FA=FD,∴∠FAD=∠D.又∵GB⊥AB,∴∠GAB+∠G=∠D+∠1=90°,∴∠1=∠G,∵∠1=∠2,∴∠2=∠G,∴FC=FG;(2)如图,连接AC,∵AB⊥BG,∴AC是⊙O的直径,∵FD是⊙O的切线,切点为C,∴AC⊥DF,∴∠1+∠4=90°,∵∠3+∠4=90°,∴∠1=∠3,由(1)可知∠1=∠G,∴∠3=∠G,又∵∠ABC=∠GBA=90°,∴△ABC∽△GBA,∴ABGB=BCBA,∴AB2=BC·BG.24. (1)证明:如图,连接OD,∵AB=AC,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥AC,∵DH⊥AC,∴OD⊥DH,∵OD是⊙O的半径,∴DH是⊙O的切线;(2)解:由圆周角定理知,∠1=∠5,又∵∠1=∠2,∴∠2=∠5,∴△EDC是等腰三角形,∵DH⊥AC,∴H是EC的中点,∵A是EH的中点,∴EA=AH=12HC=13AC,由(1)知OD∥AC,∵O是AB的中点,∴OD=12 AC,∴EFFD=AEOD=2AEAC=23;(3)解:设OD=x,∵OD∥EC,EA=EF=1,∴OD=FD=x,∴ED=DC=x+1,又∵AC=2OD=2x,∴EC=2x+1,∵在△CDE与△CAB中,∠2=∠2,∠1=∠5,∴△CDE∽△CAB,∴CDCA=CECB,即CD·CB=CA·CE,得(x+1)(2x+2)=2x(2x+1),解得x1=5+12,x2=1-52(舍去),5+1 2.∴⊙O的半径为。
中考数学专题复习《圆的阅读理解题》测试卷(附带参考答案)学校:___________班级:___________姓名:___________考号:___________1.请阅读下列材料 并完成相应的任务:斯库顿定理:如图1.在ABC 中 AD 为BAC ∠的平分线 则2··AD BD DC AB AC +=.下面是该定理的证明过程: 证明:如图2O 是ABC 的外接圆 延长AD 交O 于点E 连接BE .∵AD 为BAC ∠的平分线 ∵BAE DAC ∠=∠.∵E C ∠=∠ (依据∵__________________________) ABE ADC ∴△∽△.(依据∵_________________________) AB ADAE AC∴= AD AE AB AC ∴⋅=⋅又AE AD DE =+()AD AD DE AB AC ∴⋅+=⋅.2AD AD DE AB AC ∴+⋅=⋅.……任务:(1)证明过程中的依据是:∵__________________________________. ∵__________________________________. (2)将证明过程补充完整:(3)如图3.在圆内接四边形ACEB 中 对角线AE BC 相交于点D .若BE CE = 4AC =6AB=2BD=请利用斯库顿定理直接写出线段AE的长.CD=32.如图1 正五边形ABCDE内接于∵O阅读以下作图过程并回答下列问题作法:如图2 ∵作直径AF∵以F为圆心FO为半径作圆弧与∵O交于点M N∵连接AM MN NA.,,∠的度数.(1)求ABC(2)AMN是正三角形吗?请说明理由.(3)从点A开始以DN长为半径在∵O上依次截取点再依次连接这些分点得到正n边形求n的值.3.阅读与应用请阅读下列材料完成相应的任务:托勒密是“地心说”的集大成者著名的天文学家地理学家占星学家和光学家.后人从托勒密的书中发现一个命题:圆内接四边形对边乘积的和等于对角线的乘积.下面是对这个命题的证明过程.如图1 四边形ABCD 内接于O .求证:AB DC AD BC AC BD ⋅+⋅=⋅.证明:如图2 作BAE CAD ∠=∠交BD 于点E .∵AD AD = ∵ABE ACD ∠=∠.(依据) ∵ABE ACD ∽△△.∵AB BEAC CD=.AB DC AC BE ⋅=⋅. …∵ABC AED ∽△△. ∵AC BCAD ED=.∵AD BC AC ED ⋅=⋅. ∵AB DC AC BE ⋅=⋅∵()AB DC AD BC AC BE AC ED AC BE ED AC BD ⋅+⋅=⋅+⋅=+=⋅. ∵AB DC AD BC AC BD ⋅+⋅=⋅. 任务:(1)证明过程中的“依据”是______ (2)补全证明过程(3)如图3 O的内接五边形ABCDE的边长都为2 求对角线BD的长.4.阅读与思考请阅读下列材料,并按要求完成相应的任务.阿基米德是伟大的古希腊数学家哲学家物理学家他与牛顿高斯并称为三大数学王子.他的著作《阿基米德全集》的《引理集》中记述了有关圆的15个引理其中第三个引⊥于点C点D在弦AB上且理是:如图1 AB是O的弦点P在O上PC AB=.小明思考后给出如=在PB上取一点Q使PQ PAAC CD=连接BQ则BQ BD下证明:任务:(1)写出小明证明过程中的依据: 依据1:________ 依据2:________(2)请你将小明的证明过程补充完整(3)小亮想到了不同的证明方法:如图3 连接AP PD PQ DQ .请你按照小亮的证明思路 写出证明过程.5.阅读资料:我们把顶点在圆上 一边和圆相交 另一边和圆相切的角叫做弦切角 如图1中CBD ∠即为弦切角.同学们研究发现:A 为圆上任意一点 当弦AB 经过圆心O 且DB 切O 于点B 时 易证:弦切角CBD A ∠=∠.问题拓展:如图2 点A 是优弧BC 上任意一点 DB 切O 于点B 求证:CBD A ∠=∠. 证明:连接BO 并延长交O 于点A ' 连接A C ' 如图2所示. ∵DB 与O 相切于点B ∵A BD ∠'=________ ∵90A BC CBD ∠'+∠=︒. ∵A B '是直径∵90ACB ∠'=︒_____________(依据). ∵90A A BC ∠'+∠'=︒.∵CBD A ∠=∠'________________(依据).又∵A A ∠'=∠________________(依据) ∵CBD A ∠=∠.(1)将上述证明过程及依据补充完整.(2)如图3 ABC 的顶点C 在O 上 AC 和O 相交于点D 且AB 是O 的切线 切点为B 连接BD .若2,6,3AD CD BD === 求BC 的长.6.阅读:如图1所示 四边形ABCD 是∵O 的内接四边形 连接AC BD .BC 是∵O 的直径 AB =AC .请说明线段AD BD CD 之间的数量关系.下面是王林解答该问题的部分解答过程 请补充完整:+CD =BD .理由如下:∵BC 是∵O 的直径 ∵∵BAC =90°. ∵AB =AC ∵∵ABC =∵ACB =45°.如图2所示 过点A 作AM ∵AD 交BD 于点M …(1)补全王林的解答过程(2)如图3所示 四边形ABCD 中∵ABC =30° 连接AC BD .若∵BAC =∵BDC =90° 直接写出线段AD BD CD 之间的关系式是 . 7.阅读下列材料 并按要求完成相应的任务. 黄金三角形与五角星当等腰三角形的顶角为36°(或108°)时 我们把这样的三角形叫做黄金三角形. 按下面的步骤画一个五角星(如图):∵作一个以AB 为直径的圆 圆心为O ∵过圆心O 作半径OC ∵AB ∵取OC 的中点D 连接AD∵以D 为圆心OD 为半径画弧交AD 于点E ∵从点A 开始以AE 为半径顺时针依次画弧正好把∵O 十等分(其中点F G B H I 为五等分点) ∵以点F G B H I 为顶点画出五角星. 任务: (1)求出AEOA的值为 (2)如图 GH 与BF BI 分别交于点M N 求证:△BMN 是黄金三角形. 8.阅读下面材料 并按要求完成相应的任务.阿基米德是古希腊的数学家 物理学家.在《阿基米德全集》里 他关于圆的引理的论证如下:命题:设AB 是一个半圆的直径 并且过点B 的切线与过该半圆上的任意一点D 的切线交于点T 如果作DE 垂直AB 于点E 且与AT 交于点F 则DF EF =. 证明:如图1 延长AD 与BT 交于点H 连接OD OT . ∵DT BT 与半圆O 相切 ∵……∵ ∵BT DT =. ∵AB 是半圆O 的直径 ∵90ADB ︒∠=.∵在BDH △中 由BT DT = 可得TDB TBD ∠=∠ ∵H TDH ∠=∠.∵BT DT HT ==. 又∵//DE BH ∵DF AFHT AT = EF AF BT AT=∵EF DFBT HT=. 又∵BT HT = ∵DF EF =任务:(1)请将∵处的证明过程补充完整. (2)证明过程中∵的证明依据是 .(3)如图2 AB 为∵O 的直径 ∵BED 是等边三角形 BE 是∵O 的切线 切点是B 点D 在∵O 上 CD ∵AB 垂足为C 连接AE 交CD 于点F .若∵O 的半径为2 求CF 的长. 9.阅读材料 某个学习小组成员发现:在等腰ABC 中 AD 平分BAC ∠ ∵AB AC =BD CD = ∵AB BDAC CD= 他们猜想:在任意ABC 中 一个内角角平分线分对边所成的两条线段与这个内角的两边对应成比例.【证明猜想】如图1所示 在ABC 中 AD 平分BAC ∠ 求证:AB BDAC CD=. 丹丹认为 可以通过构造相似三角形的方法来证明△和ACD面积的角度来证明.思思认为可以通过比较ABD(1)请你从上面的方法中选择一种进行证明.(2)【尝试应用】如图2O是Rt ABC的外接圆点E是O上一点(与B不重合且=连结AE并延长AE BC交于点D H为AE的中点连结BH交AC于点G求AB AEHG的值.GB(3)【拓展提高】如图3在(2)的条件下延长BH交O于点F若BE EF=求=GH xO的直径(用x的代数式表示).10.请阅读下面材料并完成相应的任务阿基米德折弦定理阿基米德(Arehimedes 公元前287—公元前212年古希腊)是有史以来最伟大的数学家之一他与牛顿高斯并称为三大数学王子.阿拉伯Al-Biruni(973年—1050年)的译文中保存了阿基米德折弦定理的内容苏联在1964年根据Al-Biruni译本出版了俄文版《阿基米德全集》第一题就是阿基米德的折弦定理.阿基米德折弦定理:如图1 AB和BC是O的两条弦(即折线ABC是圆的一条折弦)>M是ABC的中点则从点M向BC所作垂线的垂足D是折弦ABC的中点即BC ABCD AB BD=+.=+的部分证明过程.这个定理有很多证明方法下面是运用“垂线法”证明CD AB BD证明:如图2 过点M作MH⊥射线AB垂足为点H连接MA MB MC.∵M 是ABC 的中点 ∵MA MC =. … 任务:(1)请按照上面的证明思路 写出该证明的剩余部分(2)如图3 已知等边三角形ABC 内接于O D 为AC 上一点 15ABD ∠=︒ CE BD ⊥于点E 2CE = 连接AD 则DAB 的周长是______.11.阅读与思考请阅读下列材料 并完成相应的任务:任务:(1)材料中划横线部分应填写的内容为 .(2)如图2 正五边形ABCDE 内接于∵O AB =2 求对角线BD 的长.12.阅读下列材料 完成相应任务:如图∵ ABC 是∵O 的内接三角形 AB 是∵O 的直径AD 平分BAC ∠交∵O 于点D 连接BD 过点D 作∵O 的切线 交AB 的延长线于点E .则CAD BDE ∠=∠.下面是证明CAD BDE ∠=∠的部分过程:证明:如图∵ 连接DO AB 是∵O 的直径 90ADB ∴∠=︒ODA ∴∠+∵________90=︒.(1) DE 为∵O 的切线 90ODE ∴∠=︒90ODB BDE ∴∠+∠=︒ (2)由(1)(2)得 ∵________________. AD 平分,BAC CAD OAD ∠∴∠=∠.,OA OD OAD ODA =∴∠=∠CAD ∴∠=∵________CAD BDE ∴∠=∠.任务:(1)请按照上面的证明思路 补全证明过程:∵________ ∵________ ∵________ (2)若5,2OA BE == 求DE 的长.13.阅读下列材料:平面上两点P 1(x 1 y 1) P 2(x 2 y 2)之间的距离表示为()()22121212PP x x y y =-+- 称为平面内两点间的距离公式 根据该公式 如图 设P (x y )是圆心坐标为C (a b )半径为r 的圆上任意一点 则点P ()()22x a y b r -+-= 变形可得:(x ﹣a )2+(y ﹣b )2=r 2 我们称其为圆心为C (a b ) 半径为r 的圆的标准方程.例如:由圆的标准方程(x ﹣1)2+(y ﹣2)2=25可得它的圆心为(1 2) 半径为5.根据上述材料 结合你所学的知识 完成下列各题.(1)圆心为C (3 4) 半径为2的圆的标准方程为:(2)若已知∵C 的标准方程为:(x ﹣2)2+y 2=22 圆心为C 请判断点A (3 ﹣1)与∵C的位置关系.14.阅读以下材料 并按要求完成相应的任务:几何定论 是指变化的图形中某些几何元素的几何量保持不变(如定长 定角 定比 定积等) 或几何元素间的某些性质或位置关系不变(如定点 定线 定方向等)如图∵ 点A 为O 外一点 过点A 为O 作直线与O 相交于点B C 点B '为点B 关于OA 的对称点 连接B C '交OA 于点M 设O 的半径为R .如图∵ 当过点A 的直线与O 相切时 点B C 重合 可得2R OA OM =⋅.如图∵ 当过点A 的直线与O 相交时 证明2R OA OM =⋅.证明:如图∵ 连接OC CD .∵B ' B 关于OA 对称∵BD BD '=.∵∵1=∵2 .(依据)…任务:(1)上述证明过程中的依据是____________________(2)根据以上的证明提示 完成上述证明过程(3)如图∵ 若5OA = 1OM = 求O 的半径.15.阅读下列相关材料 并完成相应的任务.婆罗摩笈多是古印度著名的数学家 天文学家他编著了《婆罗摩修正体系》 他曾经提出了“婆罗摩笈多定理” 也称“布拉美古塔定理”.定理的内容是:“若圆内接四边形的对角线互相垂直 则垂直于一边且过对角线交点的直线平分对边”.任务:(1)按图(1)写出了这个定理的已知和求证 并完成这个定理的证明过程已知:__________________求证:_________________证明:(2)如图(2) 在O 中 弦AB CD ⊥于M 连接,,,,,AC CB BD DA E F 分别是,AC BC 上的点 EM BD ⊥于,G FM AD ⊥于H 当M 是AB 中点时 直接写出四边形EMFC 是怎样的特殊四边形:__________.参考答案:1.解:(1)∵同弧或等弧所对的圆周角相等∵E ∠和C ∠所对的弧是同一条弧∵∵应填:同弧或等弧所对的圆周角相等∵两角分别相等的两个三角形相似∵题目中的结论是两个三角形相似 用的方式是三角形的两个角分别相等∵∵应填两角分别相等的两个三角形相似(2)∵BDE ADC ∠=∠ E C ∠=∠.BDE ADC ∽△∴△.BD DE AD DC∴= AD DE BD DC ∴⋅=⋅2AD BD DC AB AC ∴+⋅=⋅(3)42AE =∵BE CE =.∵弧BE =弧CE∵BAE CAE ∠=∠∵AE 平分BAC ∠.由斯库顿定理 得2AD BD DC AB AC +⋅=⋅又∵4AC = 6AB = 2CD = 3BD =∵23264AD +⨯=⨯.解得=AD AD =-。
中考数学《圆的综合》专题训练(含有答案)1.如图,:AB 是O 的直径:BC 是O 弦,OD CB ⊥于点E ,交BC 于点D .(1)请写出三个不同类型的正确结论(2)连结CD ,设BCD α∠= ABC β∠= 试找出α与β之间的一种关系式并给予证明.2.如图,,在ABC 中 AB AC = 以AB 为直径的O 交BC 于点D 交CA 的延长线于点E .(1)求证点D 为线段BC 的中点.(2)若63BC = 3AE = 求O 的半径及阴影部分的面积.3.如图,AB 为O 的直径 点C 在O 上 延长BC 至点D 使DC CB =.延长DA 与O 的另一个交点为E 连结AC CE ,.(1)求证D E ∠=∠(2)若42AB BC AC =-=, 求CE 的长.4.请仅用无刻度的直尺完成下列作图 不写作法 保留作图痕迹(1)如图1, ABC 与ADE 是圆内接三角形 AB AD = AE AC = 画出圆的一条直径.(2)如图2 , AB CD 是圆的两条弦 AB CD =且不相互平行 画出圆的一条直径. 5.如图,AB 是O 的直径 点D 在AB 的延长线上 点C 在O 上 ,30CA CD CDA =∠=︒.(1)求证CD 是O 的切线(2)若O 的半径为6 求点A 到CD 所在直线的距离.6.如图, 点C 在以AB 为直径的O 上 过C 作O 的切线交AB 的延长线于E AD CE ⊥于D 连接AC .(1)求证ACD ABC ∠=∠(2)若3tan 4CAD ∠= 8AD = 求O 直径AB 的长.7.如图, 已知以Rt ABC 的直角边AC 为直径作O 交斜边AB 于点E 连接EO 并延长交BC 的延长线于点D 连接AD 点F 为BC 的中点 连接EF .(1)求证EF 是O 的切线(2)若O 的半径为6 8CD = 求AB 的长.8.如图, AB 是半圆O 的直径 D 为半圆O 上的点(不与A B 重合) 连接AD 点C 为BD 的中点 过点C 作CF AD ⊥ 交AD 的延长线于点F 连接BF AC 交于点E .(1)求证FC 是半圆O 的切线(2)若3AF = 23AC = 求半圆O 的半径及AE 的长.9.如图, AB 为O 的直径 C 为BA 延长线上一点 CD 是O 的切线 D 为切点 OF AD ⊥于点E 交CD 于点F .(1)求证ADC AOF ∠=∠ (2)若53OC OB = 24BD = 求EF 的长. 10.如图,所示 AB 是O 的直径 点D 在AB 上 点C 在O 上 AD AC =CD 的延长线交O 于点E .(1)在CD 的延长线上取一点F 使BF BC = 求证BF 是O 的切线 (2)若2AB = 2CE 求图中阴影部分的面积.11.如图, ABC 内接于O AB 为O 的直径 D 为BA 延长线上一点 连接CD 过O 作OF BC ∥交AC 于点E 交CD 于点F ACD AOF ∠=∠.(1)求证CD 为圆O 的切线 (2)若1sin 4D =10BC = 求EF 的长. 12.如图, 四边形ABCD 是O 的内接四边形 AD CD = 70BAC ∠=︒ 50∠=°ACB .(1)求ABD ∠的度数 (2)求BAD ∠的度数.13.如图, 四边形ABCD 是O 的内接四边形 且对角线BD 为O 的直径 过点A 作AE CD ⊥ 与CD 的延长线交于点E 且DA 平分BDE ∠.(1)求证AE 是O 的切线(2)若O 的半径为5 6CD = 求DA 的长.14.如图, 在正方形ABCD 中有一点P 连接AP BP 旋转APB △到CEB 的位置.(1)若正方形的边长是8 4BP =.求阴影部分面积 (2)若4BP = 7AP = 135APB ∠=︒ 求PC 的长.15.如图, AB 是O 的直径 OD 垂直于弦AC 于点E 且交O 于点D F 是BA 延长线上一点 若CDB BFD ∠=∠.(1)求证 FD 是O 的一条切线(2)若15AB = 9BC = 求DF 的长. 16.如图,O 是ABC ∆的外接圆 AE 切O 于点A AE 与直径BD 的延长线相交于点E .(1)如图,① 若70C ∠=︒ 求E ∠的大小 (2)如图,① 若AE AB = 求E ∠的大小.17.已知 如图, 直线MN 交O 于A B 两点 AC 是直径 AD 平分CAM ∠交O 于D 过D 作DE MN ⊥于E .(1)求证DE 是O 的切线(2)若8cm DE = 4cm AE = 求O 的半径.18.已知四边形ABCD 内接于O C 是DBA 的中点 FC AC ⊥于C 与O 及AD 的延长线分别交于点,E F 且DE BC =.(1)求证~CBA FDC(2)如果9,4AC AB == 求tan ACB ∠的值.参考答案与解析1.(1)见解析(2)关系式为2=90αβ+︒ 证明见解析【分析】(1)AB 是O 的直径 BC 是弦 OD BC ⊥于E 本题满足垂径定理. (2)连接,CD DB 根据四边形ACDB 为圆内接四边形 可以得到290αβ+=︒. 【解析】(1)解不同类型的正确结论有 ①BE CE = ①BD CD = ①90BED ∠=︒ ①BOD A ∠=∠ ①AC OD ∥ ①AC BC ⊥ ①222OE BE OB += ①ABC S BC OE =⋅△ ①BOD 是等腰三角形 ①BOE BAC △∽△等等. (2)如图, 连接,CD DBα与β之间的关系式为290αβ+=︒证明AB 为圆O 的直径90A ABC ∴∠+∠=︒①又四边形ACDB 为圆内接四边形180A CDB ∠∠∴+=︒①∴①-①得90CDB ABC ∠∠-=︒①18021802CDB BCD α∠=︒-∠=︒- 即180290αβ︒--=︒ ①2=90αβ+︒.【点评】本题考查了圆的一些基本性质 且有一定的开放性 垂径定理 圆内接四边形的性质掌握圆的相关知识. 2.(1)见解析 (2)半径为3 39π324S =阴【分析】(1)连结AD 可得90ADB ∠=︒ 已知AB AC = 根据等腰三角形三线合一的性质即可得证点D 为线段BC 的中点(2)根据已知条件可证ABC DEC ∽△△ 得到ED ECAB BC= 22BD AB EC =⋅ 且EDC △是等腰三角形 进而得到ED DC BD == 设AB x = 则(()22333x x =+ 解方程即可求得O 的半径连接OE 可证AOE △是等边三角形 再根据AOEAOE S S S =-阴扇形即可求出阴影部分的面积【解析】(1)连结AD①AB 为O 的直径 ①90ADB ∠=︒ ①AB AC = ①BD CD =即点D 为线段BC 的中点. (2)①B E ∠=∠ C C ∠=∠ ①ABC DEC ∽△△ ①ED ECAB BC= ①AB AC = ①B C ∠=∠ ①C E ∠=∠ ①ED DC BD == ①22BD AB EC =⋅ 设AB x = 则 (()22333x x =+解得19x =-(舍去) 26x = ①O 的半径为3 连接OE ①60AOE =︒∠ ①AOE △是等边三角形 ①AE 33①AOEAOE S S S=-阴扇形260313333602π⨯⨯=-⨯ 39π324=【点评】本题主要考查等腰三角形的性质 相似三角形的判定和性质 不规则图形面积的计算 熟练掌握相关知识点是解题的关键. 3.(1)见解析 (2)CE 的长为17【分析】(1)由AB 为O 的直径得90ACB ∠=︒ 通过证明()ACD ACB ≌SAS 得到D B ∠=∠ 又由B E ∠=∠ 从而得到D E ∠=∠(2)设BC x = 则2AC x =- 在Rt ABC 中 由勾股定理可得222AC BC AB += 即()22224x x -+= 解一元二次方程得到BC 的长 由(1)知D E ∠=∠ 从而得到CD CE = 又由DC CB = 得到17CE CB ==【解析】(1)证明AB 为O 的直径90ACB ∴∠=︒180ACD ACB ∠+∠=︒90ACD ∴∠=︒在ACD 和ACB △中AC AC ACD ACB DC BC =⎧⎪∠=∠⎨⎪=⎩()ACD ACB ∴≌SASD B ∴∠=∠ BE ∠=∠D E ∴∠=∠(2)解设BC x =2BC AC -=∴2AC x =-在Rt ABC 中 由勾股定理可得222AC BC AB += 即()22224x x -+=解得117x = 217x = 17BC ∴=由(1)得D E ∠=∠ CD CE ∴= DC CB =17CE CB ∴==∴ CE 的长为17【点评】本题主要考查了圆周角定理 三角形全等的判定与性质 等腰三角形的性质 勾股定理解直角三角形 熟练掌握圆周角定理 三角形全等的判定与性质 等腰三角形的性质是解题的关键. 4.(1)见解析 (2)见解析【分析】(1)设BC DE 交于点G 连接AG 交圆于点F 即可作答(2)连接BC AD 交于点F 延长BA DC 两线交于点E 作直线EF 交圆于点M N 即可作答.【解析】(1)如图, 设BC DE 交于点G 连接AG 并延长 交圆于点F线段AF 即为所求证明如图, BC AE 交于点Q DE AC 交于点P 连接DB 交AF 于点H①AB AD = AE AC = ①C E ∠=∠ ADE ABC =∠∠ ①DAE BAC ∠=∠①DAE BAC ≌ ①BC DE = ①DAE BAC ∠=∠ ①BAE DAC ∠=∠①AB AD = ADE ABC =∠∠ ①DAP BAQ ≌ ①AQ AP = ①AE AC = ①QE PC =①QGE PGC ∠=∠ C E ∠=∠ ①QGE PGC ≌ ①QG PG =①AG AG = AQ AP = ①QAG PAG ≌ ①QAG PAG ∠=∠ ①BAE DAC ∠=∠ ①BAG DAG ∠=∠ ①AH AH = AB AD = ①BAH DAH ≌①BH DH = 90AHB AHD ∠=∠=° ①AF 垂直平分弦DB ①AF 是圆的直径(2)如图, 连接BC AD 交于点F 延长BA DC 两线交于点E 作直线EF 交圆于点M N线段MN 即为所求. 证明方法同(1).【点评】本题主要考查了垂径定理 圆周角定理以及全等三角形的判定与性质等知识 掌握圆周角定理以及垂径定理是解答本题的关键. 5.(1)见解析 (2)9【分析】(1)已知点C 在O 上 先连接OC 由已知CA CD = 30CDA ∠=︒ 得30CAO ∠=︒ 30ACO ∠=︒ 所以得到60COD ∠=︒ 根据三角形内角和定理得90DCO ∠=︒ 即能判断直线CD 与O 的位置关系.(2)要求点A 到CD 所在直线的距离 先作AE CD ⊥ 垂足为E 由30CDA ∠=︒ 得12AE AD = 在Rt OCD △中 半径6OD = 所以212OD OC == 18AD OA OD =+= 从而求出AE .【解析】(1)①ACD 是等腰三角形 30D ∠=︒①30CAD CDA ∠=∠=︒.连接OC①AO CO =①AOC 是等腰三角形①30CAO ACO ∠=∠=︒①60COD ∠=︒在COD △中 又①30CDO ∠=︒①90DCO ∠=︒①CD 是O 的切线 即直线CD 与O 相切.(2)过点A 作AE CD ⊥ 垂足为E .在Rt OCD △中 ①30CDO ∠=︒①212OD OC ==61218AD AO OD =+=+=在Rt ADE △中①30EDA ∠=︒①点A 到CD 边的距离为92AD AE ==. 【点评】此题考查的知识点是切线的判定与性质 解题的关键是运用直角三角形的性质及30°角所对直角边的性质.6.(1)见解析 (2)252AB =.【分析】(1)连接OC 由DE 为O 的切线 得到OC DE ⊥ 再由AD CE ⊥ 得到AD OC ∥ 得到OCA CAD ∠=∠ 根据OA OC = 利用等边对等角得到OCA CAB ∠=∠ 等量代换得到CAD CAB ∠=∠ 由AB 为O 的直径 可知90ACB ∠=︒ 最后根据等角的余角相等可得结论 (2)在Rt CAD △中 利用锐角三角函数定义求出CD 的长 根据勾股定理求出AD 的长 由(1)易证ADC ACB 得到AD AC AC AB= 即可求出AB 的长. 【解析】(1)解连接OC由题意可知DE 与O 的相切于COC DE ∴⊥AD CE ⊥AD OC ∴∥OCA CAD ∴∠=∠OA OC =OCA CAB ∴∠=∠CAD CAB ∴∠=∠ AB 为O 的直径90ACB ∴∠=︒90CAD ACD CAB ABC ∴∠+∠=∠+∠=︒ACD ABC ∴∠=∠(2)在Rt CAD △中3tan 4CDCAD AD ∠== 8AD =364CD AD ∴==22226810AC CD AD ∴+=+=由(1)可知CAD CAB ∠=∠90D ACB ∠=∠=︒ADC ACB ∴ADACAC AB ∴=81010AB∴= 252AB ∴=【点评】此题考查了切线的性质 以及解直角三角形 熟练掌握切线的判定与性质是解本题的关键. 7.(1)证明见解析 (2)125AB =【分析】(1)连接FO 可根据三角形中位线的性质可判断OF AB ∥ 然后根据直径所对的圆周角是直角 可得CE AE ⊥ 进而知OF CE ⊥ 然后根据垂径定理可得FEC FCE ∠=∠OEC OCE ∠=∠ 再通过Rt ABC 可知90OEC FEC ∠+∠=︒ 因此可证EF 为O 的切线(2)根据题意可先在Rt OCD △中求出OD 然后在Rt EFD 中求出FC 最终在Rt ABC 中求解AB 即可.【解析】(1)证连接FO 则由题意OF 为Rt ABC 的中位线①OF AB ∥①AC 是O 的直径①CE AE ⊥①OF AB ∥①OF CE ⊥①由垂径定理知 OF 所在直线垂直平分CE①FC FE = OE OC =①FEC FCE ∠=∠ OEC OCE ∠=∠①90ACB ∠=︒即90OCE FCE ∠+∠=︒①90OEC FEC ∠+∠=︒即90FEO ∠=︒①EF 是O 的切线(2)解①O 的半径为6 8CD = 90ACB ∠=︒①OCD 为直角三角形 6OC OE == 8CD = ①2210OD OC CD += 10616ED OD OE =+=+=由(1)知 EFD △为直角三角形 且FC FE =①设FC FE x == 则8FD FC CD x =+=+①由勾股定理 222EF ED FD +=即()222168x x +=+ 解得12x =即12FC FE ==①点F 为BC 的中点①224BC FC ==①212AC OC ==①在Rt ABC 中 22125AB BC AC +①125AB =【点评】本题考查切线的证明 圆的基本性质 以及勾股定理解三角形等 掌握切线的证明方法 熟练运用圆中的基本性质是解题关键.8.(1)见解析(2)半径为2 123AE =【分析】(1)根据点C 为弧BD 的中点 得出FAC CAB ∠∠= 然后得出FAC ACO ∠∠= 根据平行线的性质得出CF OC ⊥ 进而即可求解(2)连接BC 设OC 与BF 相交于点P 证明AFC ACB ∽ 得出4AB = 证明BOP BAF ∽得出1322OP AF == 进而证明ECP EAF ∽ 根据相似三角形的性质列出比例式 进而即可求解. 【解析】(1)证明连接OC 如图,点C 为弧BD 的中点∴CD CB =FAC CAB ∠∠∴=又OA OC =CAB ACO ∠∠∴=FAC ACO ∠∠∴=∴OC AF ∥又CF AD ⊥CF OC ∴⊥FC ∴是半圆O 的切线.(2)解连接BC 如图,AB 是半圆O 的直径90ACB ∠∴=︒90AFC ACB ∠∠∴==︒又FAC CAB ∠∠=AFC ACB ∴∽ ∴AFACAC AB = 23234AB ∴=∴半圆O 的半径为2.设OC 与BF 相交于点POC AF ∥BOP BAF ∴∽ ∴12OPOB AF AB == ∴1322OP AF == ∴12PC OC OP =-=OC AF ∥ECP EAF ∴∽ ∴EC PCAE AF = 即123AC AEAE -= 2316AE-=∴123AE = 【点评】本题考查了切线的性质与判定 相似三角形的性质与判定 掌握切线的判定以及相似三角形的性质与判定是解题的关键.9.(1)见解析(2)3【分析】(1)连接DO 根据CD 是O 的切线 OF AD ⊥ 证明ADC DOF ∠∠= 利用等腰三角形三线合一性质 证明ADC AOF ∠∠=.(2) 利用平行线分线段成比例定理 计算OE 证明CFO CDB △∽△ 计算OF两线段作差即可求解.【解析】(1)如图, 连接DO CD 是O 的切线OD DF ∴⊥90ADC ADO ∠∠∴+=︒OF AD ⊥ OA OD =90DOF ADO ∠∠∴+=︒ DOF AOF ∠∠=ADC DOF ∠∠∴=ADC AOF ∠∠∴=.(2)如图, 连接DO CD 是O 的切线OD DF ∴⊥90CDO ∠∴=︒53OC OB =设5(0)CO k k => 则3DO OB AO k ===4CD k ∴=538CB CO OB k k k ∴=+=+= AB 是O 的直径 24BD =AD DB ∴⊥OF AD ⊥∴OF BD ∥ ∴AO AE OB ED = CFO CDB △∽△ ∴OF CO BD CB= AE ED ∴=5524538OF k k k ==+ ∴1122OE BD == 15OF = 3EF OF OE ∴=-=.【点评】本题考查了切线的性质 等腰三角形的三线合一性质 平行线分线段成比例定理 相似三角形的性质与判定 熟练掌握切线的性质 相似三角形的性质与判定是解题的关键.10.(1)证明过程见解析 (2)142π-【分析】(1)AB 是O 的直径 AC AD = BF BC = 可求出90FBD ∠=︒ AB BF ⊥ 由此即可求证(2)如图,所示(见解析)连接,CO EO 可得1OC OE == 可证222CO O CE += 90COE ∠=︒ 根据扇形面积的计算方法即可求解.【解析】(1)证明①AB 是O 的直径①90ACB ∠=︒①90ACD BCD ∠+∠=︒①AC AD =①ACD ADC ∠=∠①ADC BDF ∠=∠①ACD BDF ∠=∠①BC BF =①BCD F ∠=∠①90BDF F ∠+∠=︒①180()90FBD FDB F ∠=︒-∠+∠=︒①AB BF ⊥ 且OB 是O 的半径①BF 是O 的切线.(2)解如图,所示 连接,CO EO①2AB =①1OC OE == ①2CE ①222CO EO += 2222CE == ①222CO O CE +=①90COE ∠=︒ ①29011111360242ππS ⨯=-⨯⨯=-阴影 ①图中阴影部分的面积为142π-. 【点评】本题主要考查圆的基础知识 掌握圆的切线的证明方法 扇形面积的计算方法是解题的关键.11.(1)见解析(2)3【分析】(1)连接CO 根据OF BC ∥可得B AOF ∠=∠ 根据直径所对的圆周角为直角可得90B CAB ∠+∠=︒ 再根据AO CO =得出CAB ACO ∠=∠ 最后证明90ACD ACO ∠+∠=︒即可 (2)根据中位线定理得出152OE BC == 证明DBC DOF ∽ 根据相似三角形对应边成比例 即可求解.【解析】(1)证明连接CO①OF BC ∥①B AOF ∠=∠①AB 为O 的直径①90ACB ∠=︒ 则90B CAB ∠+∠=︒①90AOF CAB ∠+∠=︒①AO CO =①CAB ACO ∠=∠①ACD AOF ∠=∠①90ACD ACO ∠+∠=︒ 即OC CD ⊥①CD 为圆O 的切线(2)①AB 为O 的直径①点O 为AB 中点①OF BC ∥①OE 为ABC 中位线 ①152OE BC == ①1sin 4D = OC CD ⊥ ①4OD OC = 则5BD OD OB OC =+=①OF BC ∥①DBC DOF ∽ ①OF OF BC BD = 即4510OC OF OC = 解得8OF =①853EF OF OE =-=-=.【点评】本题主要考查了切线的判定和性质 圆周角定理 相似三角形的判定和性质以及解直角三角形 解题的关键是掌握切线的判定和性质以及相似三角形的判定和性质.12.(1)30︒(2)100︒【分析】(1)根据三角形内角和定理可得60ABC ∠=︒ 再由AD CD = 可得ABD CBD ∠=∠ 即可求解(2)根据圆周角定理可得30ABD ACD ∠∠==︒ 从而得到80BCD ∠=︒ 再由圆内接四边形的性质 即可求解.【解析】(1)解①70,50BAC ACB ∠=︒∠=︒①18060ABC BAC ACB ∠=︒-∠-∠=︒①AD CD = ①1302ABD CBD ABC ∠=∠=∠=︒ (2)解由圆周角定理得30ABD ACD ∠∠==︒①80BCD ACB ACD ∠=∠+∠=︒①四边形ABCD 是O 的内接四边形①180100BAD BCD ∠=︒-∠=︒.【点评】本题主要考查了圆内接四边形的性质 圆周角定理等知识 熟练掌握圆内接四边形的性质 圆周角定理是解题的关键.13.(1)见解析(2)AD 的长是25【分析】(1)连接OA 根据已知条件证明OA AE ⊥即可解决问题(2)作OF CD ⊥ 则四边形OAEF 是矩形 且132DF CD ==由此可求得DE 的长 在Rt OFD △中 勾股定理求出OF 即AE 的长 在Rt AED △中利用勾股定理求DA . 【解析】(1)证明如图, 连接OA①AE CD ⊥①90DAE ADE ∠+∠=︒.①DA 平分BDE ∠①ADE ADO ∠=∠又①OA OD =①OAD ADO ∠=∠①90DAE OAD ∠+∠=︒①OA AE ⊥①AE 是O 的切线(2)解过点O 作OF CD ⊥于F .①90OAE AEF OFE ∠︒=∠=∠=①四边形OAEF 是矩形①5EF OA AE OF ===,.①OF CD ⊥ ①132DF FC CD ===①532DE EF DF =-=-=在Rt OFD △中 2222534OF OD DF --=①4AE OF ==在Rt AED △中 22224225AD AE DE ++=①AD 的长是25【点评】本题考查了切线的判定与性质 垂径定理 圆周角定理 勾股定理 解决本题的关键是掌握切线的判定与性质.14.(1)12π(2)9【分析】(1) 根据题意 CEB APB ABC PBE S S S S S =+--阴影扇形扇形 根据公式计算即可.(2) 连接PE 根据题意 45,135,90PEB CEP PEC ∠=︒∠=︒∠=︒ 根据勾股定理计算即可.【解析】(1)如图, ①正方形ABCD 旋转APB △到CEB 的位置①APB CEB ≌ 90ABC PBE ∠=∠=︒ =CEB APB S S ①CEB APB ABC PBE S S S S S =+--阴影扇形扇形①ABC PBE S S S =-阴影扇形扇形①48BP AB ==, ①9064901612360360S πππ︒⨯⨯︒⨯⨯=-=︒︒阴影. (2)连接PE根据题意 45,135PEB APB CEP ∠=︒∠=∠=︒ AP CE =①90PEC ∠=︒①4BP = 7AP =①2227,4432CE PE ==+=①222273281PC CE PE =+=+=解得9PC =.【点评】本题考查了正方形的性质 旋转的性质 阴影面积的计算 扇形面积公式 勾股定理 熟练掌握旋转的性质 阴影面积的计算 扇形面积公式 勾股定理是解题的关键.15.(1)证明见解析(2)10DF =【分析】(1)因为CDB CAB ∠=∠ CDB BFD ∠=∠ 所以CAB BFD ∠=∠ 即可得出FD ①AC 可得得出OD FD ⊥ 进而得出结论(2)利用勾股定理先求解AC 再利用垂径定理得出AE 的长 可得OE 的长 证明AEO FDO ∽ 再利用相似三角形的判定与性质得出DF 的长.【解析】(1)①CDB CAB ∠=∠ CDB BFD ∠=∠①CAB BFD ∠=∠①FD AC ∥①OD 垂直于弦AC 于点E①OD FD ⊥①FD 是O 的一条切线(2)①AB 为O 的直径①90ACB ∠=︒①15AB = 9BC = ①2215912AC -= 7.5AO OB OD ===①DO AC ⊥①6AE CE == ①227.56 4.5OE -①AC FD ∥①AEO FDO ∽ ①AE EO FD DO = ①4.567.5FD= 解得10DF =.经检验符合题意.【点评】本题主要考查了相似三角形的判定与性质 垂径定理 圆周角定理 切线的判定 以及平行线的判定 掌握相似三角形的判定与性质 垂径定理 圆周角定理以及平行线的判定是解题的关键.16.(1)50︒(2)30︒【分析】(1)连接OA 先由切线的性质得OAE ∠的度数 求出2142AOB C ∠=∠=︒ 进而得AOE ∠ 则可求出答案(2)连接OA 根据等腰三角形的性质及切线的性质列方程求解即可.【解析】(1)连接OA .如图,①AE 切O 于点AOA AE ∴⊥90OAE ∴∠=︒70C ∠=︒2270140AOB C ∴∠=∠=⨯︒=︒又180AOB AOE ∠+∠=︒40AOE ∴∠=︒90AOE E ∠+∠=︒904050E ∴∠=︒-︒=︒.(2)连接OA 如图,①设E x ∠=.AB AE =ABE E x ∴∠=∠=OA OB =OAB ABO x ∴∠=∠=2AOE ABO BAO x ∴∠=∠+∠=. AE 是O 的切线OA AE ∴⊥ 即90OAE ∠=︒在OAE ∆中 90AOE E ∠+∠=︒即290x x +=︒解得30x =︒30E ∴∠=︒.【点评】本题主要考查了切线的性质 等腰三角形的性质 圆周角的性质 三角形内角和的性质 用方程思想解决几何问题 关键是熟悉掌握这些性质.17.(1)见解析(2)10cm【分析】(1)连接OD 根据平行线的判定与性质可得90ODE DEM ∠=∠=︒ 又点D 在O 上 即可证得DE 是O 的切线(2)首先根据勾股定理可得AD 的长 再由ACD ADE ∽ 根据相似三角形的性质列出比例式 代入数据即可求得圆的半径.【解析】(1)证明如图,连接ODOA OD =OAD ODA ∠=∠∴ AD 平分CAM ∠OAD DAE ∴∠=∠ODA DAE ∴∠=∠DO MN ∴∥DE MN ⊥90ODE DEM ∴∠=∠=︒ 即OD DE ⊥ 又点D 在O 上 OD 为O 的半径DE ∴是O 的切线(2)解90AED ∠=︒ 8cm DE = 4cm AE =22228445AD DE AE ∴++如图,连接CDAC 是直径90ADC AED ∴∠=∠=︒CAD DAE ∠=∠ACD ADE ∴△∽△AD AC AE AD ∴= 4545=解得20AC =O ∴的半径为10cm .【点评】本题考查圆了切线的判定;等边对等角 平行线的判定与性质 圆周角定理 勾股定理 相似三角形的判定和性质等知识 在圆中学会正确添加辅助线是解决问题的关键.18.(1)见解析 (2)49【分析】(1)欲证~CBA FDC ,只要证明两个角对应相等就可以.可以转化为证明DE BC =就可以 (2)由~CBA FDC 可得814CF = ACB F ∠=∠ 进而即可得到答案. 【解析】(1)证明①四边形ABCD 内接于O①CBA CDF ∠=∠.①DE BC =①BCA DCE ∠=∠.①~CBA FDC(2)解①C 是DBA 的中点①9CD AC ==①~CBA FDC 4AB = ①AB AC CD CF = 即499CF= ①814CF = ①~CBA FDC ①94tan tan 8194AC ACB F CF ∠=∠===.【点评】本题考查的是圆的综合题;涉及弧、弦的关系;等腰三角形的性质;相似三角形的判定与性质;锐角三角函数;掌握相似三角形的判定和性质是解答此题的关键.。
中考专题复习——圆一、垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.转为几何语言:∵CD是直径,CD⊥AB,∴AM=BM,⌒AC=⌒BC,⌒AD=⌒BD如果把条件和结论看成是5个条件,相互间是否还有其它关系呢?如图,在下列五个条件中:①CD是直径,②CD⊥AB,③AM=BM,④⌒AC=⌒BC,⑤⌒AD=⌒BD只要具备其中两个条件,就可推出其余三个结论.你可以写出相应的命题吗?条件结论命题①②③④⑤垂直于弦的直径平分弦,并且平分弦所的两条弧.①③②④⑤平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.①④ ②③⑤ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.①⑤ ②③④ ②③ ①④⑤ 弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧. ②④ ①③⑤ 垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且平分弦和所对的另一条弧.②⑤ ①③④ ③④ ①②⑤ 平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于弦,并且平分弦所对的另一条弧.③⑤ ①②④ ④⑤ ①②③ 平分弦所对的两条弧的直线经过圆心,并且垂直平分弦.垂径定理是《圆》这一章的重要内容,在实际生活中有着广泛的应用.在各地中考题中对垂径定理的考查频频出现,这类问题常常需要结合勾股定理来解决,现以中考题为例说明如下:类型一 求直径【例1】如图,O ⊙的直径AB 垂直弦CD 于点P ,且点P 是半径OB 的中点,6 cm CD =,则直径AB 的长是( ).A . 2 3 cmB . 3 2 cmC . 4 2 cmD . 4 3 cm【解析】解决本题的关键是构造直角三角形,根据勾股定理列出方程求解即可.连接OD ,由垂径定理可知PD =362121=⨯=CD (cm).设半径OD =x cm ,则OP=x OB 2121=(cm). 在Rt △OPD 中,因为222OP DP OD +=,所以222132x x ⎛⎫+= ⎪⎝⎭.解这个方程,得23x =.所以直径AB 的长为342=x (cm),故应选D . 类型二 求弦长【例2】如图,AB O 是⊙的直径,弦CD AB ⊥于点E ,60COB ∠=°,⊙O 的半径为 3 cm ,则弦CD 的长为( ).A .3cm 2B . 3 cmC . 2 3 cmD . 9 cm 【解析】因为60COB ∠=°,CD AB ⊥,所以∠CEO =90°,∠OCD =30°.又因为⊙O 3 cm ,所以OE =12OC 3.由勾股定理可得222233(3)22CE OC OE ⎛⎫=--= ⎪ ⎪⎝⎭. 所以CD =2CE =3(cm).故应选B . 类型三 求弦心距【例3】⊙O 的半径为10 cm ,弦AB =12 cm ,则圆心到弦AB 的距离为( ).A .2 cmB .6 cmC .8 cmD .10 cm【解析】画出示意图如图,作OC AB ⊥于点C ,连接OA , 由垂径定理,得AC =1112622AB =⨯=. 在Rt △AOC 中,由勾股定理,得OC =22221068OA AC -=-=(cm).故应选C .类型四 求拱高【例4】如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( ).A .5米B .8米C .7米D .53米 【解析】设石拱桥圆弧的圆心为O ,连接OA 、OD ,则OD ⊥AB .又因为OA =13,由垂径定理可得AD =11241222AB =⨯=. 所以在Rt △AOD 中,OD 222213125OA AD -=-=. 所以CD =OC -OD =13-5=8(米).故应选B .类型五 探究线段的最小值【例5】如图,⊙O 的半径 5 cm OA =,弦8 cm AB =,点P 为弦AB 上一动点,则点P 到圆心O 的最短距离是________cm .【解析】因为连接直线外一点与直线上各点的所有线段中,垂线段最短, 所以需作出弦AB 的弦心距.过点O 作OC ⊥AB , C 为垂足,由垂径定理,知AC=118422AB =⨯=(cm). 在Rt △AOC 中,由勾股定理可得OC 2222543OA AC -=-=. 故点P 到圆心O 的最短距离为3 cm .二、 圆周角定理及推论《圆周角》解题技巧在数学里,把一个对象转化为另一个对象,常常可以化繁为简,化未知为已知,从而达到解决问题的目的,这种思考问题的方法,就是“转化”.在研究与圆周角有关的问题时,常进行等角间的转化.【例1】如图,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E .连接AC ,OC ,BC .(1)求证:∠ACO =∠BCD .(2)若EB =8 cm ,CD =24 cm ,求⊙O 的直径.【分析】(1)欲证∠ACO =∠BCD ,关键是进行等角间的转化:∠ACO =∠OAC ,∠BCD =∠OAC ,转化的依据是等腰三角形的性质定理和圆周角的“等弧所对的圆周角相等”;(2)借助勾股定理构建方程即可求得⊙O 的直径.解:(1)∵AB 为⊙O 的直径,CD 是弦,且AB CD 于点E ,∴CE =ED ,︵CB =︵DB . ∴∠BCD =∠BAC . ∵OA =OC , ∴∠OAC =∠OCA . ∴∠ACO =∠BCD .(2)设⊙O 的半径为R cm ,则OE =OB -EB =R -8.∴CE =21CD =21×24=12.在Rt△CEO中,由勾股定理可得OC2=OE2+CE2,即R2=(R-8)2+122.解得R=13.所以2R=2×13=26.【例2】如图,四边形ABCD内接于圆,对角线AC与BD相交于点E,F在AC 上,AB=AD,∠BFC=∠BAD=2∠DFC.求证:(1)CD⊥DF;(2)BC=2CD.【分析】(1)欲证CD⊥DF,可转化为证明∠FCD+∠CFD=90°.由圆周角的性质有∠FCD=∠ABD,再联系条件∠BAD=2∠CFD,不难向等腰△ABD的内角和定理进行联想,从而找到解题的切入点;(2)欲证BC=2CD,现在还有一个条件∠BFC=∠BAD没有用,注意到∠BFC=∠ABF+∠BAC,∠BAD=∠CAD+∠BAC,从而有∠ABF=∠CAD,而∠CAD=∠CBD,故∠ABF=∠CBD,即∠ABD=∠FBC,而∠ABD=∠ADB=∠FCB,从而∠FBC=∠FCB,于是得FB=FC.思考到这里,不妨再回头看看证题目标BC=2CD,可考虑取BC的中点G,于是问题转化为证明CG=CD,即证△FGC≌△FDC.证明:(1)∵AB=AD,∴∠ABD=∠ADB.在△ABD中,∠BAD+2∠ABD=180°.又∠BAD=2∠DFC,∠FCD=∠ABD,∴2∠DFC+2∠FCD=180°.∴∠DFC+∠FCD=90°.∴∠FDC=90°.∴CD⊥DF.(2)∵∠BFC=∠ABF+∠BAC,∠BAD=∠CAD+∠BAC,∴∠ABF=∠CAD.又∠CAD=∠CBD,∴∠ABF=∠CBD,即∠ABD=∠FBC,而∠ABD=∠ADB=∠FCB,∴∠FBC=∠FCB,∴FB=FC.取BC的中点G,连接FG.∴FG⊥BC.∴∠FGC=90°.∵AB=AD,∴︵AB=︵AD,∴∠ACB=∠ACD.∵∠FGC=∠FDC=90°,FC=FC,∴△FGC≌△FDC.∴CG=CD.∵BC=2CG,∴BC=2CD.三、切线及切线长定理怎样证明直线与圆相切?在直线与圆的各种位置关系中,相切是一种重要的位置关系.现介绍以下三种判别直线与圆相切的基本方法:(1)利用切线的定义——在已知条件中有“半径与一条直线交于该半径的外端”,于是只需直接证明这条直线垂直于这个半径即可.【例1】已知:△ABC内接于⊙O,⊙O的直径AE交BC于F点,点P在BC的延长线上,且∠CAP=∠ABC.求证:PA是⊙O的切线.【证明】连接EC.∵AE是⊙O的直径,∴∠ACE=90°.∴∠E+∠EAC=90°.∵∠E=∠B,∠B=∠CAP,∴∠E=∠CAP.∴∠EAC+∠CAP=∠EAC+∠E=90°.∴∠EAP=90°.∴PA⊥OA.又PA经过点A,∴PA是⊙O的切线.(2)利用切线的判定定理——在已知条件中,有“一条直线过圆上某一点(即为切点),但没有半径”,于是先连接圆心与这个点成为半径,然后再证明这条直线和这条半径垂直.【例2】以Rt△ABC的直角边BC为直径作⊙O交斜边AB于点P,点Q为AC的中点.求证:PQ为⊙O的切线.B【证明】连接OP,CP.∵BC为直径,∴∠BPC=90°,即∠APC=90°.又点Q为AC的中点,∴QP=QC.∴∠1=∠2.又OP=OC,∴∠3=∠4.又∠ACB=90°,∴∠2+∠4=∠1+∠3=∠ACB=90°.∴∠OPQ=90°.∵点P在⊙O上,且点P为半径OP的端点,∴QP为⊙O的切线.说明:要证PQ与半径垂直,即连接OP.这是判别相切中添加辅助线的常用方法.(3)证明“d=R”,在已知条件中“没有半径,也没有明确直线与圆的公共交点”,于是过圆心作直线的垂线,然后再证明这条垂线段的长(d)等于圆的半径(R)即可.【例3】已知,在△ABC中,AD⊥BC于点D,且AD=12BC,点E,F分别为AB,AC的中点,点O为EF的中点.求证:以EF为直径的圆与BC相切.【证明】作OH⊥BC于点H,设AD与EF交于点M.∵点E,F分别为AB,AC的中点,∴EF=12 BC.∴点M也是AD的中点,即MD=12 AD.又AD=12BC,∴EF=AD,MD=12EF.又AD⊥BC,∴OH∥MD.∴四边形OHDM是矩形.∴OH=MD=12EF.∴OH是⊙O的半径.∴以EF为直径的圆与BC相切.与《切线长定理》相关的中考压轴题1.已知:以Rt △ABC 的直角边AB 为直径作⊙O ,与斜边AC 交于点D ,过点D 作⊙O 的切线交BC 边于点E .(1)如图,求证:EB =EC =ED ;(2)试问在线段DC 上是否存在点F ,满足BC 2=4DF •DC ?若存在,作出点F ,并予以证明;若不存在,请说明理由.分析:(1)连接BD ,已知ED 、EB 都是⊙O 的切线,由切线长定理可证得OE 垂直平分BD ,而BD ⊥AC (圆周角定理),则OE ∥AC ;由于O 是AB 的中点,可证得OE 是△ABC 的中位线,即E 是BC 中点,那么Rt △BDC 中,DE 就是斜边BC 的中线,由此可证得所求的结论;(2)由(1)知:BC =2BE =2DE ,则所求的比例关系式可转化为22BC ⎛⎫ ⎪⎝⎭=DF •DC ,即DE 2=DF •DC ,那么只需作出与△DEC 相似的△DFE 即可,这两个三角形的公共角为∠CDE ,只需作出∠DEF =∠C 即可;①∠DEC >∠C ,即180°-2∠C >∠C ,0°<∠C <60°时,∠DEF 的EF 边与线段CD 相交,那么交点即为所求的F 点;②∠DEC =∠C ,即180°-2∠C =∠C ,∠C =60°时,F 与C 点重合,F 点仍在线段CD 上,此种情况也成立;③∠DEC<∠C,即180°-2∠C<∠C,60°<∠C<90°时,∠DEF的EF边与线段的延长线相交,与线段CD没有交点,所以在这种情况下不存在符合条件的F点.解:(1)证明:连接BD.由于ED、EB是⊙O的切线,由切线长定理,得ED=EB,∠DEO=∠BEO,∴OE垂直平分BD.又∵AB是⊙O的直径,∴AD⊥BD.∴AD∥OE.即OE∥AC.又O为AB的中点,∴OE为△ABC的中位线,∴BE=EC,∴EB=EC=ED.(2)解:在△DEC中,由于ED=EC,∴∠C=∠CDE,∴∠DEC=180°-2∠C.①当∠DEC>∠C时,有180°-2∠C>∠C,即0°<∠C<60°时,在线段DC上存在点F满足条件.在∠DEC内,以ED为一边,作∠DEF,使∠DEF=∠C,且EF交DC于点F,则点F即为所求.这是因为:在△DCE和△DEF中,∠CDE=∠EDF,∠C=∠DEF,∴△DEF∽△DCE.∴DE2=DF•DC.即212BC⎛⎫⎪⎝⎭=DF•DC.∴BC2=4DF•DC.②当∠DEC=∠C时,△DEC为等边三角形,即∠DEC=∠C=60°,此时,C点即为满足条件的F点,于是,DF=DC=DE,仍有BC2=4DE2=4DF•DC.③当∠DEC<∠C时,即180°﹣2∠C<∠C,60°<∠C<90°;所作的∠DEF >∠DEC,此时点F在DC的延长线上,故线段DC上不存在满足条件的点F.点评:此题主要考查了直角三角形的性质、切线长定理、三角形中位线定理及相似三角形的判定和性质;(2)题一定要注意“线段DC上是否存在点F”的条件,以免造成多解.2.如图所示,在梯形ABCD中,AD∥BC,AB⊥BC,以AB为直径的⊙O与DC相切于E.已知AB=8,边BC比AD大6.(1)求边AD、BC的长;(2)在直径AB上是否存在一动点P,使以A、D、P为顶点的三角形与△BCP相似?若存在,求出AP的长;若不存在,请说明理由.分析:过D作DF⊥BC于F,设AD=x,则DE=AD=x,EC=BC=x+6,根据勾股定理就得到一个关于x的方程,就可以解得AD的长;△ADP和△BCP相似,有△ADP∽△BCP和△ADP∽△BPC两种情况进行讨论,根据相似三角形的对应边的比相等,就可以求出AP的长.解:(1)方法1:过D作DF⊥BC于F,在Rt△DFC中,DF=AB=8,FC=BC-AD=6,∴DC2=62+82=100,即DC=10.设AD=x,则DE=AD=x,EC=BC=x+6,∴x+(x+6)=10.∴x=2.∴AD=2,BC=2+6=8.方法2:连OD、OE、OC,由切线长定理可知∠DOC=90°,AD=DE,CB=CE,设AD=x,则BC=x+6,由射影定理可得:OE2=DE•EC.即:x(x+6)=16,解得x1=2,x2=-8,(舍去)∴AD=2,BC=2+6=8.(2)存在符合条件的P点.设AP=y,则BP=8-y,△ADP与△BCP相似,有两种情况:①△ADP∽△BCP时,有AD APBC PB=,即288yy=-.∴y=85.②△ADP∽△BPC时,有AD APBP BC=,即288yy=-.∴y=4.故存在符合条件的点P,此时AP=85或4.点评:本题主要考查了相似三角形的判定性质,对应边的比相等的两三角形相似.3.如图,已知AB为⊙O的直径,PA,PC是⊙O的切线,A,C为切点,∠BAC=30°.(Ⅰ)求∠P的大小;(Ⅱ)若AB=2,求PA的长(结果保留根号).分析:(Ⅰ)根据切线的性质及切线长定理可证明△PAC为等边三角形,则∠P的大小可求;(Ⅱ)由(Ⅰ)知PA=PC,在Rt△ACB中,利用30°的特殊角度可求得AC 的长.解:(Ⅰ)∵PA是⊙O的切线,AB为⊙O的直径,∴PA⊥AB,∴∠BAP=90°;∵∠BAC=30°,∴∠CAP=90°-∠BAC=60°.又∵PA、PC切⊙O于点A、C,∴PA=PC,∴△PAC为等边三角形,∴∠P=60°.(Ⅱ)如图,连接BC,则∠ACB=90°.在Rt△ACB中,AB=2,∠BAC=30°,∵cos∠BAC=ACAB,∴AC=AB•cos∠BAC=2cos30°3∵△PAC为等边三角形,∴PA=AC,∴PA3.点评:本题考查的是切线长定理,切线长定理图提供了很多等线段,分析图形时关键是要仔细探索,找出图形的各对相等切线长.四、 正多边形与圆4.(1)已知如图①所示,△ABC 是⊙O 的内接正三角形,点P 为︵BC 上一动点,求证PA =PB +PC .下面给出一种证明方法,你可以按这一方法补全证明过程,也可以选择另外的证明方法.证明:在AP 上截取AE =CP ,连接BE . ∵△ABC 是正三角形, ∴AB =CB .∴∠1和∠2是同弧所对的圆周角. ∴∠1=∠2. ∴△ABE ≌△CBP .③OPFEDBA②ODCBA①21E POCB(2)如图②所示,四边形ABCD 是⊙O 的内接正方形,点P 为︵BC 上一动点,求证:PA =PC 2PB .(3)如图③所示,六边形ABCDEF 是⊙O 的内接正六边形,点P 为︵BC 上一动点,请探究PA 、PB 、PC 三者之间有何数量关系,直接写出结论.4.证明:⑥F⑤④(1)如图④所示,延长BP 至E ,使PE =PC ,连接CE . 易知∠CPE =∠CAB =60°,∴△PCE 是等边三角形. ∴CE =PC ,∠ECP =60°. ∴∠ECP +∠PCB =∠BCA +∠PCB , 即∠ECB =∠PCA .在△CAP 和△CBE 中,CA =CB ,CP =CE ,∠PCA =∠ECB , ∴△CAP ≌△CBE . ∴PA =BE =PB +PC .(2)如图⑤所示,过点B 作BE ⊥PB 交PA 于E . ∵∠1+∠2=∠2+∠3=90°, ∴∠1=∠3.又∵AB =BC,∠BAP =∠BCP , ∴△ABE ≌△CBP ,∴PC =AE .∵∠APB=45°,∴BP =BE ,∴PE PB. ∴PA =AE +PE =PC PB . (3)PA =PC .证明:如图⑥所示,在AP 上截取AQ =PC ,连接BQ . ∵∠BAP =∠BCP ,AB =BC ,AQ =CP , ∴△ABQ ≌△CBP ,∴BQ =BP . 又∵∠APB =30°,∴PQ =3PB . ∴PA =PQ +AQ =3PB +PC .五、 与圆有关的计算1.如图,将圆沿AB 折叠后,圆弧恰好经过圆心,则弧AMB 的度数是( ).A .60°B .90°C .120°D .150°2.如图,王虎使一长为4 cm 、宽为3 cm 的长方形木板,在桌面上做无滑动的翻滚(顺时针方向),木板上点A 位置变化为A →A 1→A 2,其中第二次翻滚被桌面上一小木板档住,使木板与桌面成30°角,则点A 翻滚到A 2位置时共走过的路径长为( ).A .10 cmB .4π cmC .72π cmD .52cm3.如图,有一圆锥形粮堆,其正视图是边长为6 cm 的正三角形ABC ,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程是________cm (结果不取近似值).4、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=3,BC=1,将Rt△ABC绕点C 旋转90°后得Rt△A'B'C,再将Rt△A'B'C绕点B'旋转为Rt△A''B'C'使得点A,C,B',A''在同一条直线上,则点A运动到点A''所走的路径长为___________.。
中考数学复习《圆》专题训练-带有参考答案一、选择题1.已知⊙O 的半径是3cm ,则⊙O 中最长的弦长是( )A .3cmB .6cmC .1.5cmD .√3cm2.如图,AB 是⊙O 的直径,C 、D 在⊙O 上∠CAB =20°,则∠ADC 等于( )A .70°B .110°C .140°D .160°3.如图,AB 是⊙O 的直径,过点A 作⊙O 的切线AC ,连接BC ,与⊙O 交于点D ,E 是⊙O 上一点,连接AE ,DE .若∠C =48°,则∠AED 的度数为( )A .42°B .48°C .32°D .38°4.如图,线段AB 经过⊙O 的圆心,AC ,BD 分别与⊙O 相切于点C ,D .若AC =BD =2√3,∠A =30°,则CD⌢的长度为( )A .πB .23πC .√23πD .2π5.如图,⊙O 的半径为9,PA 、PB 分别切⊙O 于点A ,B 若P =60∘,则AB⌢的长为( )A .133πB .136πC .6πD .52π⌢的中点,点E是BC⌢上的一点,若∠ADC=110°,则∠DEC 6.如图,四边形ABCD是⊙O的内接四边形,点D是AC的度数是()A.35°B.45°C.50°D.55°7.如图,正六边形ABCDEF内接于00,若0 O的周长等于6π,则正六边形的边长为()A.√3B.3 C.2√3D.√68.如图,AB是⊙O的直径,将弦AC绕点A顺时针旋转30°得到AD,此时点C的对应点D落在AB上,延长CD,交⊙O于点E,若CE=4,则图中阴影部分的面积为()A.2πB.2√2C.2π−4D.2π−2√2二、填空题9.如图,AB为△ADC的外接圆⊙O的直径,若∠BAD=50°,则∠ACD= °.10.如图,等边三角形ABC内接于⊙O,BD为内接正十二边形的一边,CD=5√2cm,则⊙O的半径R为11.如图,秋千拉绳长3m,静止时踩板离地面(CD)0.5m.一名小朋友荡秋千时,秋千在最高处时踩板离地面(BE)2m(左右对称),则该秋千从B荡到A经过的圆弧长为m.12.如图,已知⊙O上三点A,B,C,切线PA交OC延长线于点P,若OP=2OC,则∠ABC=.13.如图,一个扇形纸片的圆心角为90°,半径为6,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,则阴影部分的面积为.三、解答题14.如图.为的直径,连接,点E在上,AB=BE.求证:(1)平分;(2).15.如图,P为⊙O外一点,PA,PB是⊙O的切线,A,B为切点,点C在⊙O上,连接OA,OC,AC.(1)求证:∠AOC=2∠PAC;(2)连接OB,若AC//OB,⊙O的半径为5,AC=6,求AP的长.16.如图,AB是⊙O的直径,BC是⊙O的弦,AE⊥OC于点D,交BC于F,与过点B的直线交于点E,且BE=EF.(1)求证:BE是⊙O的切线;(2)若⊙O的半径为10,OD=6求BE的长.17.如图,⊙O是△ABC的外接圆,直径BD与AC交于点E,过点D作⊙O的切线,与BC的延长线交于点F.(1)求证:∠F=∠BAC;(2)若DF∥AC,若AB=8,CF=2求AC的长.18.如图,在中,AB=AC以为直径的分别与、相交于点D、E,连接过点作,垂足为点(1)求证:是的切线;(2)若的半径为4,求图中阴影部分的面积.参考答案1.B2.B3.A4.B5.C6.A7.B8.C9.4010.511.2π12.30°13.9√3−3π14.(1)证明:∵∴∴∴平分(2)证明:∵∠BAD=∠DAC∴∴由(1)知∴∴∠ABC=∠ECB∴AB∥CE.15.(1)证明:过O作OH⊥AC于H∴∠OHA=90°∴∠AOH+∠OAC=90°∵PA是⊙O的切线∴∠OAP=90°∴∠OAC+∠PAC=90°∴∠AOH=PAC∵OA=OC∴∠AOC=2∠AOH∴∠AOC=2∠PAC;(2)解:连接OB,延长AC交PB于E∵PA,PB是⊙O的切线∴OB⊥PB,PA=PB∵AC//OB∴AC⊥PB∴四边形OBEH是矩形∴OH=BE,HE=OB=5∵OH⊥AC,OA=OC∴AH=CH=12AC=3∴OH=√OC2−CH2=4∴BE=OH=4,AE=AH+HE=8∵PA2=AE2+PE2∴PA2=82+(PA−4)2∴PA=10.16.(1)证明:∵BE=EF∴∠EBF=∠EFB∵∠CFD=∠EFB∴∠EBF=∠CFD∵OC=OB∴∠OCB=∠OBC∵AE⊥OC∴∠OCB+∠CFD=90°∴∠OBC+∠EBF=90°=∠ABE∴AB⊥BE∵AB是⊙O的直径∴BE是⊙O的切线;(2)解:∵⊙O的半径为10∴OA=OB=OC=10∴AB=20∵AE⊥OC∴∠ADO=90°∴在Rt△ADO中AD=√AO2−DO2∵OD=6∴AD=√AO2−DO2=√102−62=8∵结合(1),可知∠ABE=∠ADO=90°,∠BAE=∠DAO ∴△ADO∽△ABE∴BEAB =DOAD,即BE=DOAD×AB∵AD=8,AB=20,DO=6∴BE=DOAD ×AB=68×20=15即所求的值为15.17.(1)证明:∵DF是⊙O的切线∴OD⊥DF∴∠ODF=90°∴∠F+∠DBC=90°∵BD是⊙O的直径∴∠BAD=90°∴∠BAC+∠DAC=90°∵∠DBC=∠DAC∴∠F=∠BAC;(2)解:连接CD∵DF∥AC,∠ODF=90°∴∠BEC=∠ODF=90°∴直径BD⊥AC于E∴AE=CE=12AC∴AB=BC=8∵BD是⊙O的直径∴∠BCD=90°∴∠DBC+∠BDC=90°∵∠DBC+∠F=90°∴∠BDC=∠F∵∠BCD=∠FCD=90°∴△BCD∽△DCF∴BCDC =DCCF,即8DC=DC2∴DC=4∴BD=√BC2+CD2=√82+42=4√5∵在△BCD中SΔBCD=12BC⋅CD=12BD⋅CE∴12×8×4=12×4√5⋅CE∴CE=85√5∴AC=2CE=165√5.18.(1)证明:连接.是的直径.又AB=AC∴D是BC的中点.连接;由中位线定理,知又.是的切线;(2)解:连接的半径为。
复习说明:圆这部分内容在陕西省中考试卷中是必考内容之一。
每年中考试题圆的考点为填空题3 分,解答题8 分,共11 分。
2016 年考试说明中三套样题中选择题部分增加了对圆知识的3 分考查,但是填空题均未出现与圆有关的题型,而是改为以四边形为背景来进行考查,第23 题解答题8 分依然存在。
在这部分的复习中,应重视学生逻辑思维能力的培养和书写的规范性。
与圆有关的解答题多是以证明、解答题出现,学生在这部分最容易逻辑混乱,次序颠倒,甚至书写随意。
在复习中要注意随时纠正。
圆专题复习一.选择题1.(2015•湖南株洲,第6 题3 分)如图,圆O 是△ABC 的外接圆,∠A=68°,则∠OBC 的大小是( )A.22° B.26°C.32°D.68°【试题分析】本题考点为:通过圆心角∠BOC=2∠A=136°,再利用等腰三角形AOC 求出∠OBC 的度数答案为:A2、(2015·湖南省常德市,第6 题3 分)如图,四边形ABCD 为⊙O 的内接四边形,已知∠BOD =100°,则∠BCD 的度数为:A、50°B、80°C、100°D、130°【解答与分析】圆周角与圆心角的关系,及圆内接四边形的对角互补:答案为D3, (2015•四川南充,第8 题3 分)如图,PA 和PB 是⊙O 的切线,点A 和B 是切点,AC 是⊙O 的直径,已知∠P=40°,则∠ACB 的大小是()(A)60°(B)65°(C)70°(D)75°【答案】C考点:切线的性质、三角形外角的性质、圆的基本性质.4、(2015•四川自贡,第9 题4 分)如图,AB 是⊙O 的直径,弦ECD ⊥ AB,∠CDB = 30 o,CD = 则阴影部分的面积为()A. 2πB.πC.πD.2π3 3考点:圆的基本性质、垂径定理,勾股定理、扇形的面积公式、轴对称的性质等. 分析:本题抓住圆的相关性质切入把阴影部分的面积转化到一个扇形中来求.根据圆是轴对称图形和垂径定理,利用题中条件可知E 是弦CD 的中点, B 是弧CD 的中点;此时解法有三:解法一,在弓形CBD 中,被EB 分开的上面空白部分和下面的阴影部分的面积是相等的,所以阴影部分的面积之和转化到扇形COB 来求;解法二,连接OD,易证△ODE ≌△OCE ,所以阴影部分的面积之和转化到扇形BOD 来求;解法三,阴影部分的面积之和是扇形COD 的面积的一半.略解:∵AB 是⊙O 的直径,AB ⊥ CD∴E 是弦CD 的中点, B 是弧CD 的中点(垂径定理)∴在弓形CBD 中,被EB 分开的上下两部分的面积是相等的(轴对称的性质)∴阴影部分的面积之和等于扇形COB 的面积.∵E 是弦CD 的中点,CD = CE =1CD =1⨯2 2∵AB ⊥ CD∴∠OEC = 90o5. (2015•浙江滨州,第11 题3 分)若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为( )A.B.C.D.—1【答案】B【解析】试题分析:如图,等腰直角三角形ABC 中,⊙D 为外接圆,可知D 为AB 的中点,因此AD=2,AB=2AD=4,根据勾股定理可求得AC=,根据内切圆可知四边形EFCG 是正方形,AF=AD, 因此EF=FC=AC-AF=-2.故选B考点:三角形的外接圆与内切圆6、(2015 湖南邵阳第7 题3 分)如图,四边形ABCD 内接于⊙O,已知∠ADC=140°,则∠AOC 的大小是()A.80° B.100° C.60° D.40°考点:圆内接四边形的性质;圆周角定理..分析:根据圆内接四边形的性质求得∠ABC=40°,利用圆周角定理,得∠AOC=2∠B=80°.解答:解:∵四边形ABCD 是⊙O 的内接四边形,∴∠ABC+∠ADC=180°,∴∠ABC=180°﹣140°=40°.∴∠AOC=2∠ABC=80°.故选B.点评:此题主要考查了圆周角定理以及圆内接四边形的性质,得出∠B 的度数是解题关键.7 , (2015 上海,第6 题4 分)如图,已知在⊙O 中,AB 是弦,半径OC⊥AB,垂足为点D,要使四边形OACB 为菱形,还需要添加一个条件,这个条件可以是()A、AD=BD;B、OD=CD;C、∠CAD=∠CBD;D、∠OCA=∠OC B.【答案】B【解析】因OC⊥AB,由垂径定理,知AD=BD,若OD=CD,则对角线互相垂直且平分,所以,OACB 为菱形。
8 .(2015 湖北荆州第5 题3 分)如图,A,B,C 是⊙O 上三点,∠ACB=25°,则∠BAO 的度数是()A.55° B.60° C.65° D.70°考点:圆周角定理.分析:连接OB,要求∠BAO 的度数,只要在等腰三角形OAB 中求得一个角的度数即可得到答案,利用同弧所对的圆周角是圆心角的一半可得∠AOB=50°,然后根据等腰三角形两底角相等和三角形内角和定理即可求得.解答:解:连接OB,∵∠ACB=25°,∴∠AOB=2×25°=50°,由OA=OB,∴∠BAO=∠ABO,∴∠BAO =(180°﹣50°)=65°.故选C.点评:本题考查了圆周角定理;作出辅助线,构建等腰三角形是正确解答本题的关键.9 . (2015•浙江杭州,第5 题3 分)圆内接四边形ABCD 中,已知∠A=70°,则∠C=( )A. 20°B. 30°C. 70°D. 110°【答案】D.【考点】圆内接四边形的性质.【分析】∵圆内接四边形ABCD 中,已知∠A=70°,∴根据圆内接四边形互补的性质,得∠C=110°. 故选D.10. (2015•浙江湖州,第8 题3 分)如图,以点O 为圆心的两个圆中,大圆的弦AB 切小圆于点C,OA 交小圆于点D,若OD=2,tan∠OAB =,则AB 的长是( )A. 4B. 2C. 8 D. 4【答案】C.考点:切线的性质定理;锐角三角函数;垂径定理.11. (2015•浙江宁波,第 8 题 4 分)如图,⊙O 为△ABC 的外接圆,∠A =72°,则∠BCO 的 度数为【】A . 15°B . 18°C . 20°D . 28°【答案】B .【考点】圆周角定理;等腰三角形的性质;三角形内角和定理. 【分析】如答图,连接 OB ,∵∠A 和∠BOC 是同圆中同弧 B »C 所对的圆周角和圆心角,∴∠BOC = 2∠A . ∵∠A =72°,∴∠BOC =144°.∵OB=OC ,∴∠CBO = ∠BCO .∴ ∠CBO = 180︒ -144︒= 18︒ . 2故选 B .12 . (2015•山东威海,第 9 题 3 分)如图,已知 AB =AC =AD ,∠CBD =2∠BDC ,∠BAC =44°,则∠CAD 的度数为()A.68° B.88° C.90° D.112°考点:圆周角定理..分析:如图,作辅助圆;首先运用圆周角定理证明∠CAD=2∠CBD,∠BAC=2∠BDC,结合已知条件∠CBD=2∠BDC,得到∠CAD=2∠BAC,即可解决问题.解答:解:如图,∵AB=AC=AD,∴点B、C、D 在以点A 为圆心,以AB 的长为半径的圆上;∵∠CBD=2∠BDC,∠CAD=2∠CBD,∠BAC=2∠BDC,∴∠CAD=2∠BAC,而∠BAC=44°,∴∠CAD=88°,故选B.点评:该题主要考查了圆周角定理及其推论等几何知识点及其应用问题;解题的方法是作辅助圆,将分散的条件集中;解题的关键是灵活运用圆周角定理及其推论等几何知识点来分析、判断、推理或解答.13.(2015•甘肃兰州,第9 题,4 分)如图,经过原点O 的⊙P 与x 、y 轴分别交于A、B 两点,点C 是劣弧上一点,则∠ACB=A. 80°B. 90°C. 100°D. 无法确定【 答 案 】B【考点解剖】本题考查了圆周角的相关知识点以及平面直角坐标系的概念【知识准备】在同一个圆(或等圆)中,同弧(或等弧)所对的圆周角相等;直径所对的圆 周角是直角;当圆周角为直角时,其所对的弦是直径。
【解答过程】∠ACB 和∠AOB 都是⊙P 中同一条弧所对的圆周角,所以它们相等【归纳拓展】在其它类似题目中,我们有可能需要区分优弧和劣弧的不同;再换一种场合, 如果连结 AB ,还有可能需要说明 AB 是直径,或者点 P 在 AB 上。
【题目星级】★★14(. 2015•山东临沂,第 8 题 3 分)如图 A ,B ,C 是上的三个点,若 ,则等于( )(A ) 50°. (B ) 80°. (C ) 100°. (D ) 130°.【答案】D 【解析】试题分析:根据圆周的度数为 360°,可知优弧 AC 的度数为 360°-100°=260°,然后根据同 弧所对的圆周角等于它所对的圆心角的一半,可求得∠B =130°. 故选 D考点:圆周角定理15.(2015·深圳,第 9 题 分)如图,AB 为⊙O 直径,已知为∠DCB =20o ,则∠DBA 为( )A、50oB、20oC、60oD、70o【答案】D【解析】AB 为⊙O 直径,所以,∠ACB=90o,∠DBA=∠DCA=70o16.(2015·南宁,第11 题3 分)如图6,AB 是⊙O 的直径,AB=8,点M 在⊙O 上,∠MAB=20°,N 是弧MB 的中点,P 是直径AB 上的一动点,若MN=1,则△PMN 周长的最小值为().(A)4 (B)5 (C)6 (D)7图6考点:轴对称-最短路线问题;圆周角定理..分析:作N 关于AB 的对称点N′,连接MN′,NN′,ON′,ON,由两点之间线段最短可知MN′与AB 的交点P′即为△PMN 周长的最小时的点,根据N 是弧MB 的中点可知∠A=∠NOB=∠MON=20°,故可得出∠MON′=60°,故△MON′为等边三角形,由此可得出结论.解答:解:作N 关于AB 的对称点N′,连接MN′,NN′,ON′,ON.∵N 关于AB 的对称点N′,∴MN′与AB 的交点P′即为△PMN 周长的最小时的点,∵N 是弧MB 的中点,∴∠A=∠NOB=∠MON=20°,∴∠MON′=60°,∴△MON′为等边三角形,∴MN′=OM=4,∴△PMN 周长的最小值为4+1=5.故选B.点评:本题考查的是轴对称﹣最短路径问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.17. (2015•四川凉山州,第10 题4 分)如图,△ABC 内接于⊙O,∠OBC=40°,则∠A 的度数为()A.80°B.100°C.110°D.130°【答案】D.考点:圆周角定理.18、(2015•四川泸州,第8 题3 分)如图,P A、PB 分别与⊙O 相切于A、B 两点,若∠C=65°,则∠P 的度数为A. 65°B. 130°C. 50°D. 100°考点:切线的性质..分析:由PA 与PB 都为圆O 的切线,利用切线的性质得到OA 垂直于AP,OB 垂直于BP,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的2 倍,由已知∠C 的度数求出∠AOB 的度数,在四边形PABO 中,根据四边形的内角和定理即可求出∠P 的度数.解答:解:∵PA、PB 是⊙O 的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.点评:本题主要考查了切线的性质,四边形的内角与外角,以及圆周角定理,熟练运用性质及定理是解本题的关键.19. (2015•四川眉山,第11 题3 分)如图,⊙O 是△ABC 的外接圆,∠ACO=45°,则∠B 的度数为()A.30°B.35°C.40°D.45°考点:圆周角定理..分析:先根据OA=OC,∠ACO=45°可得出∠OAC=45°,故可得出∠AOC 的度数,再由圆周角定理即可得出结论.解答:解:∵OA=OC,∠ACO=45°,∴∠OAC=45°,∴∠AOC=180°﹣45°﹣45°=90°,∴∠B =∠AOC=45°.故选D.点评:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.20.(2015•甘肃武威,第8 题3 分)△ABC 为⊙O 的内接三角形,若∠AOC=160°,则∠ABC 的度数是()A 80°B ..160° C.100° D.80°或100°考点:圆周角定理.分析:首先根据题意画出图形,由圆周角定理即可求得答案∠ABC 的度数,又由圆的内接四边形的性质,即可求得∠ABC 的度数.解答:解:如图,∵∠AOC=160°,∴∠ABC =∠AOC =×160°=80°,∵∠ABC+∠AB′C=180°,∴∠AB′C=180°﹣∠ABC=180°﹣80°=100°.∴∠ABC 的度数是:80°或100°.故选D.点评:此题考查了圆周角定理与圆的内接四边形的性质.此题难度不大,注意数形结合思想与分类讨论思想的应用,注意别漏解.二.填空题1.(2015•福建泉州第17 题4 分)在以O 为圆心3cm 为半径的圆周上,依次有A、B、C 三个点,若四边形OABC 为菱形,则该菱形的边长等于 3 cm;弦AC 所对的弧长等于2π或4π cm.解:连接OB 和AC 交于点D,∵四边形OABC 为菱形,∴OA=AB=BC=OC,∵⊙O 半径为3cm,∴OA=OC=3cm,∵OA=OB,∴△OAB 为等边三角形,∴∠AOB=60°,∴∠AOC=120°,∴==2π,∴优弧==4π,故答案为3,2π或4π.2.(2015 湖北鄂州第15 题3 分)已知点P 是半径为1 的⊙O 外一点,PA 切⊙O 于点A,且PA=1,AB 是⊙O 的弦,AB =,连接PB,则PB= .【答案】1 或.考点:1.垂径定理;2.圆的认识;3.切线的性质.3, (2015 上海,第 17 题 4 分)在矩形 ABCD 中,AB =5,BC =12,点 A 在⊙B 上.如果⊙D 与⊙B 相交,且点 B 在⊙D 内,那么⊙D 的半径长可以等于 .(只需写出一个符合要求的数) 【答案】15 【解析】4.(2015•江苏南 昌, 第 10 题 3 分 )如图, 点 A , B , C 在⊙O 上,CO 的延长 线交 AB 于 点D ,∠A =50°,∠B =30°则∠ADC 的度数为.答 案 : 解 析 : ∵∠A =50°, ∴∠BOC =100°, ∴∠BOD =80°, ∴∠ADC =∠B + ∠BOD =30° +80°=110°5.(2015•江苏南京,第 15 题 3 分)如图,在⊙O 的内接五边形 ABCDE 中,∠CAD =35°,则∠B +∠E = °.【答案】215.考点:圆内接四边形的性质.6、(2015•四川自贡,第 13 题 4 分)已知, AB 是⊙O 的一条直径 ,延长 AB 至C 点,使 AC = 3BC , CD 与⊙O 相切于 D 点,若 CD =则劣弧AD 的长为 .考点:圆的基本性质、切线的性质、直角三角形的性质、勾股 定理、弧长公式等.分析:本题劣弧 AD 的长关键是求出圆的半径和劣弧 AD 所对的圆心角的度数.在连接 OD 后,根据切线的性质易知 ∠ODC = 90o ,圆的半径和圆心角的度数ooCF 可以通过 Rt △OPC 获得解决.略解:连接半径 OD .又∵ CD 与⊙O 相切于 D 点 ∴ OD ⊥ CD∴ ∠ODC = 90o∵ AC = 3BC AB = 2OB ∴ OB = BC ∴ OB = 1 OC 2又 OB = OD∴ OD = 1OC 2 ∴在 Rt △OPC cos ∠DOC = OD = 1 OC 2∴ ∠DOC = 60o∴ ∠AOD = 120o ∴在 Rt △OPC 根据勾股定理可知: OD 2 + DC 2 = OC 2∵ CD∴ OD 2 +2= (2OD )2解得: OD = 1则劣弧 AD 的长为120 ⨯π⨯ OD = 120 ⨯π⨯ 1 = 2π. 故应填2π180o 180o3 37. (2015•四川省宜宾市,第 14 题,3 分)如图,AB 为⊙O 的直径,延长 AB 至点 D ,使 BD =OB ,DC 切⊙O 于点 C ,点 B 是 ⌒ 的中点,弦 CF 交 AB 于点 F 若⊙O 的半径为 2,则 CF =.8.(2015•江苏泰州,第 12 题 3 分)如图,⊙O 的内接四边形 ABCD 中,∠A =115°,则∠BOD 等于°.【答案】150°.考点:1.圆内接四边形的性质;2.圆周角定理.9.(2015•江苏徐州,第15 题3 分)如图,AB 是⊙O 的直径,弦CD⊥AB,垂足为E,连接A C.若∠CAB=22.5°,CD=8cm,则⊙O 的半径为4cm.考点:垂径定理;等腰直角三角形;圆周角定理..专题:计算题.分析:连接OC,如图所示,由直径AB 垂直于CD,利用垂径定理得到E 为CD 的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE 为等腰直角三角形,求出OC 的长,即为圆的半径.解答:解:连接OC,如图所示:∵AB 是⊙O 的直径,弦CD⊥AB,∴CE=DE=CD=4cm,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE 为△AOC 的外角,∴∠COE=45°,∴△COE 为等腰直角三角形,∴OC=CE=4cm,故答案为:4点评:此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.10.(2015•四川甘孜、阿坝,第23 题4 分)如图,AB 是⊙O 的直径,弦CD 垂直平分半径OA,则∠ABC 的大小为30 度.考点:垂径定理;含30 度角的直角三角形;圆周角定理..分析:根据线段的特殊关系求角的大小,再运用圆周角定理求解.解答:解:连接OC,∵弦CD 垂直平分半径OA,∴OE=OC,∴∠OCD=30°,∠AOC=60°,∴∠ABC=30°.故答案为:30.点评:本题主要是利用直角三角形中特殊角的三角函数先求出∠OCE=30°,∠EOC=60°.然后再圆周角定理,从而求出∠ABC=30°.11.(2015•四川广安,第12 题3 分)如图,A、B、C 三点在⊙O 上,且∠AOB=70°,则∠C= 35 度.考点: 圆周角定理..分析: 由 A ,B ,C 三点在⊙O 上,且∠AOB =70°,根据在同圆或等圆中,同弧或等弧所 对的圆周角相等,都等于这条弧所对的圆心角的一半,即可求得答案. 解答: 解:∵∠AOB =70°, ∴∠C =∠AOB =35°. 故答案为:35.点评: 此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用,解题的关 键是:熟记在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的 一半.12.(2015•甘肃兰州,第 20 题,4 分)已知△ABC 的边 BC =4cm ,⊙O 是其外接圆,且半径 也为 4cm ,则∠A 的度数是【 答 案 】30°【考点解剖】本题考查同(等)弧所对圆周角和圆心角的关系,正三角形的性质【知识准备】在同圆或等圆中,圆周角等于同弧(等弧)所对圆心角的 一半,在同一个三角形中相等的边所对的角也相等。