第三章连续信源信息熵
- 格式:ppt
- 大小:1.19 MB
- 文档页数:64
2.6连续信源的熵所谓连续信源就是指其输出在时间上和取值上都是连续的信源。
见图2.6.1。
各采样值的概率可用其概率分布密度函数来确定。
图2.6.2表示一个连续信源输出的幅度和其概率分布密度的关系。
设各种采样值之间无相关性,信源熵可写成:])(log[)(dx x p dx x p i ii ∑[例2.6.1]一连续信源,其输出信号的概率分布密度如图2.6.3所示,试计算其熵。
连续信源的熵不再具有非负性,这与离散信源显然不同。
同样可以定义两个连续变量的联合熵:⎰⎰-=dxdy xy lbp xy p XY H )()()(以及定义两个连续变量的条件熵;⎰⎰-=dxdy y x lbp xy p Y X H )/()()/( ⎰⎰-=dxdy x y lbp xy p X Y H )/()()/(连续信源的共熵、条件熵、单独熵之间也存在如下关系:)()()(Y H X H XY H +≤2.6.1三种特定连续信源的最大熵与离散信源不同,求连续信源的最大熵需要附加条件,常见的有三种。
1.输出幅度范围受限(或瞬时功率受限)的信源2.输出平均功率受限的信源 3.输出幅度平均值受限的信源 (1)限峰值功率的最大熵定理若代表信源的N 维随机变量的取值被限制在一定的范围之内,则在有限的定义域内,均匀分布的连续信源具有最大熵。
设N 维随机变量∏=∈Ni iib a X 1),( iia b>其均匀分布的概率密度函数为⎪⎪⎩⎪⎪⎨⎧-∉-∈-=∏∏∏===Ni i i Ni i i Ni i i a b x a b x a b x p 111)(0)()(1)(除均匀分布以外的其他任意概率密度函数记为)(x q ,并用[]X x p H c),(和[]X x q H c),(分别表示均匀分布和任意非均匀分布连续信源的熵。
在1)()(11112121==⎰⎰⎰⎰N b a b a N b a b a dx dx dxx q dx dx dxx p N NN N的条件下有[]⎰⎰-=1112)(log)(),(b a Nb ac dx dx x q x q X x q H NN⎰⎰⎰⎰⎰⎰+-=⎥⎦⎤⎢⎣⎡∙=111111121212)()(log)()(log)()()()(1log )(b a Nb a b a N b a b a Nb a dx dx x q x p x q dx dx x p x q dx dx x p x p x q x q NNNNN N令0,)()(≥=z x q x p z显然运用著名不等式1ln -≤z z 0>z 则]),([11)(log1)()()()(1log)(]),([1211121111X x p H a bdx dx x q x p x q dx dx a bx q X x q H c Ni i ib a Nb a b a N Ni i ib ac N N NN=-+-=⎥⎦⎤⎢⎣⎡-+--≤∏⎰⎰⎰∏⎰==则证明了,在定义域有限的条件下,以均匀分布的熵为最大。
信源熵的原理及应用1. 介绍信源熵是信息论中一个重要的概念,它描述了一个随机信源所具有的信息量的平均度量。
信源的熵越大,表示信息的不确定性越高,需要更多的信息来描述。
本文将介绍信源熵的原理,并探讨其在通信、数据压缩以及密码学等领域的应用。
2. 信源熵的定义信源熵是正信息论中一个重要概念,它用来度量一个随机信源所具有的信息量的平均度量。
对于一个离散随机变量X,它的概率分布为P(X),则信源的熵定义如下:equationequation其中,xi是随机变量X的取值,P(xi)是xi对应的概率。
3. 信源熵的性质•信源熵的取值范围:信源的熵是非负的,即H(X) ≥ 0。
•最大熵原理:对于一个离散信源,当它的概率分布均匀时,即每个xi的概率相等时,信源熵达到最大值。
•如果一个信源越复杂,即其概率分布越不均匀,那么它的熵就越小。
4. 信源熵的应用4.1 通信系统在通信系统中,信源熵可以用来度量信道所传输信息的平均编码长度。
根据香农定理,信道传输的平均编码长度L与信源熵H(X)满足以下关系:equationequation当信道编码满足L = H(X)时,信道编码称为最优编码,即编码的平均长度等于信源熵。
4.2 数据压缩信源熵还可以应用于数据压缩领域。
数据压缩的目的是使用更少的位数来存储或传输数据。
通过统计一个数据源的概率分布,可以将出现概率低的数据编码为较长的二进制位,而出现概率高的数据编码为较短的二进制位。
信源熵提供了压缩算法的理论基础。
4.3 密码学在密码学中,信源熵用于度量消息或密码的随机性。
如果一个密码是完全随机的,并且每个密钥都是等概率选择的,那么这个密码的熵将达到最大值。
信源熵可以用来评估一个密码系统的安全性,以及密码生成算法的随机性。
5. 总结本文介绍了信源熵的原理及其应用。
信源熵是衡量信息量的重要度量指标,它在通信、数据压缩以及密码学等领域具有多种应用。
通过明确信源熵的定义和性质,我们可以更好地理解和应用它。
青岛农业大学本科生课程论文论文题目连续信源的最大熵与最大熵条件学生专业班级信息与计算科学 0902学生姓名(学号)指导教师吴慧完成时间 2012-6-25 2012 年 6 月 25 日课程论文任务书学生姓名指导教师吴慧论文题目连续信源的最大熵与最大熵条件论文内容(需明确列出研究的问题):1简述连续信源的基本概要。
2 定义了连续信源的差熵公式,分别介绍了满足均匀分布和高斯分布的两种特殊信源。
3推导了连续信源的最大熵值及最大熵条件。
资料、数据、技术水平等方面的要求:1概率论的均匀分布、高斯分布的相关知识。
2以及在这两种分布下的连续信源和高斯信源。
3在不同的约束条件下,求连续信源差熵的最大值一种是信源的输出值受限,另一种是信源的输出平均功率受限。
4 詹森不等式以及数学分析的定积分和反常积分、不定积分等数学公式。
发出任务书日期 2012-6-6 完成论文日期 2012-6-25 教研室意见(签字)院长意见(签字)连续信源的最大熵与最大熵条件信息与计算科学指导老师吴慧摘要:本文简述了连续信源的基本概要并定义了连续信源的差熵公式,分别介绍了满足均匀分布和高斯分布的两种特殊信源,推导了连续信源的最大熵值及最大熵条件。
关键词:连续信源最大熵均匀分布高斯分布功率受限The maximum entropy and maximum entropy conditionof consecutive letter of the sourceInformation and Computing Sciences Bian jiangTutor WuhuiAbstract:: On the base of continuous source this eassy describes the basic outline and define differential entropy formula, introduced a uniform distribution and Gaussian distribution of the two special source, derivation of a continuous source of maximum entropy and maximum entropy conditions.Keyword: Continuous source Maximum entropy Uniform distributionNormal distribution Power is limited引言:科学技术的发展使人类跨入了高度发展的信息化时代。
连续随机变量与信息熵引言在概率论和统计学中,随机变量是一个数值型的变量,它的取值是根据一定的概率分布来确定的。
随机变量可以分为两种类型:离散随机变量和连续随机变量。
本文将重点讨论连续随机变量及其与信息熵之间的关系。
连续随机变量连续随机变量是指在一定区间内取值的随机变量。
与离散随机变量不同,连续随机变量可以取无限个可能的取值。
对于一个连续随机变量X,它的概率密度函数(Probability Density Function, PDF)表示了X落在某个区间内的概率。
概率密度函数概率密度函数f(x)用于描述连续随机变量X落在某个区间[a, b]内的概率,即P(a ≤ X ≤ b)。
概率密度函数具有以下性质: - f(x) ≥ 0,对于任意x -∫f(x)dx = 1,在整个定义域上的积分等于1累积分布函数累积分布函数(Cumulative Distribution Function, CDF)用于描述连续随机变量X小于等于某个值x的概率,即P(X ≤ x)。
对于连续随机变量X,其累积分布函数F(x)可以通过概率密度函数f(x)进行计算:F(x) = ∫[a,x]f(t)dt期望与方差对于连续随机变量X,期望(Expectation)和方差(Variance)是两个重要的统计量。
期望连续随机变量X的期望E(X)表示了X的平均值或中心位置。
对于一个具有概率密度函数f(x)的连续随机变量X,其期望可以通过以下公式计算: E(X) =∫xf(x)dx方差连续随机变量X的方差Var(X)衡量了X与其期望之间的离散程度。
对于一个具有概率密度函数f(x)和期望μ的连续随机变量X,其方差可以通过以下公式计算:Var(X) = ∫(x-μ)^2f(x)dx信息熵与连续随机变量信息熵(Entropy)是信息论中用来衡量不确定性或信息量的指标。
在离散情况下,信息熵可以直接通过概率分布来计算。
但在连续情况下,由于概率密度函数取值连续,直接计算的结果可能为无穷大。