2014年初中学业水平考试模拟数学试卷(1)及答案
- 格式:doc
- 大小:646.00 KB
- 文档页数:9
2014年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=1圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23 D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)(第11题图)(第12题图) (第17题图)(第18题图)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第21题图)(第23题图)(第24题图)°25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2013年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400 = 8;(第26题图)17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a为整数,∴a = 78,79,80∴共有3种方案. ………………6分设购买课桌凳总费用为y元,则y = 180a + 220(200 - a)=-40a + 44000. …………… 7分∵-40<0,y随a的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2014年初中毕业学业考试模拟考数学试卷一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求) 1如图,已知⊙O 的两条弦AC ,BD 相交于点E ,∠A =75°,∠C =45°, 那么sin ∠AEB 的值为( ) A.12B.C. 2D. 2.下列商标是轴对称图形的是 ( ▲ )(A ) (B )(C ) (D )3.下列计算错误..的是 ( ▲ ) (A )33--=- (B )2223x x+= (D )235()x x =4.如图,是用八块相同的小正方体搭建的一个积木,它的左视图是 ( ▲ )(A ) (B ) (C ) (D )5. 如图,E 、F 分别是正方形ABCD 的边AB 、BC 上的点,BE =CF ,连结CE 、DF .将△BCE 绕着正方形的中心O 按逆时针方向旋转到△CDF 的位置,则旋转角可以是 ( ▲ )(A ) ︒45 (B )︒60 (C )︒90 (D )︒1206如图为某班35名学生10次数学考试中获得优秀次数的条形统计图,其中上面部分数据 破损导致数据不完全.已知此班学生优秀次数的中位数是5,则根据图形,无法..确定的是 下列哪一选项中的数值 ( ▲ ) (A )3次及以下的人数 (B )4次及以下的人数 (C )5次及以下的人数 (D )6次及以下的人数 (第6题图)7.下面给出了一些关于相似的命题,其中真命题有 ( ▲ ) (1)菱形都相似 (2)等腰直角三角形都相似(3)正方形都相似 (4)矩形都相似 (5)正六边形都相似(A ) 1 个 (B ) 2个 (C ) 3个 (D ) 4个 8在平面直角坐标系中,已知两点A (1,2),B (2,0),把线段AB 平移后得线段CD , 其中A 点对应点是C (3,a ),B 点对应点是D (b ,1),则a -b 的值为 ( ▲ ) (A )1- (B )0 (C )1 (D )29两个完全相同的矩形如图放置,每个矩形的面积为28,图中阴影部分的面积为20,则每个矩形的周长是 ( ▲ ) (A )18 (B )22 (C )26 (D )3210.如图,在△ABC 中,AB =AC ,且∠A =108°,点P 为△ABC 所在平面内一点,且点P 与△ABC 的任意两个顶点构成△PAB 、△PBC 、△PAC 均是等腰三角形,则满足上述条件的所有点P 个数为 ( ▲ )(A )4 (B )6 (C )8 (D )10二、填空题(每小题4分,共24分)13.分解因式:22x x - = ▲ .14.若一个正多边形的一个外角是30,则这个正多边形的边数是 ▲ .15.为了缓解江北区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图).已知立杆AB 的高度是3m ,从侧面D 点测得显示牌顶端C 点和底端B 点的仰角分别是60和45.则路况显示牌的宽度BC 是 ▲ 米.(结果保留根号) 16如图,在△ABC 中,∠C =90°,以AB 上一点O 为圆心,OA 长为半径的圆与BC 相切于点D ,分别交AC 、AB 于点E 、F .若AC =6,AB =10,则⊙O 的半径为______________.17.如图,在正方形网格中,点O 、A 、B 均在格点上,则∠AOB 的正弦值是 ▲ . 18.如图,已知等边ABC △,D 是边BC 的中点,过D 作DE ∥AB 于E , 连结BE 交AD 于D 1;过D 1作D 1E 1∥AB 于E 1,连结BE 1交AD 于D 2;过D 2作D 2E 2∥AB 于E 2,…,如此继续,若记BDE S △为S 1,记11B D E S △为S 2,记22BD E S △为S 3…,若ABC S △面积为Scm 2,则Sn =_________cm 2. (用含n 与S 的代数式表示)三、解答题(本大题有8小题,共78分)(第15题图)(第12题图)(第17题图)19.(本题6分)请先化简:xx x ---2111,再选择一个合适的x 值代入求值.20.(本题8分)如图,已知一次函数与反比例函数的图象交于点 A (-3,-1)和B (a ,3).(1)求反比例函数的解析式和点B 的坐标;(2)连结AO 和BO ,判断△ABO 的形状,请说明理由,并求出它的面积.21.(本题6分)已知:如图,斜坡BQ 坡度为i =1︰2.4(即为QC 与BC 的长度之比),在斜坡BQ 上有一棵香樟树PQ ,柳明在A 处测得树顶点P 的仰角为α,并且测得水平的AB =8米,另外BQ =13米,tanα=0.75.点A 、B 、P 、Q 在同一平面上,PQ ⊥AB 于点C .求香樟树PQ 的高度.22.(本题10分)如图,在△ABC 中,AB =AC ,以AB为直径的O 分别交AC 、BC 于点D 、E ,点F在AC 的延长线上,且12CBF CAB ∠=∠.(1)求证:直线BF 是O 的切线;(2)若AB =5,sin CBF ∠=BC 和BF 的长.(第20题图)(第22题图)C(第21题)23.(本题10分)如图,△ABC 的边长分别为21、23、1,正六边形网格是由24个边长为1的正三角形组成,每个正三角形的顶点称为网格的格点.在下面三个正六边形网格中各画出一个三角形(画出三角形,并用阴影填充),使其同时满足下面三个条件:(1)三个三角形的顶点都在格点上;(2)三个三角形都与△ABC 相似;(3)三个三角形的面积大小都不同.并直接写出三个三角形与△ABC 的相似比.相似比: 相似比: 相似比:24.(本题12分)如图,在矩形ABCD 中,AB =1,BC =3,F 为线段..AD 上一点(不与端点A ,D 重合),过F 的直线交矩形的另一边于点E ,且该直线满足21tan =∠DFE ,设AF 长度为x . (1)记BEF △的面积为S ,求S 与x 的函数关系式;(2)当点E 在线段BC 上时,若矩形ABCD 关于直线EF 的对称图形为矩形A ’B ’C ’D ’,试说明矩形ABCD与矩形A ’B ’C ’D ’理由.CB A25.(本题14分)如图,已知二次函数图象的顶点为P(0,-1),且过点(2,3).点A是抛物线上一点,过点A作y轴的垂线,交抛物线于另一点B,分别过点B、A作x轴的垂线,垂足分别为C、D,连结PA、PD.(1)求此二次函数的解析式;x轴交点记为E,证明:(2)当点A在第一象限....内时,PA与①PED PDA△∽△;②∠APC=90°;(3)若∠APD=45°,当点A在y.轴右侧...时,请直接写出点A的坐标.(第26题图)(备用图)参考答案及评分标准一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)14分,共78分)注: 1. 阅卷时应按步计分,每步只设整分;2. 如有其它解法,只要正确,都可参照评分标准,各步相应给分.19. (本题6分)2111x x x--- 111(1)x x x =--- 1分 1(1)x x x -=-1x= 4分满足1,0x ≠的值代入都可 6分20.(本题8分):(1)设xky =,将A (﹣3,﹣1)代入,求得k =3, 1分xy 3=2分 将B (a ,3)代入,求得a =1 3分B (1,3) 4分(2)AO =BO =10 5分 等腰三角形 6分 S ABC △=4 8分21.(本题22.(本题10分)相似比:2:1相似比:1:32 相似比:4:1画对1个给2分,2个4分,3个都对得7分,每个相似比正确得1分,共3分。
2014年安徽省初中毕业学业考试模拟卷(1)数 学时间120分钟 满分150分一、选择题(本大题共10小题,每小题4分,满分40分)1.下列各数中,最小的数是 ( )A.0.5B.0C.12- D.-12.下列各式计算正确的是 ( ) A.235325a a a += B.22(2)4a a -=- C.22(3)9a a =D.33a a a ÷=3.如图,直线c 与直线a,b 相交,且a ∥b,有下列结论: (1)12∠=∠;(2)13∠=∠;(3)32∠=∠.其中正确的个数为( ) A.0B.1C.2D.34.南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为 ( ) A.0.83510⨯B.3.7510⨯C.3.6510⨯D.3.9510⨯5.下图是由6个相同的小立方块搭成的几何体,那么这个几何体的俯视图是 ( )6.一个不等式组的解集在数轴上表示如图,则这个不等式组可能是 ( )A.12x x ≥-⎧⎨<⎩B.12x x ≤-⎧⎨>⎩C.12x x <-⎧⎨≥⎩D.12x x >-⎧⎨≤⎩7.“赵爽弦图”是由四个全等直角三角形与中间一个小正方形拼成的一个大正方形(如图).随机在大正方形及其内部区域投针,若针扎到小正方形(阴影部分)的概率是19,则大、小两个正方形的边长之比是 ( )A.3∶1B.8∶1C.9∶1D. 18.A,B 两地相距10千米,甲、乙二人同时从A 地出发去B 地,甲的速度是乙的速度的2倍,结果甲比乙早到13小时.设乙的速度为x 千米/时,则可列方程为 ( ) A.1010123x x -= B. 1010123x x -= C. 101123x x += D. 1011032x x+=9.如图,EF 是圆O 的直径,OE=5 cm,弦MN=8 cm,则E,F 两点到直线MN 的距离之和等于 ( ) A.12 cmB.6 cmC.8 cmD.3 cm10.如图,点P 是等边△ABC 的边上的一个做匀速运动的动点,其由点A 开始沿AB 边运动到点B,再沿BC 边运动到点C 为止,设运动时间为t,△ACP 的面积为S,则S 与t 的大致图象是 ( )二、填空题(本大题共4小题,每小题5分,满分20分) 11.分解因式:210m m -= .12.在一次函数y=kx+2中,若y 随x 的增大而增大,则它的图象不经过第 象限.13.矩形OABC 有两边在坐标轴的正半轴上,如图所示,双曲线6y x=与边AB,BC 分别交于D,E 两点,OE 交双曲线2y x=于点G,若DG ∥OA,OA=3,则CE 的长为 .14.如图,正方形纸片ABCD 的边长为3,点E,F 分别在边BC,CD 上,将AB,AD 分别沿AE,AF 折叠,点B,D 恰好都落在点G 处.已 知BE=1,则EF 的长为 .三、(本大题共2小题,每小题8分,满分16分)15.计算:2014)452-⎛⎫⎪⎝⎭ .16.先化简后求值:当1x =时,求代数式221121111x x x x x -+-∙+-+的值.四、(本大题共2小题,每小题8分,满分16分)17.如图,在97⨯的小正方形网格中,△ABC 的顶点A,B,C 在网格的格点上.将△ABC 向左平移3个单位、再向上平移3个单位得到△A′B′C′.将△ABC 按一定规律顺次旋转,第1次,将△ABC 绕点B 顺时针旋转90 得到△11A BC ;第2次,将△11A BC 绕点1A 顺时针旋转90 得到△112A B C ;第3次,将△112A B C 绕点2C 顺时针旋转90 得到△222A B C ;第4次,将△222A B C 绕点2B 顺时针旋转90 得到△323A B C ,依次旋转下去.(1)在网格中画出△A′B′C′和△222A B C ;(2)请直接写出至少在第几次旋转后所得的三角形刚好为△A′B′C′.18.同学们,我们曾经研究过n n ⨯的正方形网格,得到了网格中正方形的总数的表达式为12+22+32+…+n 2.但n 为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道:011223⨯+⨯+⨯+ (1)(1)(1)(1)3n n n n n +-⨯=+-时,我们可以这样做:第13题第14题(1)观察并猜想:2212(10)1(11)2101212(12)(0112)+=+⨯++⨯=+⨯++⨯=++⨯+⨯;222123++(10)1(11)2(12)3=+⨯++⨯++⨯=101212323+⨯++⨯++⨯ =(123)(011223)+++⨯+⨯+⨯;22221234+++(10)1(11)2(12)3=+⨯++⨯++⨯+=101212323+⨯++⨯++⨯+ =(1234)++++( );…(2)归纳结论:222123+++…2n +(10)1(11)2(12)3=+⨯++⨯++⨯+…[1(1)]n n ++-⨯=101212323+⨯++⨯++⨯+…(1)n n n ++-⨯=( )+[ ] = + =16⨯ . (3)实践应用:通过以上探究过程,我们就可以算出当n 为100时,正方形网格中正方形的总个数是 . 五、(本大题共2小题,每小题10分,满分20分)19.如图,在平面直角坐标系xOy 中,一次函数y=kx -2的图象与x,y 轴分别交于点A,B,与反比例函数3(0)2y x x =-<的图象交于点32M n ⎛⎫-, ⎪⎝⎭. (1)求A,B 两点的坐标; (2)设点P 是一次函数y=kx -2图象上的一点,且满足△APO 的面积是△ABO 的面积的2倍,直接写出点P 的坐标.20.如图,一艘核潜艇在海面下500米的A 点处测得俯角为30 正前方的海底有黑匣子信号发出,继续在同一深度直线航行3000米后再次在B 点处测得俯角为60 正前方的海底有黑匣子信号发出,求海底黑匣子C 点处距离海面的深度.(保留根号)六、(本题满分12分)21.2013年3月28是第18个全国中小学生安全教育日.某校为增强学生的安全意识,组织全校学生参加安全知识测试,并对测试成绩做了详细统计,将测试成绩(成绩都是整数,试卷满分30分)绘制成了如下“频数分布直方图”.请回答:(1)参加全校安全知识测试的学生有名;(2)中位数落在分数段内;(3)若用各分数段的中间值(如5.5~10.5的中间值为8)来代替本段均分,请你估算本次测试成绩全校平均分约是多少.七、(本题满分12分)22.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?八、(本题满分14分)23.在面积为24的△ABC中,矩形DEFG的边DE在AB上运动,点F,G分别在边BC,AC上.(1)若AB=8,DE=2EF,求GF的长;(2)若90∠= ,如图2,线段DM,EN分别为△ADG和△BEF的角平分线,求证:MG=NF;ACB(3)求出矩形DEFG的面积的最大值.2014年安徽省初中毕业学业考试模拟卷二1.D 【解析】本题考查了有理数大小的比较.因为正数都大于0,负数都小于0,所以正数大于一切负数.又因为两个负数比较大小时,绝对值大的其值反而小,所以最小值为-1.2.C 【解析】本题考查合并同类项、同底数幂的乘法法则及幂的乘方与积的乘方法则.23a与32a不是同类项,不能合并,故A错误;22(2)44a a a-=-+,故B错误;22(3)9a a=,故C正确; 3a÷2a a=,故D 错误.3.D 【解析】本题重点考查了平行线的性质及对顶角相等.根据对顶角相等得12∠=∠;因为a∥b,所以3213∠=∠,∠=∠,故正确的个数为3.4.C 【解析】本题考查了科学记数法的表示形式.科学记数法的表示形式为10na⨯,其中1≤|a|<10,n 为整数.故350万=3500000=3.6510⨯.5.B 【解析】本题考查了三视图的知识.俯视图是从物体的上面看得到的,观察选项可知B项确.6.D 【解析】本题考查了在数轴上表示不等式解集的知识.由数轴上表示的不等式组的解集为-1<x≤2,观察选项可知D项正确.7.A 【解析】本题考查了概率的应用,相似多边形面积之比等于相似比的平方.根据针扎到小正方形(阴影部分)的概率是19,可得19SS=,大小故大、小正方形的边长之比为3∶1.8.A 【解析】本题考查了由实际问题抽象出分式方程.根据时间找出等量关系是解决本题的关键.由题可知,甲的速度是2x千米/时,根据题意可得1010123x x,-=.9.B 【解析】本题主要考查了垂径定理、勾股定理以及梯形中位线定理的综合应用.过O,E,F点分别作OK,EG,FH垂直于MN,垂足为点K,G,H,连接OM.则OK∥EG∥FH,因为O是EF的中点,因此OK是梯形EGHF的中位线,欲求EG+FH的值,需求出OK的长.在Rt△OMK中, OM= 5,MK=4,所以3OK=,故EG+FH=6.10.C 【解析】本题考查了动点问题的函数图象.当P点在边AB上运动时,S随着t的增大而增大;当P在BC运动时,S随着t的增大而减小,又由等边三角形的性质可知两者增加和减小的速度相等,故C项正确.11.m(m-10) 【解析】本题主要考查了提公因式法分解因式.210m m-=m(m-10).12.四【解析】本题考查了一次函数的图象与系数的关系.∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0.又∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限.【解析】本题考查反比例函数与一次函数的交点问题、用待定系数法求一次函数的解析式等知识.由OA=3得,直线AB的解析式为x=3,把x=3代入反比例函数y=6x可得D点坐标为(3,2),由DG∥OA可得,直线DG的解析式为y=2,把y=2代入2xy=可得G点坐标为(1,2).设直线OE的解析式为y=kx,因为G 点在OE 上,所以2=k,故直线OE 的解析式为y=2x.由 62xy x y =,⎧⎪⎨=⎪⎩ 可得,E点坐标为.故CE =14.52 【解析】本题考查了正方形的性质、翻折变换以及勾股定理.∵正方形纸片ABCD 的边长为3,∴90C ∠= ,BC=CD=3,根据折叠的性质得EG=BE=1,GF=DF,设DF=x,则EF=EG+ GF=1+x,FC=CD -DF=3-x,EC=BC -BE=3-1=2.在Rt △EFC 中222EF EC FC ,=+,即222(1)2(3)x x +=+-,解得32x =,∴32DF =,35122EF =+=. 15.解:()20124)45-431=-+分=1. 8分16.解:原式222(1)111(1)(1)(1)(1)121(1)x x x x x x x x x --+-+++++=-=-=, 6分当1x =时,原式=1. 8分17.解:(1)△A′B′C′和△222A B C 的图象如图所示:4分(2)通过画图可知,△ABC 至少在第8次旋转后得到△A′B′C′. 8分 18.解:(1)(13)4+⨯ 434+⨯ 01122334⨯+⨯+⨯+⨯ 3分(2)1+2+3+…+n 011223⨯+⨯+⨯+…(1)n n +-⨯ 12(1)n n + ()13(1)1n n n +- n(n+1)(2n+1) 6分(3)338350 8分19.解:(1)∵点()32M n -,在反比例函数32(0)x y x =-<的图象上. ∴n=1,∴()321M -,. 2分 ∵一次函数y=kx -2的图象经过点()321M -,, ∴3212k =--,解得k=-2, ∴一次函数的解析式为y=-2x -2. 5分∴A(-1,0),B(0,-2). 6分12(2)(34)(14)P P -,,,-. 10分 20.解:如图,过点C 作CE DE ⊥,交AB 的延长线于F,交DE 于E.∵60FBC ∠= 30BAC ,∠= ,∴BAC BCA ∠=∠, ∴BC=AB=3000. 3分在Rt △BCF 中,BC=3000,60FBC ∠= ,∴sin60CF BC =⋅= 7分∴500CE =. 9分答:海底黑匣子C 点处距离海面的深度为500)米. 10分21.解:(1)由频数分布直方图可知,学生总人数为(0.1+0.7+1.3+2.8+3.1+4.0)1001200⨯=. 3分 (2)由频数分布直方图可知,在分数段0.5 15.5的人数为450,在分数段15.5 20.5的人数为400,6分 故所求中位数落在15.5 20.5分数段内.7分(3)x 112(0=⨯.131⨯+.383⨯+.1134⨯+.0182⨯+.8⨯23+0.728)⨯ 2071217.25==, 11分 所以本次测试成绩全校平均分约为17.25分. 12分 22.解:(1)设今年三月份甲种电脑每台售价x 元. 由题意可得方程100000800001000x x +=,解得x=4000. 2分经检验,x=4000是原方程的根,所以甲种电脑今年每台售价4000元. 4分 (2)设购进甲种电脑x 台,则购进乙种电脑(15-x)台. 由题意可得不等式4800035003000(15)50000x x ≤+-≤, 解得610x ≤≤. 6分因为x 是正整数,所以x 的可能取值有6,7,8,9,10,所以共有5种进货方案. 8分 (3)设总获利为W 元,W=(4000-3500)x+(3800-3000-a)(15-x) =(a -300)x+12 000-15a, 10分当a=300时,(2)中所有方案获利相同.所以购买甲种电脑6台、乙种电脑9台时对公司更有利(利润相同,成本最低). 12分 23.解:(1)∵△ABC 的面积为24,AB=8, ∴△ABC 边AB 上的高h=6. 1分 设EF=x,则GF=DE=2x. ∵GF ∥AB,∴△CGF ∽△CAB, ∴GF h EF ABh -=,即2686x x-=,解得x=2.4. 3分∴GF=4.8. 4分(2)过点G 作GP ∥BC,过点D 作DP ∥EN,GP,DP 交于点P,在DM 的延长线上截取DQ=DP,连接QG. ∵DP ∥EN, ∴PDE NEB ∠=∠,又∵90GDB FEB ∠=∠= ,∴GDP FEN ∠=∠. 同理可得DGP EFN ∠=∠.又∵GD=FE,∴△GPD ≌△FNE,∴45PG NF GDP FEN =,∠=∠= . 6分 ∵45GDQ GDP ∠=∠= ,∴△GQD ≌△GPD,∴QG PG GQD GPD =,∠=∠. 7分 ∵90MGP MDP ∠=∠= ,∴180GMD GPD ∠+∠= .又∵180GMQ GMD ∠+∠= ,∴GMQ GPD GQM ∠=∠=∠. 9分 ∴MG=QG. ∴MG=NF. 10分(3)作CH AB ⊥于点H,交GF 于点I.设AB=a,AB 边上的高为h,DG=y,GF=x,则CH=h,CI=h -y,ah=48. 由(1)知,△CGF ∽△CAB, ∴GF CIABCH =,即h y x a h -=,则xh 48xh a ah ay y -=-,=,12分则矩形DEFG 的面积248x x h a S xy -==,即()222448576h h h a a a ahS x x x =-+=--+. 由二次函数的有关性质知,当24h x =时,S 取得最大值为5765764812ah==. ∴矩形DEFG 的面积的最大值为12. 14分。
济南市2014年初三年级学业水平考试数学全真模拟试卷(时间:120分钟 满分:120分)第Ⅰ卷(选择题 共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题所给的四个选项中,只有一项是符合题目要求的.) 1.-2的绝对值是( )11A. B.2 C. D.222- -2.我国第一艘航母“辽宁舰”最大排水量为67 500吨,用科学记数法表示这个数字是( )A.6.75×103 吨B.67.5×103吨C.6.75×104 吨D.6.75×105吨 3.16的平方根是( )A.4B.±4C.8 D .±84.如图,直线l ∥m ,将含有45°角的三角板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为( )A.20°B.25°C.30°D.35° 5.下列等式成立的是( )A.a 2×a 5=a 10B.a b a b +=+C.(-a 3)6=a 18D.2a a =6.一个盒子里有完全相同的三个小球,球上分别标上数字-1、1、2.随机摸出一个小球(不放回)其数字记为p ,再随机摸出另一个小球其数字记为q ,则满足关于x 的方程x 2+px+q=0有实数根的概率是( )1125A. B. C. D.23367.分式方程12x 1x 1=-+的解是( ) A.1 B.-1 C.3 D.无解8.钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是( )111A. B. C. D.248π π π π9.如图,数轴上表示某不等式组的解集,则这个不等式组可能是( )x 10x 10A. B.2x 02x 0x 10x 10C. D.x 20x 20+≥+≤⎧⎧ ⎨⎨-≥-≥⎩⎩+≤+≥⎧⎧ ⎨⎨-≥-≥⎩⎩10.如图是一个正方体被截去一角后得到的几何体,它的俯视图是( )11.化简2(21)÷-的结果是( )A.221B.22C.12D. 22- - - +12.如图,在Rt △ABC 中,∠BAC=90°,D 、E 分别是AB 、BC 的中点,F 在CA 的延长线上,∠FDA=∠B ,AC=6,AB=8,则四边形AEDF 的周长为( )A.22B.20C.18D.1613.如图,过x 轴正半轴上的任意一点P ,作y 轴的平行线,分别与反比例函数64y y x x=-=和的图象交于A 、B 两点.若点C 是y 轴上任意一点,连接AC 、BC ,则△ABC的面积为( )A.3B.4C.5D.1014.如图,已知AB、CD是⊙O的两条直径,∠ABC=28°,那么∠BAD=( )A.28°B.42°C.56°D.84°15.如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿B→C→D的路线向点D运动.设△ABP的面积为y(B、P两点重合时,△ABP的面积可以看做0),点P运动的路程为x,则y与x之间函数关系的图象大致为( )第Ⅱ卷(非选择题共75分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.分解因式:(a+2)(a-2)+3a=________.17.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则ab的值为_________.18.如图,两建筑物的水平距离BC为18 m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为________ m(结果不作近似计算).19.三棱柱的三视图如图所示,△EFG中,EF=8 cm,EG=12 cm,∠EGF=30°,则AB的长为______cm.20.如图,边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°,连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为_______.21.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是________.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程及演算步骤.)22.(本小题满分7分)(1)化简222x1x2x1. x1x x--+÷+-(2)解方程:15x2(x1)8x. 24++=+23.(本小题满分7分)(1)如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.(2)如图所示,已知在平行四边形ABCD中,BE=DF.求证:AE=CF.24.(本小题满分8分)五一期间某校组织七、八年级的同学到某景点郊游,该景点的门票全票票价为15元/人,若为50~99人可以八折购票,100人以上则可六折购票.已知参加郊游的七年级同学少于50人、八年级同学少于100人.若七、八年级分别购票,两个年级共计应付门票费1 575元,若合在一起购买折扣票,总计应付门票费1 080元.(1)请你判断参加郊游的八年级同学是否也少于50人.(2)求参加郊游的七、八年级同学各为多少人?25.(本小题满分8分)某市某校对九年级学生进行“综合素质”评价,评价的结果为A(优)、B(良好)、C(合格)、D(不合格)四个等级,现从中抽取了若干名学生的“综合素质”等级作为样本进行数据处理,并作出如图所示的统计图,已知图中从左到右的四个长方形的高的比为:14∶9∶6∶1,评价结果为D等级的有2人,请你回答以下问题:(1)共抽取了多少人?(2)样本中B等级的频率是多少?C等级的频率是多少?(3)如果要绘制扇形统计图,A、D两个等级在扇形统计图中所占的圆心角分别是多少度?(4)该校九年级的毕业生共300人,假如“综合素质”等级为A或B的学生才能报考示范性高中,请你计算该校大约有多少名学生可以报考示范性高中?26.(本小题满分9分)如图,在△ABC中,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且AC=CF,∠CBF=∠CFB.(1)求证:直线BF是⊙O的切线;(2)若点D,点E分别是弧AB的三等分点,当AD=5时,求BF的长;(3)填空:在(2)的条件下,如果以点C为圆心,r为半径的圆上总存在不同的两点到点O 的距离为5,则r的取值范围为_________.27.(本小题满分9分)已知,如图二次函数y=ax2+bx+c(a≠0)的图象与y轴交于点C(0,4)与x轴交于点A、B,点B(4,0),抛物线的对称轴为x=1.直线AD交抛物线于点D(2,m).(1)求二次函数的解析式并写出D点坐标;(2)点E是BD的中点,点Q是线段AB上一动点,当△QBE和△ABD相似时,求点Q的坐标;(3)抛物线与y轴交于点C,直线AD与y轴交于点F,点M为抛物线对称轴上的动点,点N在x轴上,当四边形CMNF周长取最小值时,求出满足条件的点M和点N的坐标.28.(本小题满分9分)如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于点F,∠1=∠2,连接CB与DG交于点N.(1)求证:CF 是⊙O 的切线; (2)求证:△ACM ∽△DCN ;(3)若点M 是CO 的中点,⊙O 的半径为4,cos ∠BOC=14,求BN 的长.参考答案1.D2.C3.B4.A5.C6.A7.C8.A9.A 10.A 11.D 12.D 13.C 14.A 15.C 16.(a-1)(a+4) 17.-10 18.123 19.6 20.n 13-()21.25522.(1)解:原式=()()()2x 1x 1x x 1x.x 1x 1+--=+- () (2)解:原方程可化为3x+2=8+x,合并同类项得:2x=6, 解得:x=3.23.(1)证明:∵∠1=∠2, ∴∠1+∠EAC=∠2+∠EAC, 即∠BAC=∠EAD.∵在△ABC 中和△AED 中,D C,BAC EAD,AB AE,∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△AED(AAS) (2)证明:∵BE=DF,∴BE-EF=DE-EF,∴DE=BF.∵四边形ABCD 是平行四边形, ∴AD=BC,AD ∥BC, ∴∠ADE=∠CBF,在△ADE 和△CBF 中,DE BF,ADE CBF,AD BC,=⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CBF(SAS), ∴AE=CF. 24.解:(1)全票为15元,则八折票价为12元,六折票价为9元. ∵100×15=1 500<1 575,∴参加郊游的七、八年级同学的总人数必定超过100人,∴由此可判断参加郊游的八年同学不少于50人.(2)设七、八年级参加郊游的同学分别有x 人、y 人. 由(1)及已知可得,x<50,50<y<100,x+y>100. 依题意可得:()15x 12y 1 575,9x y 1 080,+=⎧⎨+=⎩ 解得:x 45,y 75.=⎧⎨=⎩答:参加郊游的七、八年级同学分别为45人和75人. 25.解:(1)D 等级所占比例为:111496130=+++,则共抽取的人数为:1260().30÷=人 (2)样本中B 等级的频率为:9100%30%;14961⨯=+++C 等级的频率为:6100%20%.14961⨯=+++ (3)样本中A 等级在扇形统计图中所占圆心角度数为:1430×360=168(度); D 等级在扇形统计图中所占圆心角度数为:130×360=12(度). (4)可报考示范性高中的总人数: 300×149()3030+=230(名). 26.(1)证明:∵∠CBF=∠CFB , ∴BC=CF. ∵AC=CF , ∴AC=BC ,∴∠ABC=∠BAC.在△ABF 中,∠ABC+∠CBF+∠BAF+∠F=180°, 即2(∠ABC+∠CBF)=180°, ∴∠ABC+∠CBF=90°, ∴BF 是⊙O 的切线;(2)解:连接BD.∵点D ,点E 是弧AB 的三等分点,AB 为直径, ∴∠ABD=30°,∠ADB=90°,∠A=60°. ∵AD=5,∴AB=10,()BFtan603ABBF 103;3535r 53 5.∴︒==∴=-<<+,27.解:(1)设二次函数的解析式为:y=ax 2+bx+c.221a c 4216a 4b c 0b 1b c 4,12a 1y x x 4.21D(2m)m 224 4.2⎧⎧=-⎪⎪=⎪⎪++==⎨⎨⎪⎪=⎪⎪-=⎩⎩=-++=-⨯++= ,,由题意有:,解得:,,所以,二次函数的解析式为:点,在抛物线上,即∴点D 的坐标为(2,4);(2)作DG 垂直于x 轴,垂足为G ,因为D (2,4),B (4,0), 由勾股定理得:BD=25,∵E 是BD 的中点, ∴BE=5.BE BQ 1QBE ABD BD BA 2AB 2BQ Q 10BQ BE 5QBE DBA BD BA 6557BQ 25OQ 6337Q 0.3==∴=∴==∴=⨯==∴ 当≌时,,,点的坐标为(,);当≌时,,,则,点的坐标(,) (3)如图,由A(-2,0),D(2,4),可求得直线AD 的解析式为:y=x+2,则点F 的坐标为:F(0,2).过点F作关于x轴的对称点F′,即F′(0,-2),连接CD,再连接DF′交对称轴于M′,交x轴于N′.由条件可知,点C,D关于对称轴x=1对称,∴DF′=210,F′N′=FN′,DM′=CM′,∴CF+FN′+M′N′+M′C=CF+DF′=2210+,∴四边形CFNM的周长=CF+FN+NM+MC≥CF+FN′+M′N′+M′C=2210+,即四边形CFNM的最短周长为:2210+,此时直线DF′的解析式为:y=3x-2,所以存在点N的坐标为2(,0)3,点M的坐标为(1,1)使四边形CMNF周长取最小值.28.(1)证明:∵△BCO中,BO=CO,∴∠B=∠BCO,在Rt△BCE中,∠2+∠B=90°,又∵∠1=∠2,∴∠1+∠BCO=90°,即∠FCO=90°,∴CF是⊙O的切线;(2)证明:∵AB是⊙O直径,∴∠ACB=∠FCO=90°,∴∠ACB-∠BCO=∠FCO-∠BCO,即∠ACO=∠1,∴∠ACO=∠2,∵∠CAM=∠D,∴△ACM∽△DCN;(3)解:∵⊙O的半径为4,即AO=CO=BO=4,在Rt△COE中,cos∠BOC=1 4,∴OE=CO ·cos ∠BOC=4×14=1, 由此可得:BE=3,AE=5,由勾股定理可得:222222222222CE CO OE 4115AC CE AE (15)5210,BC CE BE (15)326,=-=-==+=+==+=+= ∵AB 是⊙O 直径,AB ⊥CD , ∴由垂径定理得:CD=2CE=215,∵△ACM ∽△DCN ,∴CM AC,CN CD= ∵点M 是CO 的中点,11CMOA 42,22==⨯= CM CD 2215CN 6,AC 210BN BC CN 266 6.⨯∴===∴=-=-=济南市2014年初三年级学业水平考试数学全真模拟试卷2第Ⅰ卷(选择题共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题所给的四个选项中,只有一项是符合题目要求的).1.如果+30 m表示向东走30 m,那么向西走40 m表示为( )A.+40 mB.-40 mC.+30 mD.-30 m2.若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是( )A.-2B.2C.-50D.503.图中几何体的主视图是( )4.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为( )A.0.34×10-9B.3.4×10-9C.3.4×10-10D.3.4×10-115.已知圆锥的底面半径为6 cm,高为8 cm,则这个圆锥的母线长为( )A.12 cmB.10 cmC.8 cmD.6 cm6.如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为( )1111A. B. C. D.34567.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案( )A.5种B.4种C.3种D.2种8.某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1 225元,设其中有x张成人票,y张儿童票.根据题意,下列方程组正确的是( )9.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是( )A.18°B.24°C.30°D.36°10.如图,已知等腰梯形ABCD的底角∠B=45°,高AE=1,上底AD=1,则其面积为( )A.4B. 22C.1D.211.如图,数轴上a,b两点表示的数分别为3和-1,点a关于点b的对称点为c,则点c所表示的数为( )A.23B.13C.23D.13-- -- -+ +12.如图,A、B、C是反比例函数kyx=(x<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3∶1∶1,则满足条件的直线l共有( )A.4条B.3条C.2条D.1条13.在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:这8名同学捐款的平均金额为( )A.3.5元B.6元C.6.5元D.7元14.已知关于x 的不等式组()4x 123x,6x ax 1,7⎧-+⎪⎨+-⎪⎩><有且只有三个整数解,则a 的取值范围是( )A.-2≤a-1B.-2≤a <-1C.-2<a ≤-1D.-2<a <-1 15.如图,直线l :y=-x-2与坐标轴交于A 、C 两点,过A 、O 、C 三点作⊙O 1,点E 为劣弧 AO上一点,连接EC 、EA 、EO ,当点E 在劣弧上运动时(不与A 、O 两点重合),EC EA EO-的值是( )A.2 B.3 C.2 D.变化的第Ⅱ卷(非选择题 共75分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.分解因式:a 3-ab 2=________. 17.计算124183-⨯=_________. 18.如图,在Rt △ABC 中,∠C=90°,∠B=60°,点D 是BC 边上的点,CD=1,将△ABC 沿直线AD 翻折,使点C 落在AB 边上的点E 处,若点P 是直线AD 上的动点,则△PEB 的周长的最小值是______.19.如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P ,则tan ∠APD 的值是______.20.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为_____________.21.若x 是不等于1的实数,我们把11x -称为x 的差倒数,如2的差倒数是112-=-1,-1的差倒数为()11112=--,现已知121x x 3=-,是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依次类推,则x 2 013=____________.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程及演算步骤.) 22.(本小题满分7分)(1)解方程组2x 3y 3x 2y 2.-=⎧⎨+=-⎩,(2)化简:1a a ().22a 2a 1-÷++23.(本小题满分7分)(1)如图,在四边形ABCD 中,AB=BC ,∠ABC=∠CDA=90°,BE ⊥AD ,垂足为E. 求证:BE=DE.(2)如图,AB 是⊙O 的直径,DF ⊥AB 于点D ,交弦AC 于点E ,FC=FE. 求证:FC 是⊙O 的切线.24.(本小题满分8分)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).25.(本小题满分8分)某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是____________;(3)已知该校有1 200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.26.(本小题满分9分)如图,O是菱形ABCD对角线AC与BD的交点,CD=5 cm,OD=3 cm;过点C作CE∥DB,过点B作BE∥AC,CE与BE相交于点E.(1)求OC的长;(2)求证:四边形OBEC为矩形;(3)求矩形OBEC的面积.27.(本小题满分9分)如图,直线1yx 4=与双曲线ky x =相交于A 、B 两点,BC ⊥x 轴于点C (-4,0).(1)求A 、B 两点的坐标及双曲线的解析式;(2)若经过点A 的直线与x 轴的正半轴交于点D ,与y 轴的正半轴交于点E ,且△AOE 的面积为10,求CD 的长.28.(本小题满分9分) 如图,抛物线21y x 1=-交x 轴的正半轴于点A ,交y 轴于点B ,将此抛物线向右平移4个单位得抛物线y 2,两条抛物线相交于点 C.(1)请直接写出抛物线y 2的解析式;(2)若点 P 是x 轴上一动点,且满足∠CPA=∠OBA ,求出所有满足条件的P 点坐标; (3)在第四象限内抛物线y 2上,是否存在点Q ,使得△QOC 中OC 边上的高h 有最大值,若存在,请求出点Q 的坐标及h 的最大值;若不存在,请说明理由.参考答案1.B2.A3.D4.C5.B6.B7.C8.B9.A10.D 11.A 12.A 13.C 14.C 15.A19.2 20.40% 21.416.a(a+b)(a-b) 17.618.1323.(1)证明:作CF⊥BE,垂足为F.∵BE⊥AD,∴∠AEB=90°,∴∠FED=∠D=∠CFE=90°,∠CBE+∠ABE=90°,∠BAE+∠ABE=90°,∴∠BAE=∠CBF,∵四边形EFCD为矩形,∴DE=CF.在△BAE和△CBF中,有∠CBE=∠BAE,∠BFC=∠BEA=90°,AB=BC,∴△BAE≌△CBF,∴BE=CF=DE,即BE=DE.(2)证明:连接OC.∵FC=FE,∴∠FCE=∠FEC.又∵∠AED=∠FEC,∴∠FCE=∠AED.∵OC=OA,∴∠OCA=∠OAC,∴∠FCO=∠FCE+∠OCA=∠AED+∠OAC=180°-∠ADE.∵DF⊥AB,∴∠ADE=90°,∴∠FCO=90°,即OC⊥FC.又∵点C在⊙O上,∴FC是⊙O的切线;24.解法一:解:设上月萝卜的单价是x 元/斤,排骨的单价是y 元/斤,根据题意得:()()3x 2y 363150%x 2120%y 45x 2:y 15.+=⎧⎨+++=⎩=⎧⎨=⎩,,,解得这天萝卜的单价是(1+50%)x=(1+50%)×2=3(元/斤), 这天排骨的单价是(1+20%)y=(1+20%)×15=18(元/斤). 答:这天萝卜的单价是3元/斤,排骨的单价是18/斤. 解法二:解:设这天萝卜的单价是x 元/斤,排骨的单价是y 元/斤,根据题意得:32x y 36150%120%3x 2y 45x 3:y 18.⎧+=⎪++⎨⎪+=⎩=⎧⎨=⎩,,,解得 答:这天萝卜的单价是3元/斤,排骨的单价18元/斤. 25.解:(1)∵根据扇形统计图可得出女生喜欢武术的占20%, 利用条形图中喜欢武术的女生有10人, ∴女生总人数为:10÷20%=50(人),∴女生中喜欢舞蹈的人数为:50-10-16=24(人). 补充条形统计图,如图所示:(2)100(3)∵样本中喜欢剪纸的人数为30人,样本容量为100, ∴估计全校学生中喜欢剪纸的人数:1 200×30100=360人. 答:全校学生中喜欢剪纸的有360人. 26.解:(1)∵四边形ABCD 是菱形, ∴AC ⊥BD ,∴直角△OCD 中,2222OC CD OD 53 4 cm =-=-=;(2)∵CE ∥DB ,BE ∥AC , ∴四边形OBEC 为平行四边形, 又∵AC ⊥BD ,即∠COB=90°, ∴平行四边形OBEC 为矩形; (3)∵OB=OD ,∴S 矩形OBEC =OB ·OC=4×3=12(cm 2). 27.解:(1)∵BC ⊥x 轴,C (-4,0),∴B 的横坐标是-4,代入y=14x 得:y=-1,∴B 的坐标是(-4,-1). ∵把B 的坐标代入ky k 4x==得:, ∴反比例函数的解析式是4y .x=∵解方程组12121y x x 4x 444y 1y 1y x⎧=⎪==-⎧⎧⎪⎨⎨⎨==-⎩⎩⎪=⎪⎩,,,得:,,,∴A 的坐标为(4,1),B 的坐标为(-4,-1);(2)设OE=a ,OD=b ,则△AOE 面积S △AOE =S △EOD -S △AO D,AOE 1110ab b 1,221S a 410,2=- == 即:①并且,②由①,②可解得:a=5,b=5,即OD=5. ∵OC=|-4|=4,∴CD 的长为:4+5=9.28.解:(1)y=x 2-8x+15;(2)当 y 1= y 2,即x 2-1 =x 2-8x+15, ∴x=2,y=3, ∴C (2,3).由题可知, A ( 1 , 0 ) , B ( 0 ,-1), ∴OA =OB= 1 ,∴∠OBA= 45°. 过点 C 作CD ⊥x 轴于点D, ∴D(2,0),∴CD=3.当∠CPA=∠OBA=45°时,∴PD=CD=3 ,∴满足条件的点P有2个,分别为P1 (5,0),P2(-1,0);(3)存在.过点C作CE⊥y轴于点E,过点Q作QF⊥y轴于点F,连接OC、QC、 OQ. 设Q (x0,y0) ,∵Q在y2上,∴y0=x02-8x0+15,∴CE=2,QF=x0,EF=3-y0,OE=3,OF=-y0.∵在△QOC中,OC边长为定值,∴当S△QOC取最大值时,OC边上的高h也取最大值.2014届中考数学模拟测试卷(本试卷满分150分,考试时间120分钟)一、选择题(本题有8小题,每小题3分,共24分) 1.12-的倒数为【 】 A .12B .2C .2-D .1-2.下列图形中,既是轴对称图形,又是中心对称图形的是【 】 A .平行四边形 B .等边三角形 C .等腰梯形 D .正方形3.已知地球距离月球表面约为383900千米,那么这个距离用科学记数法表示为(保留三个有效数字)【 】A .3.84×104千米B .3.84×105千米C .3.84×106千米D .38.4×104千米 4.已知⊙O 1与⊙O 2的半径分别为5cm 和3cm ,圆心距0102=7cm ,则两圆的位置关系为【 】 A .外离 B .外切 C .相交 D .内切5.如图是由七个相同的小正方体堆成的几何体,这个几何体的俯视图是【 】6.某校在开展“爱心捐助”的活动中,初三(一)班六名同学捐款的数额分别为:8,10,10,4,8,10(单位:元),这组数据的众数是【 】A .10B .9C .8D .4 7.如图7,AB 是⊙O 的直径,点D 在AB 的延长线上, DC 切⊙O 于点C ,若∠A=25°,则∠D 等于【 】 A .20°B .30°C .40° D.50°8.已知二次函数2(0)y ax bx c a =++≠的图象如右图8所示,下列结论①abc >0 ②b<a+c③2a-b=0 ④4a+2b+c >0 ⑤2c<3b⑥a+b >m(am+b)(m 为任意实数), 其中正确的结论有【 】 A . 1个 B .2个 C . 3个D .4个二、填空题(本大题共10小题,每小题3分,共30分)9.扬州市某天的最高气温是6℃,最低气温是-3℃,那么当天的日温差是 ▲ .10.函数12-+=x x y 中自变量x 的取值范围是 ▲ . 11.如图11,四边形ABCD 中,AB//CD ,要使四边形ABCD 为平行四边形,则可添加的条件为 ▲ .(填一个即可).12.因式分解:m 3n -9mn= ▲ .13.已知25-是一元二次方程240x x c -+=的一个根,则方程的另一个根是▲ .14.在平面直角坐标系中,如果抛物线y=3x 2不动,而把x 轴、y 轴分别向上、向右平移3个单位,那么在新坐标系中此抛物线的解析式是 ▲ . 15.已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 ▲ .16.已知一个圆锥的母线长为10cm ,将侧面展开后所得扇形的圆心角是144°,则这个圆锥的底面圆的半径是 ▲ cm .17.如图,线段AB 的长为2,C 为AB 上一个动点,分别以AC 、BC 为斜边在AB 的同侧作两个等腰直角三角形△ACD 和△BCE ,那么DE 长的最小值是 ▲ . 18.观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x 的方程(n 为正整数)的根,你的答案是: ▲ .(用n 的代数式 )三、解答题(本大题共有10小题,共96分) 19.(本题8分)(1) (4分)解方程组 ⎩⎨⎧=-=-;1383,32y x y x(2) (4分)821)14.3(45sin 2)31(02+-+︒--π 20.(本题8分)先化简:22a 1a 11a a +2a---÷,再选取一个合适的 a 值代入计算.21.(本题8分)如图,在△ABC 中,∠ACB=90°,AC=BC ,BE ⊥CE 于点E ,AD ⊥CE 于点D 。
2014年河北省初中学业考试模拟试题数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;全卷共6页,满分120分.考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题纸密封线内的项目填写清楚.3.第Ⅰ卷、第Ⅱ卷每小题做出答案后,必须用黑色(或蓝色)笔填写在答题纸...的指定位置,否则不计分.一、选择题:(本题12小题,1-6每小题2分,7-12每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1、()2--表示 ( ) A .2的相反数 B .21 的相反数 C .2-的相反数 D .21- 的相反数 2、下列图形中,既是轴对称图形,又是中心对称图形的是3、如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是( )A .4B .6C .10D .54、如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线,∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点C 上升的高度h 是( ) A . m B .4 m C .m D .8 m5、函数的自变量的取值范围是( ) A .B .C .D .A B CD6、在下图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是( ) A .点A B .点C C .点B D .点D7、如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )8、在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式是( ). A .2(1)2y x =-++ B .2(1)4y x =--+ C .2(1)2y x =--+ D .2(1)4y x =-++9、若关于x 的不等式⎩⎨⎧x -m <0,5-2x ≤1整数解共有2个,则m 的取值范围是( )A .3≤m <4B .3<m <4C .3<m ≤4D .3≤m ≤410、某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,每加1分钟加收1元(不足1分钟按1分钟收费),则表示电话费y (元)与通话时间x (分)之间的函数关系的图像如下图所示,正确的是( )11、圆锥的底面半径为8,母线长为9,则该圆锥的侧面积为( ).A .B .C .D .12、如图,将边长为a 的正六边形A 1 A 2 A 3 A 4 A 5 A 6在直线l 上由图1的位置按顺时针方向向右作无滑动滚动,当A 1第一次滚动到图2位置时,顶点A 1所经过的路径的 长为( ).A.a B. a C. a D. a二、填空题(本大题共6个小题,每小题3分,共18分,把答案写在很横线上) 13、使x -2有意义的x 的取值范围是14、我市在临桂新区正在建设的广西桂林图书馆、桂林博物馆、桂林大剧院及文化广场,建成后总面积达163500平方米,将成为我市“文化立市”和文化产业大发展的新标志,把163500平方米用科学记数法可表示为 平方米. 15、如图,小华为了测量所住楼房的高度,他请来同学帮忙,测量了同一时刻他自己的影长和楼房的影长分别是0.5米和15米.已知小华的身高为1.6米,那么他所住楼房的高度为 米. 16、动手操作:在矩形纸片中,.如图所示,折叠纸片,使点落在边上的处,折痕为.当点在边上移动时,折痕的端点也随之移动.若限定点分别在边上移动,则点在边上距B 点可移动的最短距离为 .17、在二次函数y =-x 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:则m 、n 的大小关系为 . 18、观察下列顺序排列的等式:,….试猜想第个等式(为正整数):.三、解答题(本大题共8个小题,共72分,解答要写出详细的过程) 19、(本小题满分8分)若关于x 的一元二次方程0342=-+-k x x 的两个实数根为1x 、2x ,且满足213x x =,试求出方程的两个实数根及k 的值.20、(本小题满分8分)有3张扑克牌,分别是红桃3、红桃4和黑桃5.把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.⑴先后两次抽得的数字分别记为s 和t ,则︱s -t ︱≥1的概率.⑵甲、乙两人做游戏,现有两种方案.A 方案:若两次抽得相同花色则甲胜,否则乙胜.B 方案:若两次抽得数字和为奇数则甲胜,否则乙胜. 请问甲选择哪种方案胜率更高?21、(本题满分8分)古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A B、两工程队先后接力....完成.A工作队每天整治12米,B工程队每天整治8米,共用时20天.(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:128x yx y+⎧⎨+⎩乙:128x yx y+⎧⎪⎨+⎪⎩根据甲、乙两名同学所列的方程组,请你分别指出未知数x y、表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:甲:x表示________________,y表示_______________;乙:x表示________________,y表示_______________.(2)求A B、两工程队分别整治河道多少米.(写出完整..的解答过程)22、(本小题满分8分)已知,延长BC到D,使.取的中点,连结交于点.(1). 求的值;(2).若,求的长.如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽的水匀速注入乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:(1)图2中折线ABC表示________槽中水的深度与注水时间的关系,线段DE表示_______槽中水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点B的纵坐标表示的实际意义是________________________________;(2)注水多长时间时,甲、乙两个水槽中水的深度相同?(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;(4)若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计).(直接写出结果)甲槽乙槽图1我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x 万元,可获得利润()216041100P x =--+(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x 万元,可获利润()()299294101001601005Q x x =--+-+(万元) ⑴若不进行开发,求5年所获利润的最大值是多少?⑵若按规划实施,求5年所获利润(扣除修路后)的最大值是多少? ⑶根据⑴、⑵,该方案是否具有实施价值?两个大小相同且含30角的三角板ABC和DEC如图①摆放,使直角顶点重合. 将图①中△DEC绕点C逆时针旋转30得到图②,点F、G分别是CD、DE与AB的交点,点H是DE与AC的交点.(1)不添加辅助线,写出图②中所有与△BCF全等的三角形;(2)将图②中的△DEC绕点C逆时针旋转45得△D1E1C,点F、G、H的对应点分别为F1、G1、H1,如图③.探究线段D1F1与AH1之间的数量关系,并写出推理过程;(3)在(2)的条件下,若D1E1与CE交于点I,求证:G1I =CI.DBC A图①DA图②DAD1BCEFGHBCEFG1H图③H11IGF1如图,抛物线()与轴相交于两点,点是抛物线的顶点,以为直径作圆交轴于两点,.(1)用含的代数式表示圆的半径的长;(2).连结,求线段的长;(3)(4分)点是抛物线对称轴正半轴上的一点,且满足以点为圆心的圆与直线和圆都相切,求点的坐标.20 18018020 参考答案一、选择题:C BD B B C D B A A C A 二、填空题13、X 大于或等于2 14、51.63510⨯ 15、48 16、1 17、m >n18、 或三、解答题19、解:由根与系数的关系得:421=+x x ① ,=⋅21x x 3-k ②………………… 2分又∵213x x =③,联立①、③,解方程组得⎩⎨⎧==1321x x ……………………… 4分∴6313321=+⨯=+=x x k ……………………………………………… 6分 答:方程两根为12=3,=1;=6x x k .……………………………………… 8分 20、⑴23⑵A 方案P (甲胜)=59,B 方案P (甲胜)=49故选择A 方案甲的胜率更高. 21、1)甲:x 表示A 工程队工作的天数,y 表示B 工程队工作的天数; 乙:x 表示A 工程队整治河道的米数,y 表示B 工程队整治河道的米数. 甲: 128x y x y +=⎧⎨+=⎩ 乙:128x y x y +=⎧⎪⎨+=⎪⎩(2)解:设A B 、两工程队分别整治河道x 米和y 米,由题意得:18020128x y x y+=⎧⎪⎨+=⎪⎩ 解方程组得:60120x y =⎧⎨=⎩答:A B 、两工程队分别整治了60米和120米. 22、解:(1)过点F 作,交于点.为的中点为的中点,.…………………………1分由,得,……3分…………………4分………………………5分(2)解:又……………………7分.……………………8分23、解:(1)乙,甲,铁块的高度为14cm (或乙槽中水的深度达到14cm 时刚好淹没铁块,说出大意即可)(2)设线段DE 的函数关系式为11y k x b =+,则1116012k b b ⎧+=⎪⎨=⎪⎩,,∴11212k b ⎧=-⎪⎨=⎪⎩,.DE ∴的函数关系式为212y x =-+. 设线段AB 的函数关系式为22y k x b =+,则22241412k b b ⎧+=⎪⎨=⎪⎩,,∴2232k b ⎧=⎪⎨=⎪⎩,. ∴AB 的函数关系式为32y x =+.由题意得21232y x y x =-+⎧⎨=+⎩,解得28x y =⎧⎨=⎩.∴注水2分钟时,甲、乙两水槽中水的深度相同.(3)水由甲槽匀速注入乙槽,∴乙槽前4分钟注入水的体积是后2分钟的2倍.设乙槽底面积与铁块底面积之差为S ,则 ()()1422361914S -=⨯⨯-,解得230cm S =.∴铁块底面积为236306cm -=.∴铁块的体积为361484cm ⨯=.(4)甲槽底面积为260cm .铁块的体积为3112cm ,∴铁块底面积为2112148cm ÷=. 设甲槽底面积为2cm s ,则注水的速度为3122c m /min 6ss =.由题意得()2642481914142s s ⨯-⨯-=--,解得60s =.∴甲槽底面积为260cm .24、解:⑴当x =60时,P 最大且为41,故五年获利最大值是41×5=205万元.⑵前两年:0≤x ≤50,此时因为P 随x 增大而增大,所以x =50时,P 值最大且为40万元,所以这两年获利最大为40×2=80万元. 后三年:设每年获利为y ,设当地投资额为x ,则外地投资额为100-x ,所以y =P +Q =()216041100x ⎡⎤--+⎢⎥⎣⎦+2992941601005x x ⎡⎤-++⎢⎥⎣⎦=260165x x -++=()2301065x --+,表明x =30时,y 最大且为1065,那么三年获利最大为1065×3=3495万元,故五年获利最大值为80+3495-50×2=3475万元. ⑶有极大的实施价值. 25、.解:(1)图②中与△BCF 全等的有△GDF 、 △GAH 、△ECH .…………… 3分(2)11F D =1AH …………………………………………………………… 4分证明:∵⎪⎩⎪⎨⎧∠==∠=∠公共111130CH F CD CA D A∴△AF 1C ≌△D 1H 1C . ………………… 5分∴ F 1C = H 1C , 又CD 1=CA ,∴CD 1- F 1C =CA- H 1C .即111AH F D =………………………………… 6分(3)连结CG 1.在△D 1G 1F 1和△AG 1H 1中,∵111111111H AH F D AG F G D A D ⎪⎩⎪⎨⎧=∠=∠∠=∠,∴△D 1G 1F 1 ≌△AG 1H 1.C1∴G1F1=G1H1……………………………………7分又∵H1C=F1C,G1C=G1C,∴△CG1F1≌△CG1H1.∴∠1=∠2. ……………………………………8分∵∠B=60°,∠BCF=30°,∴∠BFC=90°.又∵∠DCE=90°,∴∠BFC=∠DCE,∴BA∥CE,∴∠1=∠3,∴∠2=∠3,∴G1I=CI…………………………………10分26、解:(1),……………(1分)…(2分)…(3分)(2)解:,AB是直径,, 连结GE,…(4分)解,得…(5分),,…(6分)设⊙P的半径为,P点的坐标为,…………………(7分)由题意可知,当时,不符合题意,所以.因为⊙P与直线AH相切,过点P作,垂足为点M,,…………………(8分)①当⊙P与⊙G内切时,∴………(10分)②当⊙P与⊙G外切,所以满足条件的P点有:,.…………………(12分)。
2014年学业水平考试模拟考试数学试题(含答案)第1卷(选择题共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.-6的绝对值是D.67如图,所给图形中是中心对称图形但不是轴对称图形的是3.直线口,6被直线c所截,的度数是A. 1290B. 510C. 490D. 4004.下列运算,正确的是A.3x2-2x2=1B.(2ab)2=2a2b2C.(a+b)2=a2+b2D. -2(a-l)=-2a+25.不等式的解集在数轴上表示正确的是6.己知点P(2,m)在直线y=x-n的函数图象上,则m+n的值为7.已知等腰三角形两边的长分别为4,9,则这个等腰三角形的周长为A. 13 B. 17 C. 22 D. 17或228.计算的结果为:9.一组数据:3,2,1,2,2的众数,中位数分别是A.2,1 B.2,2 C.3,l D.2,310.在Rt△ABC中,∠C=900, sinA=4/5,则 cosB的值等于11.下表为某公司200名职员年龄的人数分配表,其中36~42岁及50~56岁的人数因污损而无法看出.若36~42岁及50~56岁职员人数所占的百分比分别为a%、b%,则a+b的值A.10 B.45 C.55 D.9912.对于一次函数y=-2x+4,下列结论错误的是A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=-2x的图象D.函数的图象与x轴的交点坐标是(0.,4)13.如图,AB是点D是AC上一点,于点E,且CD=2,DE=1,则BC的长为14.如图,将一张边长为4的正三角形纸片剪成四个全等的小正三角形,得到4个小正三角形,然后将其中的一个三角形再剪成四个全等的小正三角形,得到7个小正三角形.根据以上操作,若得到2014个小正三角形时,则最小正三角形的面积等于15.如图,在平面直角坐标系中,A(1,0),B(3,0),C(O,-3),CB平分/ACP,则直线PC 的解析式为第II卷(非选择题共75分)16.分解因式:X2 +X=17.近期我国雾霾天气多发,PM2.5颗粒物被称为大气污染的元凶.PM2.5是指直径小于或等于2.5微米的颗粒物,已知l毫米=1000微米,用科学记数法表示2.5微米是____ 毫米.18.不等式组的解集是____19.如图,在的角平分线DE与BC交于点E.若BE=CE则∠DAE=____度.20.函数的图象的交点坐标为(口,6),则的值为21.如图所示,点P(m,n)为抛物线上的任意一点,以点P为圆心,1为半径作圆,当与x轴相交时,则m的取值范围为三、解答题(本大题共7个小题.共57分.解答应写出文字说明、证明过程或演算步骤.)22(1)(本小题满分3分)22(2)(本小题满分4分)解方程组:如图,四边形ABCD是平行四边形,点E、A、C、F在同一直线上,且AE=CF求证:BE=DF.23(2)(本小题满分4分)如图,在弦AB与半径OC相交于点D,AB=12,CD=2.24(本小题满分8分)某校为了创建书香校园,购进了一批科普书和文学书.其中科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等,则文学书有多少本?25.(本小题满分8分)小亮和小明对一个问题观点不一致,小亮认为:从2,-2,4,-4这四个数中任取两个不同的数分别作为点P(x,y)的横、纵坐标,则点P(x,y)落在反比例函数图象上的概率一定大于落在正比例函数y= -x图象上的概率,而小明认为两者的概率相同,你赞成谁的观点?说明你的理由,已知:AB为的直径,P为AB延长线上的任意一点,过点P作的切线,切点为C,∠APC的平分线PD与AC交于点D.(1)如图l,若∠CPA恰好等于300,求∠CDP的度数;(2)如图2,若点P位于(1)中不同的位置,(1)的结论是否仍然成立?说明你的理由,27.(本小题满分9分)己知一次函数y= -x +1与抛物线交于A(O,1),B两点,B点纵坐标为10,抛物线的顶点为C.(1)求b,c的值;(2)判断△ABC的形状并说明理由;(3)点D、E分别为线段AB、BC上任意一点,连接CD,取CD的中点,连接AF,EF.当四边形ADEF为平行四边形时,求平行四边形ADEF的周长,如图,等腰的直角边长为点D为斜边AB的中点,点P为AB上任意点,连接PC,以PC为直角边作等腰(1)求证:(2)请你判断AC与BD有什么位置关系?并说明理由.(3)当点P在线段AB上运动时,设AP=x,△PBD的面积为S,求S与x之间的函数关系式.。
深圳市2014年初中毕业生学业考试数学模拟试卷说明:1.试题卷共4页,答题卡共4页。
考试时间90分钟,满分100分。
2.请在答题卡上填涂学校.班级.姓名.考生号,不得在其它地方作任何标记。
3.本卷选择题1—12,每小题选出答案后,用2B 铅笔将答题卷选择题答题区内对应题目的答案标号涂黑;非选择题的答案(含作辅助线)必须用规定的笔,写在答题卷指定的答题区内,写在本卷或其他地方无效。
第一部分 选择题一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.9的算术平方根是( ) A .3 B .–3 C .±3 D .6 2.下列所给图形中,) 3.环境监测中PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如果1微米=0.000001米,那么数据0.0000025用科学记数法可以表示为( ) A .6105.2⨯ B .5105.2-⨯ C .6105.2-⨯ D .7105.2-⨯4.一组数据3,x ,4,5,8的平均数为5,则这组数据的众数、中位数分别是( ) A .4,5 B .5,5 C .5,6 D .5,85.某商场在“庆五一”促销中推出“1元换2.5倍”活动,小红妈妈买一件标价为600元的衣服,她实际需要付款( ) A .240元 B .280元 C .480元 D .540元 6.下列运算正确的是( )A .532532a a a =+B .236a a a =÷C .623)(a a =- D .222)(y x y x +=+ 7.下列命题中错误..的是( ) A .等腰三角形的两个底角相等 B .对角线互相垂直的四边形是菱形 C .矩形的对角线相等D .圆的切线垂直于过切点的直径8.已知两圆的半径是4和5,圆心距x 满足不等式组⎪⎩⎪⎨⎧+<-+>+23245252x x x x ,则两圆的 位置关系是( ) A .相交 B . 外切 C .内切 D . 外离9.如图1,在平面直角坐标系中,点P 在第一象限,⊙P与x 轴相切于点Q ,与y 轴交于M (0,2)、N (0,8)两 点,则点P 的坐标是( ) A .(5,3) B .(3,5) C .(5,4) D .(4,5)10.已知甲车行驶35千米与乙车行驶4515千米,设甲车的速度为x 千米/小时,依据题意列方程正确的是( )A .154535-=x x B .x x 451535=+ C .xx 451535=- D .154535+=x xA .B .C .D .11.已知:如图2,∠MON=45º,OA1=1,作正方形A1B1C1A2,面积记作S1;再作第二个正方形A2B2C2A3,面积记作S2;继续作第三个正方形A3B3C3A4,面积记作S3;点A1、A2、A3、A4……在射线ON上,点B1、B2、B3、B4……在射线OM上,……依此类推,则第6个正方形的面积S6是(A.256 B.900C.1024 D.409612.在课题学习后,同学们为教室窗户设计一个遮阳蓬,小明同学绘制的设计图如图3所示,其中,AB表示窗户,且AB=2.82米,△BCD表示直角遮阳蓬,已知当地一年中在午时的太阳光与水平线CD的最小夹角α为18°,最大夹角β为66°,根据以上数据,计算出遮阳蓬中CD的长是()(结果精确到0.1)(参考数据:sin18°≈0.31,tan18°≈0.32sin66°≈0.91,tan66°≈2.2)A.1.2 米B.1.5米C.1.9米D.2.5米第二部分非选择题二、填空题。
2014年初中毕业学业考试数学模拟试卷(时量:120分钟 满分100分)一、选择题:(每小题3分,满分24分) 1.16的平方根是( )A.4B.4±C. 8D.8± 2.下列运算正确的是( )A.235x x x += B.4)2(22-=-x x C.23522x x x ⋅=. D.()743x x =.3.若关于x 的不等式组的解在数轴上如图所示,则这个不等式组的解是( )A .x 2≤B .x 1>C .1x 2<≤D .1x 2<≤ 4.数据1,2,3,3,5,5,5的众数和中位数分别是( )A. 5,4B. 3,5C. 5,5D. 5,3 5.下列立体图形中,俯视图是正方形的是( )6.已知一次函数2y mx n =+-的图象如图所示,则m n 、的取值范围是( )A. m >0, n <2B. m >0, n >2C. m <0, n <2D. m <0, n >2 7.王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A 型血的人数是( )组别 A 型 B 型 C 型 O 型 频率0.40.350.10.15A .16人B .14人C .4人D .6人8.若将代数式中的任意两个字母交换,代数值不变,则称这个代数式为“完全对称式”,如c b a ++就是完全对称式,那么下列三个代数式中:①2)a b -(;②ab bc ca ++;③222a b b c c a ++;其中是完全对称式的是( )A.①②B.①③C.②③D.①②③二、填空题(每小题3分,满分24分)9.在平面直角坐标系xoy 中,点P(3-,5)关于y 轴的对称点的坐标为 。
10.地球半径约为6 400 000米,这个数用科学记数法表示为 。
11.已知m n 、是关于x 的一元二次方程230x x a -+=的两个解,若(1)(1)6m n --=-,则a 的值为 。
2014年初中学业水平考试模拟数学试卷(1)一、选择题(每小题3分,共24分) 1、2014-的值是( )A.20141 B.20141- C.2014 D.2014- 2、小明同学在“百度”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果的条数是61700000,这个数用科学记数法表示为( )A. 561710⨯B. 66.1710⨯C. 76.1710⨯D. 80.61710⨯ 3、如图,由几个相同的小正方体搭成的一个几何体,它的左视图为( )(第3题图) A B C D 4、函数y=x-32中自变量x 的取值范围是( )A. 633a a a ÷=B. 238()a a =C. 222()a b a b -=-D. 224a a a += 6则此男子排球队20名队员的身高的众数和中位数分别是( ) A .186cm ,186cm B .186cm ,187cm C .208cm ,188cm D .188cm ,187cm7、如图,在平面直角坐标系中,直线y =-3x +3与x 轴、y 轴分别交于A 、B 两点,以AB 为边在第一象限作正方形ABCD 沿x 轴负方向平移a 个单位长度后,点C 恰好落在双曲线上则a 的值是( ) A .1 B .2 C .3 D .48、如图,已知抛物线x x y 421+-=和直线x y 22=.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M = y 1=y 2. 下列判断: ①当x >2时,M =y 2; ②当x <0时,x 值越大,M 值越大; ③使得M 大于4的x 值不存在;④若M =2,则x = 1 .其中正确的有 ( ) A .1个 B .2个 C . 3个 D .4个二、填空题:(每小题3分,共24分)9、分解因式:2327x -= . 10、计算:= .11、由于H7N9禽流感的影响,在一个月内猪肉价格两次大幅下降.由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为x ,则根据题意可列方程为 . 12、如图,直线l 1∥l 2∥l 3,点A 、B 、C 分别在直线l 1、l 2、l 3上.若∠1=70°,∠2=50°,则∠ABC= 度.13、在一个不透明的盒子中装有n 个小球,它们只有颜色上的区别,其中有2个红球.每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球实验后发现,摸到红球的频率稳定于0.2,那么可以推算出n 大约是________.14、一圆锥的底面半径为1cm ,母线长2cm ,则该圆锥的侧面积为___________2cm . 15、如图AB 是⊙O 的直径,∠BAC=42°,点D 是弦AC 的中点,则∠DOC 的度数是 度.16、我们把按照一定顺序排列的一列数称为数列,如1,3,9,19,33,…就是一个数列,如果一个数列从第二个数起,每一个数与它前一个数的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做这个等差数列的公差.如2,4,6,8,10就是一个等差数列,它的公差为2.如果一个数列的后一个数与前一个数的差组成的新数列是等差数列,则称这个数列为二阶等差数列.例如数列1,3,9,19,33,…,它的后一个数与前一个数的差组成的新数列是2,6,10,14,…,这是一个公差为4的等差数列,所以,数列1,3,9,19,33,…是一个二阶等差数列.那么,请问二阶等差数列1,3,7,13,…的第五个数应是 _________ . 三、 解答题(本大题共9个小题,共72分) 17、(本小题6分)计算:1)41(45cos 22)31(-+︒--+- 18、(本小题6分)解方程:xx 332=- 19、(本题满分6分)先化简,后求值:224222aa a a a a +⎛⎫-÷ ⎪--⎝⎭,其中a = 3.20、(本题满分6分)如图所示,正方形网格中,ABC △为格点三角形(即三角形的顶点都在格点上). (1)把ABC △沿BA 方向平移后,点A 移到点1A ,在网格中画出平移后得到的11A B C 1△; (2)把11A B C 1△绕点1A 按逆时针方向旋转90°,在网格中画出旋转后的22A B C 1△; (3)如果网格中小正方形的边长为1,求点B 经过(1)、(2)变换的路径总长.21、(本小题8分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B 级:对学习较感兴趣;C 级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题: (1)此次抽样调查中,共调查了 名学生; (2)将图①补充完整;(3)求出图②中C 级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标(达标包括A 级和B 级)?22、(本小题8分) 如图,已知四边形ABDE 是平行四边形,C 为边B D 延长线上一点,连结AC 、CE ,使AB =AC . ⑴求证:△BAD ≌△AEC ;⑵若∠B =30°,∠ADC =45°,BD =10,求平行四边形ABDE 的面积.图① 图②23、(本小题10分)在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲。
2 014年学业水平数学试题模拟测试(一)一、单项选择题(每个选项中只有一个正确答案,请将正确答案的序号填入表格中。
每小题3分,共30分) 1、计算:32⋅a a 5a B . 6a C. 8aD. 9a 2、某种商品进价为800元,标价1200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打( )折。
A. 6折B. 7折C. 8折D. 9折3、 二次函数()213y x =--+图象的顶点坐标是A.()13-, B.()13,C.()13--,D.()13-,4、若不等式组⎩⎨⎧>-<+m x x x 148的解集是x >3,则m 的取值范围是A .m >3 B .m ≥3 C .m ≤3 D .m <35、正方形ABCD 中,E 、F 分别为AB 、BC 的中点,AF 与DE 相交于点O ,则AODO= A .13B .23 D .126、下列一组几何体的俯视图是7、下图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明从 中抽出一张,则抽到偶数的概率是A .13B .12C .34D .238、某班派9名同学参加拔河比赛,他们的体重分别是(单位:千克):67,59,61,59,63,57,70,59,65,这组数据的众数和中位数分别是A. 59,63 B. 59,61 C. 59,59D. 57,619、在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且 0m ≠)的图象可能..是CBOA图810、如图,正方形ABCD 的边长为2, 将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动。
若点Q 从点A 出发,沿图中所示按A →B →C →D →A 滑动到A 止,同时点R 从点B 出发,沿图中所示按B →C →D →A →B 滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为A .2 B .4-π C .π D .1π- 二、填空题(每题4分,共20分)11、因式分解:2288x x -+ = .12、国家体育场“鸟巢”建筑面积25.8万平方米,将25.8万平方米用科学记数法(保留2个有效数字),可以表示为 平方米.13、 如图8,AB 是半圆O 的直径,∠BAC =30°,BC 为半圆的切线,且BC=O 到AC 的距离是.14、将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n = (用含n 的代数式表示). 15、如图是抛物线c bx ax y ++=2的一部分,其对称轴为直线x =1,若其与x 轴一交点为B (3,0),则由图象可知,不等式c bx ax ++2>0的解集是三、解答题(共70分)16、(本题满分5分)计算:)2(2)(2006)2245---π+17、(本题满分5分)先化简,再求值:21(111a a a a --÷++,其中12a =.方法一 方法二18、(本题满分6分) 如图,阴影部分是由5个小正方形组成的一个直角图形,请用二种方法分别在下图方格内...添涂黑二个小正方形,使它们成为轴对称图形.19、(本题满分10分)甲、乙两人用如图所示的两个分格均匀的转盘做游戏:分别转动两个转盘,若转盘停止后,指针指向一个数字(若指针恰好停在分格线上,则重转一次),用所指的两个数字作乘积,如果积大于10,那么甲获胜;如果积不大于10,那么乙获胜.请你解决下列问题: (1)利用树状图(或列表)的方法表示游戏所有可能出现的结果; (2)求甲、乙两人获胜的概率.20、(本题满分10分)亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M ,颖颖的头顶B 及亮亮的眼睛A 恰在一条直线上时,两人分别标定自己的位置C ,D .然后测出两人之间的距离 1.25m CD =,颖颖与楼之间的距离30m DN =(C ,D ,N 在一条直线上),颖颖的身高 1.6m BD =,亮亮蹲地观测时眼睛到地面的距离0.8m AC =.你能根据以上测量数据帮助他们求出住宅楼的高度吗?MNB A CD 第20题图21、(本题满分10分)已知:如图,ABC △内接于⊙O ,点D 在OC 的延长线上,1sin 2B =,30CAD ∠=. (1)求证:AD 是⊙O 的切线;(2)若OD AB ⊥,5BC =,求AD 的长.22、(本题满分12分)如图所示,正方形网格中,ABC △为格点三角形(即三角形的顶点都在格点上). (1)把ABC △沿BA 方向平移后,点A 移到点1A ,在网格中画出平移后得到的11A B C 1△; (2)把11A B C 1△绕点1A 按逆时针方向旋转90°,在网格中画出旋转后的22A B C 1△; (3)如果网格中小正方形的边长为1,求点B 经过(1)、(2)变换的路径总长.23、(本题满分12分) 阅读材料:如图26-①,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部的线段的长度叫△ABC 的“铅垂高”(h ).我们可得出一种计算三角形面积的新方法:ah S ABC 21=∆,即三角形面积等于水平宽与铅垂高乘积的一半. 解答下列问题:如图26-②,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式;(2)求CAB ∆的铅垂高CD 及CAB S ∆;(3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P,使Cy BD 1(图26-①)98PAB CAB S S ∆∆=,若存在,求出P 点的坐标;若不存在,请说明理由2010年学业水平数学模拟测试(一)一、选择题1.A2.C3.B4.C5. D6.B7.C8. B9. D 10. B 二、填空题11. 22(2)x - 12. 5106.2⨯ 13.3 14.13+n ; 15.x <-1或x >3三、解答题16.解:原式41342=-+--21=-1= 17.原式=11a -, 122a =-将代入得 18(略).19.解:(1)树状图法或列表法:(注:学生只用一种方法即可)(2)()()1233P P ==甲乙,.20.解:过A 作CN 的平行线交BD 于E ,交MN 于F . 由已知可得0.8m FN ED AC ===,1.25m AE CD ==,30m EF DN ==,90AEB AFM ==∠∠.又BAE MAF =∠∠,ABE AMF ∴△∽△.BE AE MF AF ∴=. 即1.60.8 1.251.2530MF -=+. 解得()20m MF =.()200.820.8m M N M F F N ∴=+=+=.所以住宅楼高为20.8m .21.解:(1)证明:如图,连结OA . 因为1sin 2B =, 所以30B ∠=. 故60O ∠=. 又OA OC =,所以ACO △是等边三角形. 故60OAC ∠=.因为30CAD ∠=, 所以90OAD ∠=. 所以AD 是⊙O 的切线.(2)解:因为OD AB ⊥, 所以OC 垂直平分AB .则5AC BC ==.所以5OA =. 在OAD △中,90OAD ∠=,由正切定义,有tan ADAOD OA∠=. 所以AD =⨯1 2 3 4 4 8 12 551015AB MFE C DN开始 4 5141424284312⨯=⨯=⨯=,,,3 1515252105315⨯=⨯=⨯=,,, 322.解:(1)画图正确. (2)画图正确. (3)1BB ==弧12B B的长901802==. 点B所走的路径总长2=. 23.解:(1)设抛物线的解析式为:4)1(21+-=x a y 把A (3,0)代入解析式求得1-=a 所以324)1(221++-=+--=x x x y 设直线AB 的解析式为:b kx y +=2 由3221++-=x x y 求得B 点的坐标为(03),把(30)A ,,(03)B ,代入b kx y +=2中 解得:13k b =-=,所以32+-=x y(2)因为C 点坐标为(1,4)所以当x =1时,y 1=4,y 2=2 所以CD =4-2=2 13232CAB S =⨯⨯=△(平方单位) (3)假设存在符合条件的点P ,设P 点的横坐标为x ()30<<x ,△PAB 的铅垂高为h ,则x x x x x y y h 3)3()32(2221+-=+--++-=-=由S △PAB =89S △CAB 得:389)3(3212⨯=+-⨯⨯x x 化简得:091242=+-x x 解得,23=x 将23=x 代入3221++-=x x y 中,解得P 点坐标为315()24,。
2014年初中学业水平考试模拟数学试卷(1)一、选择题(每小题3分,共24分) 1、2014-的值是( )A.20141 B.20141- C.2014 D.2014- 2、小明同学在“百度”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果的条数是61700000,这个数用科学记数法表示为( )A. 561710⨯B. 66.1710⨯C. 76.1710⨯D. 80.61710⨯ 3、如图,由几个相同的小正方体搭成的一个几何体,它的左视图为( )(第3题图) A B C D 4、函数y=x-32中自变量x 的取值范围是( )A. 633a a a ÷=B. 238()a a =C. 222()a b a b -=-D. 224a a a += 6则此男子排球队20名队员的身高的众数和中位数分别是( ) A .186cm ,186cm B .186cm ,187cm C .208cm ,188cm D .188cm ,187cm7、如图,在平面直角坐标系中,直线y =-3x +3与x 轴、y 轴分别交于A 、B 两点,以AB 为边在第一象限作正方形ABCD 沿x 轴负方向平移a 个单位长度后,点C 恰好落在双曲线上则a 的值是( ) A .1 B .2 C .3 D .48、如图,已知抛物线x x y 421+-=和直线x y 22=.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M = y 1=y 2. 下列判断: ①当x >2时,M =y 2; ②当x <0时,x 值越大,M 值越大; ③使得M 大于4的x 值不存在;④若M =2,则x = 1 .其中正确的有 ( ) A .1个 B .2个 C . 3个 D .4个二、填空题:(每小题3分,共24分)9、分解因式:2327x -= . 10、计算:= .11、由于H7N9禽流感的影响,在一个月内猪肉价格两次大幅下降.由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为x ,则根据题意可列方程为 . 12、如图,直线l 1∥l 2∥l 3,点A 、B 、C 分别在直线l 1、l 2、l 3上.若∠1=70°,∠2=50°,则∠ABC= 度.13、在一个不透明的盒子中装有n 个小球,它们只有颜色上的区别,其中有2个红球.每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球实验后发现,摸到红球的频率稳定于0.2,那么可以推算出n 大约是________.14、一圆锥的底面半径为1cm ,母线长2cm ,则该圆锥的侧面积为___________2cm . 15、如图AB 是⊙O 的直径,∠BAC=42°,点D 是弦AC 的中点,则∠DOC 的度数是 度.16、我们把按照一定顺序排列的一列数称为数列,如1,3,9,19,33,…就是一个数列,如果一个数列从第二个数起,每一个数与它前一个数的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做这个等差数列的公差.如2,4,6,8,10就是一个等差数列,它的公差为2.如果一个数列的后一个数与前一个数的差组成的新数列是等差数列,则称这个数列为二阶等差数列.例如数列1,3,9,19,33,…,它的后一个数与前一个数的差组成的新数列是2,6,10,14,…,这是一个公差为4的等差数列,所以,数列1,3,9,19,33,…是一个二阶等差数列.那么,请问二阶等差数列1,3,7,13,…的第五个数应是 _________ . 三、 解答题(本大题共9个小题,共72分) 17、(本小题6分)计算:1)41(45cos 22)31(-+︒--+- 18、(本小题6分)解方程:xx 332=- 19、(本题满分6分)先化简,后求值:224222aa a a a a +⎛⎫-÷ ⎪--⎝⎭,其中a = 3. 20、(本题满分6分)如图所示,正方形网格中,ABC △为格点三角形(即三角形的顶点都在格点上).(1)把ABC △沿BA 方向平移后,点A 移到点1A ,在网格中画出平移后得到的11A B C 1△;(2)把11A B C 1△绕点1A 按逆时针方向旋转90°,在网格中画出旋转后的22A B C 1△; (3)如果网格中小正方形的边长为1,求点B 经过(1)、(2)变换的路径总长.21、(本小题8分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B 级:对学习较感兴趣;C 级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题: (1)此次抽样调查中,共调查了 名学生; (2)将图①补充完整;(3)求出图②中C 级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标(达标包括A 级和B 级)?22、(本小题8分) 如图,已知四边形ABDE 是平行四边形,C 为边B D 延长线上一点,连结AC 、CE ,使AB =AC . ⑴求证:△BAD ≌△AEC ;⑵若∠B =30°,∠ADC =45°,BD =10,求平行四边形ABDE 的面积.23、(本小题10分)图① 图②在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲。
经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y (件)与销售价格x (元/件)满足一个以x 为自变量的一次函数。
(1)求y 与x 满足的函数关系式(不要求写出x 的取值范围);(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P 最大?24、(本小题10分) 已知:如图,AB 为⊙O 的直径,AB ⊥AC ,BC 交⊙O 于D ,E 是AC 的中点,ED 与AB 的延长线相交于点F. (1)求证:DE 为⊙O 的切线. (2)求证:AB ︰AC=BF ︰DF. 25.(本题满分12分)已知二次函数21342y x x =-+的图象如图. (1)求它的对称轴与x 轴交点D 的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x 轴,y 轴的交点分别为A 、B 、C 三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M ,以AB 为直径,D 为圆心作⊙D ,试判断直线CM与⊙D 的位置关系,并说明理由.参考答案及评分标准一、选择题(每小题3分,共24分)1、C2、C3、A4、B5、A6、B7、B8、C 二、填空题:(每小题3分,共24分)9、3(3+x )(3-x ) 10、2 11、9)1(162=+x 12、10 13、12014、2∏15、4816、2117、(本小题6分)解:原式=1+2-222⨯+4=5 18.(本题满分6分)解:方程两边同乘以()3-x x ,得()332-=x x 解得9=x .经检验, 9=x 是原方程的解. 19、(本题满分6分) 解:24)22a a a a ---(÷2242(2)a a a a a a ⎡⎤+=-⎢⎥--⎣⎦÷22a a + 2242÷(2)a a a a a -+=- …………2分2(2)(2)2÷(2)a a a a a a +-+=-=222÷a a a a++=22·2a a a a ++ =a …………5分∴当a=3时,原式=3 …………6分 20、(本题满分6分)(1)作图略…………2分 (2)作图略…………4分 (3)点B所走的路径总长2=………6分 21.(本小题8分)(1)200;………………2分 (2)2001205030--=(人).画图正确. ………………4分(3)C 所占圆心角度数360(125%60%)54=⨯--=°°. ………………6分(4)20000(25%60%)17000⨯+=.∴估计该市初中生中大约有17000名学生学习态度达标.………………8分 22.(本题满分8分)(1)证明:∵AB =AC ,∴∠B =∠ACB .又 ∵四边形ABDE 是平行四边形 ∴AE ∥BD , AE =BD ,∴∠ACB =∠CAE =∠B ,∴⊿DBA ≌⊿AEC (SAS ) ………………3分 (2)过A 作AG ⊥BC ,垂足为G .设AG =x ,在Rt △AGD 中,∵∠ADC =450,∴AG =DG =x ,在Rt △AGB 中,∵∠B =300,∴BG =x 3,………………5分又∵BD =10.∴BG -DG =BD ,即103=-x x ,解得AG =x =5351310+=-.…………………7分∴S平行四边形ABDE=BD ·AG =10×(535+)=50350+.………………8分23.(本题满分10分)解:(1)设y 与x 满足的函数关系式为:y kx b =+. …………… 1分由题意可得:36242129.k b k b =+⎧⎨=+⎩,…………… 2分解得3108.k b =-⎧⎨=⎩,…………… 3分∴y 与x 的函数关系式为:3108y x =-+. …………… 4分 (2)每天获得的利润为:(3108)(20)P x x =-+- …………… 6分 231682160x x =-+-23(28)192x =--+. ……………8分 ∴当销售价定为28元时,每天获得的利润最大. ……………10分24.(本题满分10分) (1)证明:连结DO 、DA∵AB 为⊙O 直径 ∴∠CDA=∠BDA=90° ∵CE=EA ∴DE=EA ∴∠1=∠4 ∵OD=OA ∴∠2=∠3∵∠4+∠3=90° ∴∠1+∠2=90° 即:∠EDO=90°∴DE 为⊙O 的切线 …………4分 (2)∵∠3+∠DBA=90°∠3+∠4=90°∴∠4=∠DBA∵∠CDA=∠BDA=90° ∴△ABD ∽△CAD∴AC AB =ADBD………6分 ∵∠FDB+∠BDO=90° ∠DBO+∠3=90°又∵OD=OB ∴∠BDO=∠DBO ∴∠3=∠FDB ∵∠F=∠F ∴△FAD ∽△FDB∴AD BD =DFBF………9分 即:AB :AC=BF:DF ………10分 26.(本题满分12分)解: (1)由21342y x x =-+得 32bx a=-= …………1分 ∴D(3,0)…………2分(2)方法一:如图1, 设平移后的抛物线的解析式为21342y x x k =-++ …………3分则C (0,)k OC=k令0y = 即 213042x x k -++=得 13x =23x =…………4分∴A (3,B (3∴22331636AB k =-=+………5分222222(3(3AC BC k k +=+++22836k k =++……………………6分∵222AC BC AB += 即: 228361636k k k ++=+得 14k = 20k =(舍去) ……………7分∴抛物线的解析式为213442y x x =-++ ……………8分方法二:∵ 21342y x x =-+∴顶点坐标93,4⎛⎫⎪⎝⎭设抛物线向上平移h 个单位则得到()0,C h ,顶点坐标93,4M h ⎛⎫+ ⎪⎝⎭……………………3分∴平移后的抛物线: ()219344y x h =--++……………………4分 当0y =时, ()2193044x h --++=13x =13x =∴ A (3 B (3 ……………………5分 ∵∠ACB=90° ∴△AOC ∽△COB ∴2OC =OA ·OB ……………………6分)233h =解得 14h =,()20h =舍去 …………7分 ∴平移后的抛物线: ()()22191253434444y x x =--++=--+…………8分 (3)方法一:如图2, 由抛物线的解析式213442y x x =-++可得A(-2 ,0),B(8,0) ,C(4,0) ,M 25(3,)4…………9分 过C 、M 作直线,连结CD ,过M 作MH 垂直y 轴于H则3MH =∴2225625()416DM == 22222252253(4)416CM MH CH =+=+-=在Rt △COD 中5=AD∴点C 在⊙D 上 …………………10分 ∵2225625()416DM == 2222225256255()16416CD CM +=+== ……11分∴222DM CM CD =+∴△CDM 是直角三角形,∴CD ⊥CM ∴直线CM 与⊙D 相切 …………12分 方法二:如图3, 由抛物线的解析式可得 A(-2 ,0),B(8,0) ,C(4,0) ,M 25(3,)4…………9分 作直线CM,过D 作DE ⊥CM 于E, 过M 作MH 垂直y 轴于H则3MH =, 254DM =由勾股定理得154CM =∵DM ∥OC ∴∠MCH=∠EMD∴Rt △CMH ∽Rt △DME …………10分 ∴DE MDMH CM= 得 5DE = …………11分 由(2)知10AB = ∴⊙D 的半径为5∴直线CM 与⊙D 相切 …………12分。