第三章连续信源信息熵
- 格式:ppt
- 大小:1.19 MB
- 文档页数:64
2.6连续信源的熵所谓连续信源就是指其输出在时间上和取值上都是连续的信源。
见图2.6.1。
各采样值的概率可用其概率分布密度函数来确定。
图2.6.2表示一个连续信源输出的幅度和其概率分布密度的关系。
设各种采样值之间无相关性,信源熵可写成:])(log[)(dx x p dx x p i ii ∑[例2.6.1]一连续信源,其输出信号的概率分布密度如图2.6.3所示,试计算其熵。
连续信源的熵不再具有非负性,这与离散信源显然不同。
同样可以定义两个连续变量的联合熵:⎰⎰-=dxdy xy lbp xy p XY H )()()(以及定义两个连续变量的条件熵;⎰⎰-=dxdy y x lbp xy p Y X H )/()()/( ⎰⎰-=dxdy x y lbp xy p X Y H )/()()/(连续信源的共熵、条件熵、单独熵之间也存在如下关系:)()()(Y H X H XY H +≤2.6.1三种特定连续信源的最大熵与离散信源不同,求连续信源的最大熵需要附加条件,常见的有三种。
1.输出幅度范围受限(或瞬时功率受限)的信源2.输出平均功率受限的信源 3.输出幅度平均值受限的信源 (1)限峰值功率的最大熵定理若代表信源的N 维随机变量的取值被限制在一定的范围之内,则在有限的定义域内,均匀分布的连续信源具有最大熵。
设N 维随机变量∏=∈Ni iib a X 1),( iia b>其均匀分布的概率密度函数为⎪⎪⎩⎪⎪⎨⎧-∉-∈-=∏∏∏===Ni i i Ni i i Ni i i a b x a b x a b x p 111)(0)()(1)(除均匀分布以外的其他任意概率密度函数记为)(x q ,并用[]X x p H c),(和[]X x q H c),(分别表示均匀分布和任意非均匀分布连续信源的熵。
在1)()(11112121==⎰⎰⎰⎰N b a b a N b a b a dx dx dxx q dx dx dxx p N NN N的条件下有[]⎰⎰-=1112)(log)(),(b a Nb ac dx dx x q x q X x q H NN⎰⎰⎰⎰⎰⎰+-=⎥⎦⎤⎢⎣⎡∙=111111121212)()(log)()(log)()()()(1log )(b a Nb a b a N b a b a Nb a dx dx x q x p x q dx dx x p x q dx dx x p x p x q x q NNNNN N令0,)()(≥=z x q x p z显然运用著名不等式1ln -≤z z 0>z 则]),([11)(log1)()()()(1log)(]),([1211121111X x p H a bdx dx x q x p x q dx dx a bx q X x q H c Ni i ib a Nb a b a N Ni i ib ac N N NN=-+-=⎥⎦⎤⎢⎣⎡-+--≤∏⎰⎰⎰∏⎰==则证明了,在定义域有限的条件下,以均匀分布的熵为最大。
信源熵的原理及应用1. 介绍信源熵是信息论中一个重要的概念,它描述了一个随机信源所具有的信息量的平均度量。
信源的熵越大,表示信息的不确定性越高,需要更多的信息来描述。
本文将介绍信源熵的原理,并探讨其在通信、数据压缩以及密码学等领域的应用。
2. 信源熵的定义信源熵是正信息论中一个重要概念,它用来度量一个随机信源所具有的信息量的平均度量。
对于一个离散随机变量X,它的概率分布为P(X),则信源的熵定义如下:equationequation其中,xi是随机变量X的取值,P(xi)是xi对应的概率。
3. 信源熵的性质•信源熵的取值范围:信源的熵是非负的,即H(X) ≥ 0。
•最大熵原理:对于一个离散信源,当它的概率分布均匀时,即每个xi的概率相等时,信源熵达到最大值。
•如果一个信源越复杂,即其概率分布越不均匀,那么它的熵就越小。
4. 信源熵的应用4.1 通信系统在通信系统中,信源熵可以用来度量信道所传输信息的平均编码长度。
根据香农定理,信道传输的平均编码长度L与信源熵H(X)满足以下关系:equationequation当信道编码满足L = H(X)时,信道编码称为最优编码,即编码的平均长度等于信源熵。
4.2 数据压缩信源熵还可以应用于数据压缩领域。
数据压缩的目的是使用更少的位数来存储或传输数据。
通过统计一个数据源的概率分布,可以将出现概率低的数据编码为较长的二进制位,而出现概率高的数据编码为较短的二进制位。
信源熵提供了压缩算法的理论基础。
4.3 密码学在密码学中,信源熵用于度量消息或密码的随机性。
如果一个密码是完全随机的,并且每个密钥都是等概率选择的,那么这个密码的熵将达到最大值。
信源熵可以用来评估一个密码系统的安全性,以及密码生成算法的随机性。
5. 总结本文介绍了信源熵的原理及其应用。
信源熵是衡量信息量的重要度量指标,它在通信、数据压缩以及密码学等领域具有多种应用。
通过明确信源熵的定义和性质,我们可以更好地理解和应用它。