线性代数期末复习总结
- 格式:pdf
- 大小:551.76 KB
- 文档页数:4
第一章行列式一、行列式的性质性质1行列式与它的转置行列式相等,即|A | = |A T|.(行列互换,行列式不变)性质2互换行列式的两行(列),行列式变号.推论1如果行列式有两行(列)完全相同,则此行列式为零.性质3行列式的某一行(列)中所有的元素都乘以同一个倍数k,等于用数k 乘以此行列式.a ua i2a i3anai2^13ka na i2a i3a2Xa22a23 — ka 2xka’2 転23 = ka 2}a22 a23角1 a 32 «33a 3i角2 。
33脳31«33若行列式中有一行(列)为0,则行列式为0.行列式中如果有两行(列)元素成比例,则此行列式为零.坷 1坷]a n 纠341 a n 坷 3a21+b l a 22+b 2 如+4—a 21 a 22"23+ b l b 2 S。
31 “32 。
33。
31 “32 “33。
31 “32 “33 性质6把行列式的某一列(行)的各元素乘以同一个倍数然后加到另一列(行) 对应的元素上去,行列式不变.a\\a i2ai3au a n + ka !3 a i3 aCL CLa CL + kaaW21 u 22w23^21 "22 ' e"23 "23 “31 °32 "33°31 “32 + 氐 °33 。
33性质7 (Laplace 定理)行列式等于它的任一行(列)的各元素与其对应的代数余 子式乘积之和,BP : | A| = a ix A i} + a i2A i2 + • • • + a in A in (1 = 1,2,• • •, n )推论2性质4 。
21 ^22a31 “32ka [{ ka {2。
13。
23a 33 。
21 °3a n"12 "13 a22 ^23a 32= 40 = 0性质5行列式中如果有两行(列)元素成比例,则此行列式为零.二. 行列式的计算 1、字母型(用性质求值)2a I 】(1)、若三阶行列式£>= a tJ =3,则2°3i"1 “3—2d] -2^2—2a*(2)、若三阶行列式D = S b 2 g=-1,则 -2叽-2b 2 -2b.C] c 2 c 3-2C] -2C 2 -2C 32、四阶行列式计算降阶计算。
线性代数期末知识点总结1、行列式1.行列式共有个元素,展开后有项,可分解为行列式;2.代数余子式的性质:①、和的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为;3.代数余子式和余子式的关系:4.设行列式:将上、下翻转或左右翻转,所得行列式为,则;将顺时针或逆时针旋转,所得行列式为,则;将主对角线翻转后(转置),所得行列式为,则;将主副角线翻转后,所得行列式为,则;5.行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积;③、上、下三角行列式():主对角元素的乘积;④、和:副对角元素的乘积;⑤、拉普拉斯展开式:、⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6.对于阶行列式,恒有:,其中为阶主子式;7.证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值;2、矩阵1.是阶可逆矩阵:(是非奇异矩阵);(是满秩矩阵)的行(列)向量组线性无关;齐次方程组有非零解;,总有唯一解;与等价;可表示成若干个初等矩阵的乘积;的特征值全不为0;是正定矩阵;的行(列)向量组是的一组基;是中某两组基的过渡矩阵;2.对于阶矩阵:无条件恒成立;3.4.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5.关于分块矩阵的重要结论,其中均、可逆:若,则:Ⅰ、;Ⅱ、;②、;(主对角分块)③、;(副对角分块)④、;(拉普拉斯)⑤、;(拉普拉斯)3、矩阵的初等变换与线性方程组1.一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵、,若;2.行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若,则可逆,且;②、对矩阵做初等行变化,当变为时,就变成,即:;③、求解线形方程组:对于个未知数个方程,如果,则可逆,且;4.初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、,左乘矩阵,乘的各行元素;右乘,乘的各列元素;③、对调两行或两列,符号,且,例如:;④、倍乘某行或某列,符号,且,例如:;⑤、倍加某行或某列,符号,且,如:;5.矩阵秩的基本性质:①、;②、;③、若,则;④、若、可逆,则;(可逆矩阵不影响矩阵的秩)⑤、;(※)⑥、;(※)⑦、;(※)⑧、如果是矩阵,是矩阵,且,则:(※)Ⅰ、的列向量全部是齐次方程组解(转置运算后的结论);Ⅱ、⑨、若、均为阶方阵,则;6.三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式;二项展开式:;注:Ⅰ、展开后有项;Ⅱ、Ⅲ、组合的性质:;③、利用特征值和相似对角化:7.伴随矩阵:①、伴随矩阵的秩:;②、伴随矩阵的特征值:;③、、8.关于矩阵秩的描述:①、,中有阶子式不为0,阶子式全部为0;(两句话)②、,中有阶子式全部为0;③、,中有阶子式不为0;9.线性方程组:,其中为矩阵,则:①、与方程的个数相同,即方程组有个方程;②、与方程组得未知数个数相同,方程组为元方程;10.线性方程组的求解:①、对增广矩阵进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;11.由个未知数个方程的方程组构成元线性方程:①、;②、(向量方程,为矩阵,个方程,个未知数)③、(全部按列分块,其中);④、(线性表出)⑤、有解的充要条件:(为未知数的个数或维数)4、向量组的线性相关性1.个维列向量所组成的向量组:构成矩阵;个维行向量所组成的向量组:构成矩阵;含有有限个向量的有序向量组与矩阵一一对应;2.①、向量组的线性相关、无关有、无非零解;(齐次线性方程组)②、向量的线性表出是否有解;(线性方程组)③、向量组的相互线性表示是否有解;(矩阵方程)3.矩阵与行向量组等价的充分必要条件是:齐次方程组和同解;(例14)4.;(例15)5.维向量线性相关的几何意义:①、线性相关;②、线性相关坐标成比例或共线(平行);③、线性相关共面;6.线性相关与无关的两套定理:若线性相关,则必线性相关;若线性无关,则必线性无关;(向量的个数加加减减,二者为对偶)若维向量组的每个向量上添上个分量,构成维向量组:若线性无关,则也线性无关;反之若线性相关,则也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7.向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则(二版定理7);向量组能由向量组线性表示,则;(定理3)向量组能由向量组线性表示有解;(定理2)向量组能由向量组等价(定理2推论)8.方阵可逆存在有限个初等矩阵,使;①、矩阵行等价:(左乘,可逆)与同解②、矩阵列等价:(右乘,可逆);③、矩阵等价:(、可逆);9.对于矩阵与:①、若与行等价,则与的行秩相等;②、若与行等价,则与同解,且与的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵的行秩等于列秩;10.若,则:①、的列向量组能由的列向量组线性表示,为系数矩阵;②、的行向量组能由的行向量组线性表示,为系数矩阵;(转置)11.齐次方程组的解一定是的解,考试中可以直接作为定理使用,而无需证明;①、只有零解只有零解;②、有非零解一定存在非零解;12.设向量组可由向量组线性表示为:(题19结论)()其中为,且线性无关,则组线性无关;(与的列向量组具有相同线性相关性)(必要性:;充分性:反证法)注:当时,为方阵,可当作定理使用;13.①、对矩阵,存在,、的列向量线性无关;()②、对矩阵,存在,、的行向量线性无关;14.线性相关存在一组不全为0的数,使得成立;(定义)有非零解,即有非零解;,系数矩阵的秩小于未知数的个数;15.设的矩阵的秩为,则元齐次线性方程组的解集的秩为:;16.若为的一个解,为的一个基础解系,则线性无关;(题33结论)5、相似矩阵和二次型1.正交矩阵或(定义),性质:①、的列向量都是单位向量,且两两正交,即;②、若为正交矩阵,则也为正交阵,且;③、若、正交阵,则也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2.施密特正交化:;;3.对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4.①、与等价经过初等变换得到;,、可逆;,、同型;②、与合同,其中可逆;与有相同的正、负惯性指数;③、与相似;5.相似一定合同、合同未必相似;若为正交矩阵,则,(合同、相似的约束条件不同,相似的更严格);6.为对称阵,则为二次型矩阵;7.元二次型为正定:的正惯性指数为;与合同,即存在可逆矩阵,使;的所有特征值均为正数;的各阶顺序主子式均大于0;;(必要条件)。
行列式1.行列式的性质性质1行列式与它的转置行列式相等TD D =.性质2互换行列式的两行(列),行列式变号.推论1如果行列式有两行(列)的对应元素完全相同,则此行列式的值为零.性质3行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式.如111213111213212223212223313233313233a a a a a a ka ka ka k a a a a a a a a a =推论2如果行列式中有两行(列)元素成比例,则此行列式的值为零.性质4若行列式的某一行(列)的元素都是两数之和,则这个行列式等于两个行列式之和.如111213111213111213212122222323212223212223313233313233313233a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+性质5把行列式的某一行(列)的各元素乘以同一数然后加到另一行(列)对应的元素上去,行列式的值不变.如111213111213212223212223313233311132123313a a a a a a a a a a a a a a a a ka a ka a ka =+++例1已知,那么()A.-24B.-12C.-6D.12答案B解析2.余子式与代数余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i jij ij A (1)M +=-叫做元素ij a 的代数余子式.3.行列式按行(列)展开法则定理1行列式的值等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即1122i i i i in in D a A a A a A =+++ 或 1122j j j j nj njD a A a A a A =+++ ()1,2,,;1,2i n j n ==定理2行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即12120,j j i i jn i n a A a A a A +++= 或,11220.j j j j nj nj a A a A a A i j +++=≠ ()1,2,,;1,2i n j n == 例.设3阶矩阵()ij A a =的行列式12A =,ij A 为ij a 的代数余子式.那么313132323333a A a A a A ++=___12____;213122322333a A a A a A ++=___0___.4.行列式的计算(1)二阶行列式1112112212212122a a a a a a a a =-(3)对角行列式1212n nλλλλλλ=,n(m 1)21212nn(1)λλλλλλ-=- (4)三角行列式1111121n 2122222n1122nnn1n2nnnna a a a a a a a a a a a a a a ==(5)消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值.(6)降阶法:利用行列式的性质,化某行(列)(一般选择有0元素的行或列)只有一个非零元素,再按该行(列)展开,通过降低行列式的阶数求出行列式的值.(7)加边法:行列式每行(列)所有元素的和相等,将各行(列)元素加到第一列(行),再提出公因式,进而求出行列式的值.例:思路:将有0的第三行化为只有一个非0元素33=1,按该行展开,D=3333,不用忘记B 。
线代期末题型总结归纳1. 填空题填空题是线性代数期末考试中常见的一种题型。
主要考察学生对线性代数基本概念和定理的理解和掌握程度。
常见的填空题有以下几类:1.1 基本概念填空题基本概念填空题通常考察向量、矩阵、行列式等基本概念的定义和性质。
例如:(1)向量空间中的零向量是指__________。
(2)设A是一个n阶方阵,如果存在一个n阶可逆方阵P,使得P^{-1}AP=B,则称B 是矩阵A的__________。
(3)行列式D=|A|的逆矩阵是__________。
对于这类题目,学生应该掌握向量、矩阵、行列式的基本定义和性质,并能够灵活应用。
1.2 定理填空题定理填空题考察学生对线性代数中重要定理的记忆和理解程度。
例如:(1)如果向量组V_1,V_2,……,V_k是n维向量空间V的一个基,则向量组V_1,V_2,……,V_k__________线性无关的。
(2)若向量组V_1,V_2,……,V_k线性相关,则存在不全为零的数c_1,c_2,……,c_k 使得__________。
对于这类题目,学生应该熟悉线性代数中常用的定理,掌握其证明要点和应用方法。
1.3 计算填空题计算填空题是考察学生对线性代数运算和计算方法的掌握程度。
常见的计算填空题包括矩阵运算、向量的投影、行列式的计算等。
例如:(1)设A=\begin{bmatrix}2& -1& 1\\ 0& 3& 2\\ 1& 0& -1\end{bmatrix},B=\begin{bmatrix}1& 0& -1\\ -1& 2& 1\\ 0& 1& -1\end{bmatrix},则A+B=__________。
(2)已知向量组V_1=(1,2,-1),V_2=(0,1,-2),V_3=(1,0,1),向量V=(2,1,3),则向量V在向量组{V_1,V_2,V_3}张成的子空间的投影为__________。
线性代数期末总结【引言】线性代数是数学中的一个重要分支,它研究的是向量空间和线性变换。
线性代数不仅是数学学科的基础,也是许多其他学科的基础,如物理学、计算机科学、经济学等。
本文将对线性代数的相关概念、理论以及应用进行总结。
【一、向量和向量空间】1. 向量的定义和性质:向量指的是大小和方向都有的物理量,可以用一组有序的实数来表示。
向量的加法、数乘和内积等运算满足一定的性质。
2. 向量空间的定义:向量空间指的是由一组向量构成的集合,满足封闭性、加法交换律、加法结合律、数乘结合律等性质。
3. 线性相关性与线性无关性:一组向量中存在线性关系时称为线性相关,否则称为线性无关。
线性无关向量可以张成一个向量空间。
【二、矩阵和线性变换】1. 矩阵的定义和性质:矩阵是一个由数构成的矩形阵列。
矩阵的加法、数乘和乘法等运算满足一定的性质。
2. 线性变换的定义和性质:线性变换是一个将一个向量空间映射到另一个向量空间的变换,它满足封闭性、线性性质和保持零向量等性质。
3. 线性变换的矩阵表示:线性变换可以通过矩阵来表示,称为线性变换的矩阵表示。
线性变换的矩阵表示具有一些特殊的性质,如矩阵的秩、特征向量等。
【三、特征值和特征向量】1. 特征值和特征向量的定义:对于线性变换A和非零向量v,如果Av=kv,则k称为A的特征值,v称为A的特征向量。
2. 特征值和特征向量的性质:特征向量在线性变换之后只改变了大小,而方向保持不变。
特征值和特征向量的性质与矩阵的性质有一定的关联。
3. 对角化和相似矩阵:如果能找到一个可逆矩阵P使得P^{-1}AP=D,其中D是一个对角矩阵,则称矩阵A可对角化。
相似矩阵具有相同的特征值,可以通过相似矩阵的变换得到。
【四、线性方程组和矩阵运算】1. 线性方程组的解法:线性方程组可以通过矩阵运算来求解,常见的方法有高斯消元法、克拉默法则和矩阵的逆等。
2. 矩阵的运算:矩阵之间可以进行加法和数乘运算,还可以进行矩阵乘法、转置等运算。
线性代数期末自我总结作为一门重要的数学基础课程,线性代数在我大学学习生涯中起到了关键性的作用。
在经过一个学期的学习之后,我深刻体会到线性代数的重要性,并且在这门课程中取得了一些收获和提高。
以下是我对线性代数期末的自我总结。
首先,我对线性代数概念的理解有了很大的提高。
在课堂上,老师讲授了线性代数的基本概念和基本原理,包括矩阵、向量空间、线性变换等。
通过课堂的示范和实例分析,我对这些概念有了更清晰的认识,并且能够运用这些概念解决具体的问题。
我学会了使用矩阵进行线性方程组的求解,使用向量空间的性质来证明一些线性代数问题,以及使用线性变换解决具体的应用问题。
这些基本概念和原理是线性代数学习的基石,我相信在以后的学习和工作中会发挥重要的作用。
其次,我在计算线性方程组的过程中提高了自己的计算能力。
在学习线性代数的过程中,我们需要经常求解线性方程组。
线性方程组是线性代数的一个重要应用,解决实际问题的时候经常会遇到。
通过大量的练习和计算,我提高了自己的计算速度和准确性。
我掌握了高斯消元法和矩阵求逆的方法,能够迅速将线性方程组化简为最简形式,并求得其解。
在实践中,我学会了如何选择消元的顺序和方程组的pivot,以提高计算的效率和准确性。
这些计算技巧将会在我的数学学习和工程实践中发挥重要的作用。
另外,在学习线性代数的过程中,我也加强了自己的逻辑推理能力。
线性代数是一门很抽象的数学学科,需要运用逻辑推理来证明一些定理和性质。
在课堂上,老师经常布置一些证明题,要求我们用逻辑推理来证明某个结论。
通过这些练习,我学会了如何通过逻辑推理合理地组织证明过程,使得论证的过程更加严谨和严密。
逻辑推理是一种思维方式,通过学习线性代数,我不仅提升了数学推理能力,也对其他学科的推理和证明有了更深入的认识。
此外,在线性代数的学习中,我也通过完成一些实际例题,培养了一定的应用能力。
线性代数不仅仅是一门纯粹的理论学科,也是一门可以应用到实际问题中的学科。
线代期末理论总结一、线性代数的基本概念线性代数是数学的一个重要分支,研究的对象是向量空间及其上的线性变换。
它是高等数学和矩阵论的基础,也是其他数学分支如数值计算、最优化、概率统计等的重要工具。
以下是线性代数中的一些基本概念:1. 向量:向量是线性代数中的基本运算对象,可以表示为有序数对或有序数组。
向量有大小和方向,可以用箭头表示。
2. 向量空间:向量空间是一个包含向量的集合,并且满足加法和数乘运算的封闭性、加法运算的交换性和结合性、零向量的存在等性质。
3. 共线性和线性无关:如果一个向量可以用另一个向量的常数倍表示,那么这两个向量是共线的;如果一个向量不能用其他向量的线性组合表示,那么这些向量是线性无关的。
4. 线性组合:若有一组向量v1, v2, ..., vn和n个实数c1, c2, ..., cn,那么$v=c_1*v_1+c_2*v_2+...+c_n*v_n$称为这组向量的线性组合。
5. 线性相关和线性无关:如果一组向量中存在一个向量可以表示为其他向量的线性组合,那么这组向量是线性相关的;如果一组向量中没有一个向量可以表示为其他向量的线性组合,那么这组向量是线性无关的。
6. 线性映射和线性变换:线性映射是指一对向量空间之间的映射,满足对加法和数乘运算的保持;线性变换是指一个向量空间到它自身的线性映射。
二、矩阵与行列式矩阵和行列式是线性代数中的核心概念,它们在矩阵论、线性方程组的求解、特征值与特征向量的计算等方面都有重要的应用。
1. 矩阵:矩阵是一个按照矩阵规则排列的数的矩形阵列。
矩阵可以表示为$m\times n$的形式,其中$m$代表矩阵的行数,$n$代表矩阵的列数。
2. 线性方程组:线性方程组是由一组线性方程组成的方程组。
线性方程组的求解是线性代数中的重要问题,可以通过矩阵的行变换和求解矩阵的秩来解决。
3. 矩阵的运算:矩阵的加法和数乘运算满足封闭性、交换性、结合性等性质。
此外,矩阵还可以进行矩阵的乘法、转置、逆等运算。
《线性代数》期末复习要点第一章行列式1、行列式的计算(略)2、Cramer法则:系数行列式D≠0,则方程租有唯一解。
齐次方程租有非零解,则D=0。
3、Vandermonde行列式。
(略)第二章矩阵1、矩阵的计算(略)2、对称矩阵:A∧T=A。
反称矩阵A∧T=-A。
3、矩阵可逆,则|A|≠0。
4、分块矩阵(略)5、初等变换与初等矩阵(略)6、m×n阶矩阵A,B等价,则当且仅当存在m阶可逆矩阵P和n阶可逆矩阵Q使PAQ=B。
7、(1)可逆矩阵一定满秩,即r=n。
(2)若A的一个r阶子式不等于零,则r(A)≥r,若A的r+1阶子式都为零,则r(A)≤r。
8、矩阵秩的不等式:(1)r(AB)≤min{r(A),r(B)}。
(2)A,B分别为m×n阶和n×k 阶矩阵,r(AB)≥r(A)+r(B)-n。
特别的,当AB=0时,r(A)+r(B)≤n。
(3)A,B 均为m×n阶矩阵,则r(A+B)≤r(A)+r(B)。
第三章n维向量空间1、线性相关:(1)k1,k2,kn不全为0且能使kiα1+k2α2+……+knαn=0成立,则α1,α2,……,αn线性相关。
(2)至少一个向量是其余向量的线性组合。
(3)含零向量的向量组是线性相关的。
(4)n维向量中的两个向量组T1={α1,α2,α3,……,αr},T2={β1,β2,β3,……βs},若T1可由T2线性表示,且r>s,则T1线性相关。
若T1可由T2线性表示但T1线性无关,则r≤s。
(5)n+1个n维向量一定线性相关。
2、(1)零向量自身线性相关。
非零向量自身线性无关。
(2)向量组中一部分线性相关,则整体线性相关,若向量组整体线性无关,则向量组的一部分线性无关。
3、向量组的任意极大线性无关组都与之等价,向量组的任意两个极大线性无关组都等价。
4、矩阵的秩等于其行(列)向量组的秩。
5、向量空间的基与维数,空间向量的坐标(略)6、基变换和坐标变换:{α1,α2,α3,……,αr},{β1,β2,β3,……βsr}是向量空间V的两组基,若有r维方阵C,使[β1,β2,β3,……βs]=[α1,α2,α3,……,αr]C,则称C为从基{α1,α2,α3,……,αr}到基{β1,β2,β3,……βs}的过渡矩阵(基变换矩阵)。
线代期末重点总结一、向量空间1. 向量空间定义向量空间是指具有加法和标量乘法运算的集合,满足一定条件。
a) 任意向量 u、v 属于向量空间 V,有 u + v 属于 V。
b) 任意标量 k 和向量 u 属于 V,有 k * u 属于 V。
c) 向量加法满足交换律、结合律和存在零向量的性质。
d) 标量乘法满足结合律和分配律的性质。
2. 子空间集合 V 的一个子集 W 是 V 的子空间,如果 W 本身也是向量空间。
a) 非空集合 W 对于向量加法和标量乘法封闭。
b) 非空集合 W 包含零向量,即原空间中的零向量也属于子空间 W。
c) 非空集合 W 对于向量加法和标量乘法满足分配律和结合律的性质。
3. 线性相关与线性无关a) 如果存在非零向量 c1, c2, ..., cn,使得线性组合 a1c1 + a2c2 + ... + ancn = 0,其中 ai 是标量,那么称向量组 c1, c2, ..., cn 线性相关。
b) 如果向量组 c1, c2, ..., cn 不是线性相关,那么称它们线性无关。
4. 基与维数a) 如果向量组 v1, v2, ..., vn 线性无关,并且能够生成向量空间 V,那么称它们是 V 的一个基。
b) 向量空间 V 中的向量个数称为维数,记作 dim(V)。
c) 如果 V 的一个基含有 n 个向量,则维数 dim(V) = n。
5. 线性变换线性变换是指一个向量空间到另一个向量空间的映射。
a) 线性变换必须满足保持向量加法性质:T(u + v) = T(u) + T(v)。
b) 线性变换必须满足保持标量乘法性质:T(k * u) = k * T(u)。
二、矩阵表示和运算1. 矩阵表示a) 矩阵是一个二维数组,由若干个行和列组成。
b) 行向量和列向量可用矩阵表示。
c) 线性变换可用矩阵表示。
2. 矩阵乘法a) 两个矩阵 A(m × n) 和 B(n × p) 的乘积 C(m × p) 定义为 C_ij = sum(A_ik * B_kj),其中 i = 1, ..., m;j = 1, ..., p。
《线性代数与空间解析几何》小结《线性代数》部分小结()000,nT A R A n A A Ax x Ax A Ax A A A I ββ==⇔∀≠≠≠⇔∀∈=≅可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 ,0总有唯一解 是正定矩阵 R 12,s iA p p p p nB AB I AB I⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪=⋅⋅⋅⎪==⎪⎩ 是初等阵存在阶矩阵使得 或 ○注:全体n 维实向量构成的集合nR 叫做n 维向量空间. ()0A R A n A A A Ax A λ<=⇔==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的⎧⎪⎪⎪⎨⎪⎪⎪⎩特征向量○注 ()0()0a b R aI bA n aI bA aI bA x λ+<⎧⎪+=⇔+=⎨⎪⎩有非零解=-⎫⎪≅⎪−−−→⎬⎪⎪⎭具有向量组等价矩阵等价()反身性、对称性、传递性矩阵相似()矩阵合同() √ 关于12,,,n e e e ⋅⋅⋅:①称为n的标准正交基;②12,,,n e e e ⋅⋅⋅线性无关; ③12,,,1n e e e ⋅⋅⋅=; ④tr =I n ;⑤任意一个n 维向量都可以用12,,,n e e e ⋅⋅⋅线性表示.行列式的定义 111212122211111112121112,1;, 2.n n n n n n n nna a a a a a a n D a A a A a A n a a a =⎧==⎨+++≥⎩行列式的性质:①按行展开,零行为零,②等行为零,③拆项分和,④初等变换(提取因子,换行变号,倍加不变),比例为零,⑤转置相等. √ 行列式的计算:①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.②若A B 与都是方阵(不必同阶),则==(),,mn A O A A OA B O B O B B OA A AB A B B OB O*==**=-1分别是m 阶,n 阶方阵.(拉普拉斯展开式)③上三角、下三角、主对角行列式等于主对角线上元素的乘积.④关于副对角线:(1)211212112111()n n nnn n n n n n n a Oa a a a a a a Oa O---*==-1 (即:所有取自不同行不同列的n 个元素的乘积的代数和)⑤范德蒙德行列式:()1222212111112nijnj i nn n n nx x x x x x x x x x x ≤<≤---=-∏111矩阵的定义 由m n ⨯个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭称为m n ⨯矩阵.记作:()ij m n A a ⨯=或m n A ⨯伴随矩阵 ()1121112222*12n Tn ijnnnn A A A A A A A A A A A ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭,ij A 为A 中各个元素的代数余子式. √ 逆矩阵的求法:① 1A A A *-= ○注: 1a b d b c d c a ad bc --⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭1 主换位副变号 ②1()()A I I A -−−−−→初等行变换③1231111213a a a a a a -⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3211111213a a a a a a -⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭√ 方阵的幂的性质:mnm nA A A+= ()()m n mn A A =√ 设,,m n n s A B ⨯⨯A 的列向量为12,,,n ααα⋅⋅⋅,B 的列向量为12,,,s βββ⋅⋅⋅,则m sAB C ⨯=⇔()()1112121222121212,,,,,,s s n s n n ns b b b b b b b b b αααγγγ⎛⎫⎪⎪⋅⋅⋅= ⎪⎪⎝⎭⇔i iA βγ= ,(,,)i s =1,2⇔iβ为iAx γ=的解⇔()()()121212,,,,,,,,,s s s A A A Aββββββγγγ⋅⋅⋅=⋅⋅⋅=⇔12,,s γγ可由12,,,n ααα⋅⋅⋅线性表示.即:C 的列向量能由A 的列向量线性表示,B 为系数矩阵.同理:C 的行向量能由B 的行向量线性表示,TA 为系数矩阵.即: 1112111212222212n n n n mn n m a a a a a a a a a βγβγβγ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⇔11112211211222221122n n n n m m mn n ma a a a a a a a a βββγβββγβββγ+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩√ 用对角矩阵Λ○左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○行向量;用对角矩阵Λ○右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘.√ 分块矩阵的转置矩阵:TTT TT A B A C C D BD ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭分块矩阵的逆矩阵:111A A B B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ 111A B BA---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1111A C A A CB O B OB ----⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ 1111A O A OC B B CAB ----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭ 分块对角阵相乘:11112222,A B A B A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭⇒11112222A B AB A B ⎛⎫= ⎪⎝⎭,1122nn n A A A ⎛⎫= ⎪⎝⎭分块对角阵的伴随矩阵:***A BA B AB ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ *(1)(1)mn mn A A B BB A **⎛⎫-⎛⎫= ⎪ ⎪⎪-⎝⎭⎝⎭√ 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II) A B I X −−−−→初等行变换(I)的解法:构造()()T T T TA XB X X=(II)的解法:将等式两边转置化为, 用(I)的方法求出,再转置得① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关.③ 部分相关,则整体相关;整体无关,则部分无关. (向量个数变动)④ 少维无关,则多维无关;多维相关,则少维相关. (向量维数变动) ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关. ⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 向量组12,,,n ααα⋅⋅⋅线性相关⇔向量组中至少有一个向量可由其余n -1个向量线性表示.(相关有一被表出) 向量组12,,,n ααα⋅⋅⋅线性无关⇔向量组中每一个向量i α都不能由其余n -1个向量线性表示.(无关无一被表出) ⑧ m 维列向量组12,,,n ααα⋅⋅⋅线性相关()R A n ⇔<; m 维列向量组12,,,n ααα⋅⋅⋅线性无关()R A n ⇔=.⑨ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法唯一.(无关加一变相关,后加唯一被表出) ⑩ 矩阵的行向量组的秩=列向量组的秩=矩阵的秩,(三秩相等).行阶梯形矩阵的秩等于它的非零行的个数.行阶梯形矩阵 可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零.当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是0时,称为行最简形矩阵⑪ 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系;(行变不改列相关) 矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系. (列变不改行相关) 即:矩阵的初等变换不改变矩阵的秩. √ 矩阵的初等变换和初等矩阵的关系:对A 施行一次初等○行变换得到的矩阵,等于用相应的初等矩阵○左乘A ; 对A 施行一次初等○列变换得到的矩阵,等于用相应的初等矩阵○右乘A .矩阵的秩 如果矩阵A 存在不为零的r 阶子式,且任意r +1阶子式均为零,则称矩阵A 的秩为r .记作()R A r = 向量组的秩 向量组12,,,n ααα的最大无关组所含向量的个数,称为这个向量组的秩.记作12(,,,)n R ααα矩阵等价 A 经过有限次初等变换化为B . 记作:A B =向量组等价 12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:()()1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅⑫ 矩阵A 与B 等价⇔PAQ B =,,P Q 可逆⇔()(),,,R A R B A B A B =≠>为同型矩阵作为向量组等价,即:秩相等的向量组不一定等价.矩阵A 与B 作为向量组等价⇔1212(,,,)(,,,)n n R R αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)n n R αααβββ⋅⋅⋅⋅⋅⋅⇒ 矩阵A 与B 等价.⑬ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示⇔AX B =有解⇔12(,,,)=n R ααα⋅⋅⋅1212(,,,,,,)n s R αααβββ⋅⋅⋅⋅⋅⋅⇒12(,,,)s R βββ⋅⋅⋅≤12(,,,)n R ααα⋅⋅⋅.⑭ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关.(多被少表出,多的必相关)向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .(无关被表出,个数不会多)⑮ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s R βββ⋅⋅⋅12(,,,)n R ααα=⋅⋅⋅,则两向量组等价; ⑯ 任一向量组和它的最大无关组等价.向量组的任意两个最大无关组等价. ⑰ 向量组的最大无关组不唯一,但最大无关组所含向量个数唯一确定.⑱ 若两个线性无关的向量组等价,则它们包含的向量个数相等. ⑲ 设A 是m n ⨯矩阵,若()R A m =,A 的行向量线性无关;若()R A n =,A 的列向量线性无关,即:12,,,n ααα⋅⋅⋅线性无关. √ 矩阵的秩的性质:①0()A R A ≠⇔若≥1 0()0A R A =⇔=若 0≤()m n R A ⨯≤min(,)m n ②()()()T T R A R A R A A == p 教材101,例15 ③()()R kA R A k =≠ 若0④()(),,()0m n n s R A R B n A B R AB B Ax ⨯⨯+≤⎧=⇒⎨=⎩若若0的列向量全部是的解⑤()R AB ≤{}min (),()R A R B⑥()()()()A R AB R B B R AB R A ⇒=⇒=若可逆若可逆 即:可逆矩阵不影响矩阵的秩.⑦若0()()()00m n Ax R AB R B R A n AB B A AB AC B C ⨯⇔=⎧⎪=⎧⎪=⎨⎪⇒=⇒=⎧⎨⎪⎨⎪⎪=⇒=⎩⎩⎩ 只有零解在矩阵乘法中有左消去律;若()()()n s R AB R B R B n B ⨯=⎧=⇒⎨⎩在矩阵乘法中有右消去律.⑧()r r I O I O R A r A A O O O O ⎛⎫⎛⎫=⇒⎪ ⎪⎝⎭⎝⎭若与等价,称为矩阵的等价标准型.⑨()R A B ±≤()()R A R B + {}max (),()R A R B ≤(,)R A B ≤()()R A R B +⑩()()A O O A R R R A R B O B B O ⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭ ()()A C R R A R B O B ⎛⎫≠+ ⎪⎝⎭121212,,,0,,,()(),,,A n n A n Ax A n Ax Ax R A R A Ax A n βαααβαααβββααα⇔=−−−−−→=<⇔⇒⇔=⇔=⇔=⇔=−−−−−→≠⇒=⇔⇒当为方阵时当为方阵时有无穷多解0 表示法不唯一线性相关有非零解 可由线性表示有解有唯一组解0克莱姆法则表示法唯一 线120()(),,,()()()1()n Ax R A R A Ax R A R A R A R A ββαααβββ⎧⎪⎪⎪⎪⎨⎪⎪⎪⇔=⎪⎩⇔≠⎧⎪⇔=⇔<⎨⎪⇔+=⎩性无关只有零解 不可由线性表示无解○注:Ax Ax ββ⇒=<≠⇒=<≠有无穷多解其导出组有非零解有唯一解其导出组只有零解线性方程组的矩阵式 Ax β= 向量式 1122n n x x x αααβ+++=1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 12,,2,,j j j mj j n αααα⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭11212(,,,)n n x xx αααβ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭矩阵转置的性质: ()T T A A = ()T T T AB B A = ()T T kA kA =T A A =()T T T A B A B ±=± 11()()T T A A --= ()()T T A A **=矩阵可逆的性质: 11()A A --=111()AB B A ---= 111()kA k A ---=11A A --= 111()A B A B ---±≠± 11()()k k k A A A ---==伴随矩阵的性质:2()n A AA -**= ()AB B A ***=1()n kA k A *-*=1n A A-*=***()A B A B ±≠±11()()A AA A -**-==()()k k A A **=() () 1 ()10 () 1 n R A n R A R A n R A n *=⎧⎪==-⎨⎪<-⎩若若若AB A B =n kA k A = kk A A =A B A B ±≠±AA A A A E **==(无条件恒成立)线性方程组解的性质:1212121211221212(1),0,(2)0,,(3),,,0,,,,,(4),0,(5),,0k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηηηηηηηηλλλληληληγβηγηβηηβηη=+⎫⎪=⎪⎬=⎪⎪+++⎭==+==-= 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解12112212112212(6),,,,100k k k k k k k Ax Ax Ax ηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⎪+++=⇔+++=⎪⎪+++=⇔+++=⎪⎪⎩是的解则 也是的解 是的解√ 设A 为m n ⨯矩阵,若()R A m =⇒()()R A R Aβ=⇒Ax β=一定有解,当m n <时,一定不是唯一解⇒<方程个数未知数的个数向量维数向量个数,则该向量组线性相关.m 是()()R A R A β和的上限.√ 判断12,,,s ηηη是0Ax =的基础解系的条件:① 12,,,s ηηη线性无关; ② 12,,,s ηηη都是0Ax =的解;③ ()s n R A =-=每个解向量中自由未知量的个数.√ 一个齐次线性方程组的基础解系不唯一. √ 若η*是Ax β=的一个解,1,,,s ξξξ是0Ax =的一个解⇒1,,,,s ξξξη*线性无关√ 0Ax =与0Bx =同解(,A B 列向量个数相同),则:① 它们的最大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 两个齐次线性线性方程组0Ax =与0Bx =同解⇔()()A R R A R B B ⎛⎫==⎪⎝⎭. √ 两个非齐次线性方程组Ax β=与Bx γ=都有解,并且同解⇔()()A R R A R B B βγ⎛⎫==⎪⎝⎭.√ 矩阵m n A ⨯与l n B ⨯的行向量组等价⇔齐次方程组0Ax =与0Bx =同解⇔PA B =(左乘可逆矩阵P ); 矩阵m n A ⨯与l n B ⨯的列向量组等价⇔AQ B =(右乘可逆矩阵Q ). √ 关于公共解的三中处理办法:① 把(I)与(II)联立起来求解;② 通过(I)与(II)各自的通解,找出公共解;当(I)与(II)都是齐次线性方程组时,设123,,ηηη是(I)的基础解系, 45,ηη是(II)的基础解系,则 (I)与(II)有公共解⇔基础解系个数少的通解可由另一个方程组的基础解系线性表示.即:1231231425(,,)(,,)R R c c ηηηηηηηη=+当(I)与(II)都是非齐次线性方程组时,设11122c c ξηη++是(I)的通解,233c ξη+是(II)的通解,两方程组有公共解⇔2331c ξηξ+-可由12,ηη线性表示. 即:12122331(,)(,)R R c ηηηηξηξ=+-③ 设(I)的通解已知,把该通解代入(II)中,找出(I)的通解中的任意常数所应满足(II)的关系式而求出公共解。