ansys结构分析单元类型总结
- 格式:doc
- 大小:40.50 KB
- 文档页数:4
ANSYS结构单元类型主要是用来模拟各种材料和结构的动力学行为,以下是一些常见
的ANSYS结构单元类型:
1.杆单元:如LINK1,主要用于模拟桁架结构和弹簧。
2.梁单元:如BEAM3和BEAM4,主要用于模拟框架结构和薄壁管件。
3.管单元:如PIPE16和PIPE17,主要用于模拟管道和T形管。
4.壳单元:如SHELL181,用于模拟壳结构和接触行为。
5.实体单元:如SOLID185,用于模拟三维实体结构。
除此之外,ANSYS还提供了其他一些特殊单元类型,例如接触单元(CONTAC52)等,用于模拟特定的结构或物理现象。
需要注意的是,不同的结构单元类型具有不同的自由度和适用范围,选择合适的结构
单元类型是进行有限元分析的关键步骤之一。
ANSYS软件中常用的单元类型一、单元(1)link(杆)系列:link1(2D)和link8(3D)用来模拟珩架,注意一根杆划一个单元。
link10用来模拟拉索,注意要加初应变,一根索可多分单元。
link180是link10的加强版,一般用来模拟拉索。
(2)beam(梁)系列:beam3(2D)和beam4(3D)是经典欧拉梁单元,用来模拟框架中的梁柱,画弯据图用etab 读入smisc数据然后用plls命令。
注意:虽然一根梁只划一个单元在单元两端也能得到正确的弯矩图,但是要得到和结构力学书上的弯据图差不多的结果还需多分几段。
该单元需要手工在实常数中输入Iyy和Izz,注意方向。
beam44适合模拟薄壁的钢结构构件或者变截面的构件,可用"/eshape,1"显示单元形状。
beam188和beam189号称超级梁单元,基于铁木辛科梁理论,有诸多优点:考虑剪切变形的影响,截面可设置多种材料,可用"/eshape,1"显示形状,截面惯性矩不用自己计算而只需输入截面特征,可以考虑扭转效应,可以变截面(8.0以后),可以方便地把两个单元连接处变成铰接(8.0以后,用ENDRELEASE命令)。
缺点是:8.0版本之前beam188用的是一次形函数,其精度远低于beam4等单元,一根梁必须多分几个单元。
8.0之后可设置“KEYOPT(3)=2”变成二次形函数,解决了这个问题。
可见188单元已经很完善,建议使用。
beam189与beam188的区别是有3个结点,8.0版之前比beam188精度高,但因此建模较麻烦,8.0版之后已无优势。
(3)shell(板壳)系列shell41一般用来模拟膜。
shell63可针对一般的板壳,注意仅限弹性分析。
它的塑性版本是shell43。
加强版是shell181(注意18*系列单元都是ansys后开发的单元,考虑了以前单元的优点和缺陷,因而更完善),优点是:能实现shell41、shell63、shell43...的所有功能并比它们做的更好,偏置中点很方便(比如模拟梁板结构时常要把板中面望上偏置),可以分层,等等。
ansys单元类型种类统计单元名称种类单元号LINK (共12种) 1,8,10,11,31,32,33,34,68,160,167,180PLANE (共20种)2,13,25,35,42,53,55,67,75,77,78,82,83,121,145,146,162,182,183,223 BEAM (共09种)3,4,23,24,44,54,161,188,189SOLID (共30种)5,45,46,62,64,65,69,70,87,90,92,95,96,97,98,117,122,123,127,128,147,148,164,168, 185,186,187,191,226,227COMBIN (共05种)7,14,37,39,40INFIN (共04种)9,47,110,111CONTAC (共05种)12,26,48,49,52PIPE (共06种)16,17,18,20,59,60MASS (共03种)21,71,166MATRIX (共02种)27,50SHELL (共19种)28,41,43,51,57,61,63,91,93,99,131,132,143,150,157,163,181,208,209 FLUID (共14种)29,30,38,79,80,81,116,129,130,136,138,139,141,142SOURC (共01种)36HYPER (共06种)56,58,74,84,86,158VISCO (共05种)88,89,106,107,108CIRCU (共03种)94,124,125TRANS (共02种)109,126INTER (共05种)115,192,193,194,195HF (共03种)118,119,120ROM (共01种)144SURF (共04种)151,152,153,154COMBI (共01种)165TARGE (共02种)169,170CONTA (共06种)171,172,173,174,175,178PRETS (共01种)179MPC (共01种)184MESH (共01种)20ANSYS分析结构静力学中常用的单元类型一、单元类型选择概述:ANSYS的单元库提供了100多种单元类型,单元类型选择的工作就是将单元的选择范围缩小到少数几个单元上;单元类型选择方法:1.设定物理场过滤菜单,将单元全集缩小到该物理场涉及的单元;二、单元类型选择方法(续一)2.根据模型的几何形状选定单元的大类,如线性结构则只能用“Plane、Shell”这种单元去模拟;3.根据模型结构的空间维数细化单元的类别,如确定为“Beam”单元大类之后,在对话框的右栏中,有2D和3D的单元分类,则根据结构的维数继续缩小单元类型选择的范围;三、单元类型选择方法(续二)4.确定单元的大类之后,又是也可以根据单元的阶次来细分单元的小类,如确定为“Solid-Quad”,此时有四种单元类型:Quad 4node 42 Quad 4node 183 Quad 8node 82 Quad 8node 183 前两组即为低阶单元,后两组为高阶单元;四、单元类型选择方法(续三)5.根据单元的形状细分单元的小类,如对三维实体,此时则可以根据单元形状是“六面体”还是“四面体”,确定单元类型为“Brick”还是“Tet”;五、单元类型选择方法(续四)6.根据分析问题的性质选择单元类型,如确定为2D的Beam单元后,此时有三种单元类型可供选择,如下:2D elastic 3 2Dplastic 23 2D tapered 54,根据分析问题是弹性还是塑性确定为“Beam3”或“Beam4”,若是变截面的非对称的问题则用“Beam54”。
一、概述在有限元分析中,选择合适的单元类型对于模拟结果的准确性和可靠性至关重要。
在ANSYS软件中,三角形和四边形单元是常用的两种单元类型,它们在不同的工程问题中具有各自的特点和适用范围。
本文将对ANSYS中的三角形和四边形单元进行介绍和分析,以期帮助工程师和研究人员在实际工程中做出正确的选择。
二、三角形单元的特点和适用范围1. 三角形单元是由三个节点和三个自由度构成的平面单元,适用于对称轴或面对称加载条件的问题。
它具有较好的形状适应性,可以适应复杂的几何形状。
2. 三角形单元适用于轻负载和小变形条件下的结构分析,例如弹性力学问题和轻负载的非线性分析。
3. 由于三角形单元仅有三个节点,所以对于边界条件和加载较复杂的问题,可能需要引入大量的单元来进行建模,从而增加了计算量和求解时间。
4. 三角形单元在非线性分析和大变形条件下的模拟效果较差,容易产生“锯齿”效应和收敛性问题。
三、四边形单元的特点和适用范围1. 四边形单元是由四个节点和四个自由度构成的平面单元,适用于矩形和正交结构的问题。
它具有简单的几何形状和稳定的性能。
2. 四边形单元适用于大变形和非线性条件下的结构分析,例如接触问题、塑性问题和大变形的非线性弹性力学问题。
3. 四边形单元相对于三角形单元具有更好的计算稳定性和收敛性,适用于对称和非对称加载条件的问题。
4. 由于四边形单元具有较好的几何适应性和稳定性,所以在建模过程中可以减少单元数量,从而降低了计算量和求解时间。
5. 在一些规则的结构问题中,四边形单元可能出现局部变形的问题,需要适当处理。
四、结论和建议在实际工程中,选择合适的单元类型是非常重要的。
根据上述分析,对于对称轴或面对称加载条件的问题可以选择三角形单元,而对于大变形和非线性条件下的问题可以选择四边形单元。
根据实际的工程需求和计算资源,也可以选择合适的单元类型,进行合理的建模和分析。
希望本文能够为工程师和研究人员在使用ANSYS软件进行有限元分析时提供一定的参考和帮助,使得模拟结果更加准确和可靠。
ANSYS 理论基础一、钢筋混凝土模型1、Solid65单元——模拟混凝土和岩石等抗压能力远大于抗拉能力的非均匀材料开发的单元,可以模拟混凝土中的加强钢筋(或玻璃纤维、型钢等);普通8节点三维等参元,增加针对混凝土材料参数和整体式钢筋模型;基本属性:——可以定义3种不同的加固材料;——混凝土具有开裂、压碎、塑性变形和蠕变的能力;—-加强材料只能受拉压,不能承受剪切力。
三种模型:分离式模型——把混凝土和钢筋作为不同的单元来处理,各自划分单元,或钢筋视为线单元(杆件link-spar8或管件pipe16,20);钢筋和混凝土之间可以插入粘结单元来模拟界面的粘结和滑移;整体式模型——将钢筋分布于整个单元中,假定混凝土和钢筋粘结很好,并把单元视为连续均匀材料;组合式模型—-分层组合式:在横截面上分成许多混凝土层和若干钢筋层,并对截面的应变作出某些假设(如应变沿截面高度为直线);或采用带钢筋膜的等参单元。
2、本构模型线性弹性、非线性弹性、弹塑性等;强度理论——Tresca、V on Mises、Druck —Prager等;3、破坏准则单轴破坏(Hongnested等)、双轴破坏(修正的莫尔库仑等)、三轴破坏(最大剪应力、Druck—Prager等),三参数、五参数模型;混凝土开裂前,采用Druck—Prager屈服面模型模拟塑性行为;开裂失效准则,采用William-Warnke五参数强度模型.4、基本数据输入混凝土:ShrCf-Op—张开裂缝的剪切传递系数,0~1ShrCf—Ol—闭合裂缝的剪切传递系数,0。
9~1UnTensSt—抗拉强度,UnCompSt—单轴抗压强度,(若取-1,则以下不必要)BiCompSt—双轴抗压强度,HydroPrs—静水压力,BiCompSt—静水压力下的双轴抗压强度,UnCompSt-静水压力下的单轴抗压强度,TenCrFac—拉应力衰减因子。
加固材料(材料号、体积率、方向角)二、其他材料模型在Ansys中,可在Help菜单中查阅各种不同单元的特性.例1、矩形截面钢筋混凝土板在中心点处作用-2mm的位移,分析板的受力、变形、开裂(采用整体模型分析法).材料性能如下:1、混凝土弹性模量E=24GPa,泊松比ν=0。
ANSYS结构分析指南(上)第一章结构分析概述1.1 结构分析定义结构分析是有限元分析方法最常用的一个应用领域。
结构这个术语是一个广义的概念,它包括土木工程结构如桥梁和建筑物,汽车结构如车身骨架,海洋结构如船舶结构,航空结构如飞机机身,还包括机械零部件如活塞、传动轴等。
1.2 结构分析的类型在 ANSYS 产品家族中有七种结构分析的类型。
结构分析中计算得出的基本未知量(节点自由度)是位移。
其他的一些未知量,如应变、应力和反力可通过节点位移导出。
包含结构分析功能的ANSYS产品有:ANSYS/Multiphysics,ANSYS/Mechanical, ANSYS/S tructural和ANSYS/Professional。
下面简单列出了这七种类型的结构分析:静力分析--用于求解静力载荷作用下结构的位移和应力等。
包括线性和非线性分析。
非线性分析涉及塑性、应力刚化、大变形、大应变、超弹性、接触面和蠕变等。
模态分析--用于计算结构的固有频率和模态。
提供了不同的模态提取方法。
谐波分析--用于确定结构在随时间正弦变化的载荷作用下的响应。
瞬态动力分析--用于计算结构在随时间任意变化的载荷作用下的响应,并且可计及上述静力分析中提到的所有的非线性特性。
谱分析--是模态分析的扩展,用于计算由于响应谱或 PSD 输入(随机振动)引起的应力和应变。
屈曲分析--用于计算曲屈载荷和确定曲屈模态。
ANSYS 可进行线性(特征值)屈曲和非线性曲屈分析。
显式动力分析--ANSYS/LS-DYNA 可用于计算高度非线性动力学问题和复杂的接触问题。
此外,除前面提到的七种分析类型外,还可以进行如下的特殊分析:断裂力学复合材料疲劳分析p-Method梁分析1.3 结构分析所使用的单元从简单的杆单元和梁单元,一直到较为复杂的层合壳单元和大应变实体单元,绝大多数的 ANSYS 单元类型都可用于结构分析。
注意--显式动力分析只能采用显式动力单元(LINK160、BEAM161、PLANE162、SHELL163、SOLID164、COMBI165、MASS166、LINK167)。
ansys单元类型种类统计单元名称种类单元号LINK (共12种) 1,8,10,11,31,32,33,34,68,160,167,180PLANE (共20种)2,13,25,35,42,53,55,67,75,77,78,82,83,121,145,146,162,182,183,223 BEAM (共09种)3,4,23,24,44,54,161,188,189SOLID (共30种)5,45,46,62,64,65,69,70,87,90,92,95,96,97,98,117,122,123,127,128,147,148,164,168, 185,186,187,191,226,227COMBIN (共05种)7,14,37,39,40INFIN (共04种)9,47,110,111CONTAC (共05种)12,26,48,49,52PIPE (共06种)16,17,18,20,59,60MASS (共03种)21,71,166MATRIX (共02种)27,50SHELL (共19种)28,41,43,51,57,61,63,91,93,99,131,132,143,150,157,163,181,208,209 FLUID (共14种)29,30,38,79,80,81,116,129,130,136,138,139,141,142SOURC (共01种)36HYPER (共06种)56,58,74,84,86,158VISCO (共05种)88,89,106,107,108CIRCU (共03种)94,124,125TRANS (共02种)109,126INTER (共05种)115,192,193,194,195HF (共03种)118,119,120ROM (共01种)144SURF (共04种)151,152,153,154COMBI (共01种)165TARGE (共02种)169,170CONTA (共06种)171,172,173,174,175,178PRETS (共01种)179MPC (共01种)184MESH (共01种)20ANSYS分析结构静力学中常用的单元类型一、单元类型选择概述:ANSYS的单元库提供了100多种单元类型,单元类型选择的工作就是将单元的选择范围缩小到少数几个单元上;单元类型选择方法:1.设定物理场过滤菜单,将单元全集缩小到该物理场涉及的单元;二、单元类型选择方法(续一)2.根据模型的几何形状选定单元的大类,如线性结构则只能用“Plane、Shell”这种单元去模拟;3.根据模型结构的空间维数细化单元的类别,如确定为“Beam”单元大类之后,在对话框的右栏中,有2D和3D的单元分类,则根据结构的维数继续缩小单元类型选择的范围;三、单元类型选择方法(续二)4.确定单元的大类之后,又是也可以根据单元的阶次来细分单元的小类,如确定为“Solid-Quad”,此时有四种单元类型:Quad 4node 42 Quad 4node 183 Quad 8node 82 Quad 8node 183 前两组即为低阶单元,后两组为高阶单元;四、单元类型选择方法(续三)5.根据单元的形状细分单元的小类,如对三维实体,此时则可以根据单元形状是“六面体”还是“四面体”,确定单元类型为“Brick”还是“Tet”;五、单元类型选择方法(续四)6.根据分析问题的性质选择单元类型,如确定为2D的Beam单元后,此时有三种单元类型可供选择,如下:2D elastic 3 2Dplastic 23 2D tapered 54,根据分析问题是弹性还是塑性确定为“Beam3”或“Beam4”,若是变截面的非对称的问题则用“Beam54”。
单元特性在单元特性列表中给出了单元的附加分析能力,如应力刚化、大变形、塑性、蠕变、膨胀、单元生死等,绝大多数特性使单元为非线性且需要迭代求解。
KEYOPTS可在ET命令的6个顺序位置输入KEYOPTS的值,也可以用命令KEYOPT 单独输入,但KEYOPT(7)机器以上的值必须采用命令KEYOPT输入。
节点解节点解包括自由度解与约束节点的反力解。
单元解单元解主要指面载荷、质心解、表面解、积分点解、单元节点解、单元节点载荷、非线性解、平面和轴对称解、杆件力解等及其结果项。
绝大多数单元用两个表格分别描述输出结果和获取这些结果的方式,即单元输出说明表、单元ETABLE和ESOL的表项和序号。
单元输出说明表描述了单元可能的结果,并给出了哪些结果在打印输出(O 栏)中有效,哪些结果项在结果文件(R栏)中有效等。
单元ETABLE和ESOL 的表项和序号表描述了命令ETABLE和ESOL中的表项和结果对应号。
表项SMISC(Summable Miscellaneous)和NMISC(Nonsummable Miscellaneous)分别表示可求和杂项与不可求和杂项。
单元节点解是指每个单元节点上的结果数据,是一种导出结果,通常是利用单元的积分点结果外推到节点上,单元节点解的输出通常位于单元坐标系下。
在/POST1中,用命令PLNSOL绘制所选择单元和节点的节点应力时,应力的连续云图穿过单元边界,云图采用单元节点解线性内插得到,而所显示的某个节点的某项结果取与该节点相连的所有单元的单元节点解中该节点的某项结果的平均值,因此PLNSOL虽然绘制的是节点的某项结果,但实际是通过单元节点解计算得到的。
平面和轴对成解:2D实体分析基于“单位厚度计算”,其结果也多基于单位厚度给出。
当然,大多数2D实体单元也可设置“厚度”。
2D轴对称实体分析基于360度计算,其结果也多基于360度给出。
特别是对于轴对称结构分析,,合力是指360度模型的合力,而X、Y、Z和XY分别对应径向、轴向、周向和平面内,总体坐标系的Y轴必须是对称轴,且应该在X轴的正象限建立结构模型。
LINK1可承受单轴拉压的单元,不能承受弯矩作用PLANE22维6节点三角形实体结构单元,可用作平面单元(平面应力或平面应变),也可以用作轴对称单元Beam3可承受拉、压、弯作用的单轴单元,每个节点有三个自由度,即沿x,y 方向的线位移及绕Z轴的角位移Beam4承受拉、压、弯、扭的单轴受力单元,每个节点上有六个自由度:x、y、z三个方向的线位移和绕x,y,z三个轴的角位移SOLID5三维耦合场体单元,8个节点,每个节点最多有6个自由度LINK8三维杆(或桁架)单元,用来模拟:桁架、缆索、连杆、弹簧等等,是杆轴方向的拉压单元,每个节点具有三个自由度:沿节点坐标系X、Y、Z方向的平动PLANE13 2 维耦合场实体单元,有 4 个节点,每个节点最多有 4 个自由度PLANE25 4 节点轴对称谐波结构单元,用于承受非轴对称载荷2 维轴对称结构的建模LINK32二维热传导杆单元,应用在二维(板或轴对称)稳态或瞬态热分析PLANE35 2 维 6 节点三角形热实体单元,用作平面单元或轴对称单元PLANE42 2 维实体结构单元,作平面单元(平面应力或平面应变),也可以用作轴对称单元。
本单元有 4 个节点,每个节点有 2 个自由度,分别为 x 和y 方向的平移Shell43 4 节点塑性大应变单元,适合模拟线性、弯曲及适当厚度的壳体结构。
单元中每个节点具有六个自由度:沿x、y和z 方向的平动自由度以及绕x、y和z 轴的转动自由度PLANE53 2 维 8 节点磁实体单元,用于 2 维 (平面和轴对称) 磁场问题的建模PLANE55 2 维 4 节点热实体单元,作为平面单元或轴对称环单元,用于 2 维热传导分析。
本单元有 4 个节点,每个节点只有一个自由度 – 温度Shell63弹性壳单元,具有弯曲能力和又具有膜力,可以承受平面内荷载和法向荷载。
本单元每个节点具有6个自由度:沿节点坐标系X、Y、Z方向的平动和沿节点坐标系X、Y、Z轴的转动SOLID64 3-D 各向异性结构实体单元,用于各向异性实体结构的3D建模。
Ansys结构分析单元类型ansys结构分析单元类型决定单元的自由度设置,如:(1)结构单元有6个自由度(2)单元形状:六面体,三角形等(3)维数:二维、三维(4)位移形函数:线形、二次函数。
本文按单元的特点将结构分析单元分为:线单元、管单元、实体单元、壳单元、接触单元、特殊单元六大类。
2.1线单元线单元主要有:杆单元、梁单元。
2.1.1杆单元杆单元主要用于桁架和网格计算。
属于只受拉、压力的线单元。
主要用于模拟弹簧,螺杆,预应力螺杆,薄膜桁架等模型。
其主要的类型有:(1)LINK1是个二维杆单元,可刚作桁架、连杆或弹簧;(2)LINK8是个三维杆单元,可用作桁架、缆索、连杆、弹簧等模型;(3)LINK10是个三维仅受拉伸或压缩杆单元,可用于将整个钢缆作为一个单元来模拟的钢缆静力。
2.1.2梁单元梁单元主要用于框架结构计算。
属于既受拉、压力,又有弯曲应力的线单元。
主要用于模拟螺栓,薄壁管件,C型截面构件,角钢或细长薄膜构件。
其主要的类型有:(1)BEAM3是个二维弹性粱单元,可用于轴向拉伸、压缩和弯曲单元;(2)BEAM4是个三维弹性梁单元,可用于轴向拉伸、压缩、扭转和弯曲单元;(3)BEAM54是个二维弹性渐变不对称梁单元,可用于分析拉伸、压缩和弯曲功能的单轴向单元;(4)BEAM44是个三维渐变不对称梁单元,可用于分析拉伸、压缩、扭转和弯曲功能的单轴单元;(5)BEAMl88是个三维线性有限应变梁单元,可用于分析从细长到中等粗短的梁结构;(6)BEAMl89是个三维二次有限应变梁单元,可刚于分析从细长到中等粗短的梁结构。
2.2管单元(1)PIPE16是三维弹性直管单元,可用于分析拉压、扭转和弯曲的单轴向单元。
(2)PIPE17是三维弹性T形管单元,可用于分析拉压、扭转和弯曲T形管单轴单元。
(3)PIPEl8是弹性弯管单元(肘管),可用于分析拉伸、压缩、扭转和弯曲性能的环形单轴单元。
(4)PIPE20是个塑性直管单元,可用于分析拉压、弯曲和扭转的单轴单元。
(5)PIPE60是个塑性弯管(弯管头)单元,可用于分析拉压,弯曲和扭转的单轴单元。
(6)PIPE59是个沉管或缆单元,可用于分析拉压、扭转和弯曲,并有薄膜力以模拟海洋波浪和电流作用的单轴单元。
2.3实体单元2.3.1 二维实体单元二维实体单元主要用于描述薄平板结构(平面应力)、等截面的“无限长”结构(平面应变)和轴对称实体结构,即:用于模拟实体的截面,所有的荷载均作用在x,y平面内,并且其响应(位移)也在x,y平面内,建模时必须在全局直角坐标x,y平面内建模。
其主要的类型有:(1)PLANE2是个二维6节点三角形结构实体单元,可用于模拟不规则的网格。
(2)PLANE42是个二维结构实体单元,可用作平面单元(平面应力或平面应变)或轴对称单元。
(3)PLANE82是个二维8节点结构实体单元,可用于模拟具有曲线边界的几何模型。
(4)PLANE182是个二维4节点结构实体单元,可用作平面单元(平面应力或平面应变)或轴对称单元。
(5)PLANE183是个二维8节点结构实体单元,可刚作平面单元(平面应力,平面应变和普遍平面应变)或轴对称单元。
(6)HYPER84是个二维8节点超弹性实体单元,可用作平面单元(平面应变)或轴对称的环单元,也可用于模拟二维超弹性结构模型。
(7)HYPER56是个二维4节点混合U.P超弹实体单元,可用作二向平面单元(平面应变)或轴对称环单元。
用于模拟二维实体超弹性结构。
(8)HYPER74是个二维8节点混合U.P超弹实体单元,可用作二向平面单元(平面应变)或轴对称环单元。
也用于模拟二维实体超弹性结构。
(9)VISCO88是个二维8节点粘弹性实体单元,可用来定义平面应变或轴对称单元。
(10)VISCOl06是个二维大应变实体单元,可用作平面应变单元或轴对称单元。
(11)VISCO108是个二维8节点火应变实体单元,可用作平面应变单元或轴对称单元。
(12)PLANE83是个8节点轴对称谐结构实体单元,可用于模拟具有非轴对称加载的轴对称结构,可用于建立曲线边界的模型。
(13)PLANE25是个4节点轴对称谐结构实体单元,可用于轴对称结构上作用有非对称载荷的二维模型。
(14)PLANE145是个二维四边形结构实体P_单元,可用作平面单元(平面应力或平面应变)或轴对称单元。
(15)PLANE146是个二维三角形结构实体P_单元,可用作平面单元(平面应力或平面应变)或轴对称单元。
2.3.2 三维实体单元三维实体单元主要用于描述三维空间中截面积不等、也不是轴对称的厚结构,即:用于那些由于几何形状、材料、载荷或分析要求考虑细节等原因造成无法采用更简单单元进行建模的结构。
其主要的类型有:(1)SOLID45是个三维结构实体单元,可用于建立三维实体结构模型。
(2)SOLID95是个三维20节点结构实体单元,可用于曲线边界的三维实体建模。
(3)SOLIDI85是个三维结构实体单元,可用于建立三维实体结构模型。
(4)SOLIDl86是个三维20节点结构实体单元,可用生成不规则网格模型。
(5)SOLID92是个三维l0节点四面体结构实体单元,可用于模拟不规则形状的结构(各种CAD/CAM系统产生的网格模型)。
(6)SOLIDI87是个三维l0节点四面体结构实体单元,可用于生成不规则网格模型(各种CAD/CAM系统生成的模型)。
(7)SOLID46是个三维分层结构实体单元,可用于模拟分层的厚壳或实体。
(8)SOLIDl9l是个三维20节点分层结构实体单元,可用于模拟分层的厚壳或实体。
(9)SOLID64是个三维各向异性实体单元,可用于模拟三维各向异性实体结构。
(10)SOLID65是个三维钢筋混凝十实体单元,可用于模拟三维有钢筋或无钢筋的混凝土模型。
(11)HYPER86是个三维超弹性实体单元,可用于建立三维超弹性结构模型。
(12)HYPER58是个三维8节点混合U.P超弹实体单元,可用于模拟三维实体超弹性结构。
(13)HYPERI58是个三维l0节点四面体混合U.P超弹实体单元,可用丁模拟三维超弹性结构实体,适于生成不规则网格模型(如各种CAD/CAM 系统生成的模型)。
(14)VISCO89是个三维20节点粘弹性实体单元。
(15)VISCO107是个三维火应变实体单元,可用于建立三维实体结构模型。
(16)SOLID147是个三维砖形结构实体P单元。
(17)SOLIDI48是个三维四面体结构P单元。
2.4壳单元壳单元主要用于水池、水箱、楼板等薄壁结构计算,壳单元主要用来模拟平面或曲面,其厚度大小取每块面板的主尺寸不低于其厚度的十倍。
(1)SHELL93是个8节点结构壳单元,适合于分析曲壳模型。
(2)SHELL63是个弹性壳单元。
(3)SHELL41是个薄膜壳单元,可用于那些弯曲作用为次要囚素的壳体结构(4)SHELL43是个塑性人应变壳单元,适于分析线性,翘曲,厚度中等的壳结构。
(5)SHELL181是个有限应变壳单元,适于分析从薄的到中等厚度的壳结构,也可用于模拟的层合壳单元或夹层结构的层结构分析。
(6)SHELL51是个轴对称结构壳单元,可以用于圆柱壳单元或者环形圆盘单元,可用于有线性变化的厚度。
(7)SHELL61是个轴对称谐波结构壳单元,可以用于圆柱壳单元或者环形圆盘单元。
可用于有线性变化的厚度。
(8)SHELL91是个非线性层状结构壳单元,可以用于分析应用多层结构壳模型或模拟厚夹层结构。
(9)SHELL99是个线性层结构壳单元,可以用于分析应用多层结构壳模型。
(10)SHELL28是个剪切瑚转壳单元,可用于分析框架结构的剪切载荷情况的单元。
(11)SHELL150是个8节点结构壳体P单元,适合于描述曲面壳体模型。
2.5接触单元(1)CONTAC48是个二维点对面接触单元,可以用于模拟二维空间两个面之间(或一个1 点和一个面间)的接触和滑动模型。
(2)CONTAC49是个三维点对面接触单元,可以用于模拟三维空间两个面之间(或一个点和一个面间)的接触和滑动模型。
(3)CONTA171是个二维面与面接触单元,可用于表示二维“目标”面(TARGE169)和本单元所定义的变形面之间的接触利滑移状态。
(4)CONTA172是个二维3节点面与面接触单元,CONTA172用于表示二维“目标”面(TARGE169)和本单元所定义的变形面之间的接触和滑移状态。
(5)CONTA173是个三维面与面接触单元,可用于表示三维“目标”面(TARGE170)和本单元所定义的变形面之间的接触和滑移状态。
(6)CONTA174是个三维8节点面与面接触单元,可刚于表示三维“目标”面(TARGE170)和本单元所定义的变形面之间的接触和滑移状态。
(7)CONTAC12是个二维点对点接触单元,用于模拟两个能够保持或者断开物理接触,并且能够相对滑动的面。
(8)CONTAC52是个二维点对点接触单元,用于模拟能够保持或者断开物理接触,且能够相对滑动的两个表面。
(9)CONTAC26是个二维基础接触单元,用于模拟一个能够阻.1}= 点穿透的面。
(10)TARGE169 是个二维目标单元,接触单元覆盖丁变形体边界的实体单元上,并可能与TARGER169定义的目标表面接触。
(11)TARGE170是个三维目标单元,与相关接触单元(CONTA173,CONTA174,和CONTA175)联用,表示各种二维“目标”表面。
接触单元覆盖于变形体边界的实体单元上,并可能与TARGER170定义的目标表面接触。
2.6特殊单元(1)COMBIN14是个弹簧阻尼器单元,可用在一维,二维或三维有轴向拉压的或扭转的场合。
(2)COMBIN40是个组合单元,可以用丁任何分析。
(3)COMBIN39是个非线性弹簧单元,具有非线性功能的单向单元。
(4)MASS2l是个结构质量单元。
(5)COMBIN37是个控制单元,是一种具有开关功能的单向单元,可用于温度函数控制热流的温度调节器;用速度的函数控制阻尼的机械减震器;用压力的函数控制流动阻抗的安全阀;川位移函数控制摩擦离合器等等。
(6)SURF153是个二维结构表面效应单元,可用于各种载荷及表面效应情况及二维结构分析。
(7)SURF154是个三维结构表面效应单元,适用各种载荷及表面效应情况,可用于三维结构分析。
(8)COMBIN7是个三维铰接连接单元,是三维销钉(或旋转)铰链单元,可用于在公共点上连接模型的两个或多个部分,适用于运动学静力分析和运动学动力分析。
(9)LINK1l是个线性调节器单元,可用于给液压缸及其它火转动问题建模。
(10)MATRIX27是个刚度,阻尼,质量矩阵单元。
(11)MATRIX50是个超单元,可用于应用领域内的任何分析类型。