铁磁材料的磁导率不是常数共58页文档
- 格式:ppt
- 大小:4.43 MB
- 文档页数:58
物理实验报告铁磁材料的磁滞回线和基本磁化曲线Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】实验20铁磁材料的磁滞回线及基本磁化曲线铁磁物质是一种性能特异、用途广泛的材料。
如航天、通信、自动化仪表及控制等都无不用到铁磁材料(铁、钴、镍、钢以及含铁氧化物均属铁磁物质)。
因此,研究铁磁材料的磁化性质,不论在理论上,还是在实际应用上都有重大的意义。
本实验使用单片机采集数据,测量在交变磁场的作用下,两个不同磁性能的铁磁材料的磁化曲线和磁滞回线。
【预习重点】(1)看懂实验原理图及接线图。
(2)复习示波器的使用方法。
参考书:《电磁学》下册,赵凯华、陈熙谋着,第五、六章;《大学物理学》电磁学部分,杨仲耆等编,第六章。
【仪器】磁滞回线实验组合仪、双踪示波器。
【原理】1)铁磁材料的磁化及磁导率铁磁物质的磁化过程很复杂,这主要是由于它具有磁滞的特性。
一般都是通过测量磁化场的磁场强度H和磁感应强度B之间的关系来研究其磁性规律的。
图20—1起始磁化曲线和磁滞回线图20—2基本磁化曲线当铁磁物质中不存在磁化场时,H和B均为零,即图20—1中B~H曲线的坐标原点0。
随着磁化场H的增加,B也随之增加,但两者之间不是线性关系。
当H增加到一定值时,B不再增加(或增加十分缓慢),这说明该物质的磁化已达到饱和状态。
Hm 和Bm 分别为饱和时的磁场强度和磁感应强度(对应于图中a点)。
如果再使H逐渐退到零,则与此同时B也逐渐减少。
然而H和B对应的曲线轨迹并不沿原曲线轨迹a0返回,而是沿另一曲线ab下降到Br ,这说明当H下降为零时,铁磁物质中仍保留一定的磁性,这种现象称为磁滞,Br 称为剩磁。
将磁化场反向,再逐渐增加其强度,直到H=-Hc ,磁感应强度消失,这说明要消除剩磁,必须施加反向磁场Hc 。
Hc 称为矫顽力。
它的大小反映铁磁材料保持剩磁状态的能力。
图20—1表明,当磁场按Hm →0→-Hc→-Hm →0→Hc →Hm 次序变化时,B所经历的相应变化为Bm →Br →0→-Bm →-Br →0→Bm 。
铁磁材料的磁滞回线和基本磁化曲线在各类磁介质中,应用最广泛的是铁磁物质。
在20世纪初期,铁磁材料主要用在电机制造业和通讯器件中,如发电机、变压器和电表磁头,而自20世纪50年代以来,随着电子计算机和信息科学的发展,应用铁磁材料进行信息的存储和纪录,例如现以成为家喻户晓的磁带、磁盘,不仅可存储数字信息,也可以存储随时间变化的信息;不仅可用作计算机的存储器,而且可用于录音和录像,已发展成为引人注目的系列新技术,预计新的应用还将不断得到发展。
因此,对铁磁材料性能的研究,无论在理论上或实用上都有很重要的意义。
磁滞回线和基本磁化曲线反映了铁磁材料磁特性的主要特征。
本实验仪用交流电对铁磁材料样品进行磁化,测绘的B-H曲线称为动态磁滞回线。
测量铁磁材料动态磁滞回线的方法很多,用示波器测绘动态磁滞回线具有直观、方便、迅速及能在不同磁化状态下(交变磁化及脉冲磁化等)进行观察和测绘的独特优点。
一、实验目的1.认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。
2.掌握铁磁材料磁滞回线的概念。
3.掌握测绘动态磁滞回线的原理和方法。
4.测定样品的基本磁化曲线,作μ-H曲线。
5.测定样品的H C、B r、H m和B m等参数。
6.测绘样品的磁滞回线,估算其磁滞损耗。
二、实验原理1.铁磁材料的磁滞特性铁磁物质是一种性能特异,用途广泛的材料。
铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。
其特性之一是在外磁场作用下能被强烈磁化,故磁导率μ=B/H很高。
另一特征是磁滞,铁磁材料的磁滞现象是反复磁化过程中磁场强度H与磁感应强度B之间关系的特性。
即磁场作用停止后,铁磁物质仍保留磁化状态,图1为铁磁物质的磁感应强度B与磁场强度H之间的关系曲线。
将一块未被磁化的铁磁材料放在磁场中进行磁化,图中的原点O表示磁化之前铁磁物质处于磁中性状态,即B=H=O,当磁场强度H从零开始增加时,磁感应强度B随之从零缓慢上升,如曲线oa所示,继之B随H迅速增长,如曲线ab所示,其后B的增长又趋缓慢,并当H 增至H S时,B达到饱和值B S,这个过程的oabS曲线称为起始磁化曲线。
一、是非题1.1磁粉探伤中所谓的不连续性就是指缺陷。
(X )把影响工件使用性能的不连续性称为缺陷1.2磁粉探伤中对质量控制标准的要求是愈高愈好。
(* )在实际应用中,并不是灵敏度越高越好,因为过高的灵敏度会影响缺陷的分辨率和细小缺陷显示检出的重复性,还将造成产品拒收率增加而导致浪费。
1.3磁粉探伤的基础是磁场与磁粉的磁相互作用。
(* )缺陷处产生漏磁场是磁粉检测的基础。
磁粉检测是利用漏磁场吸附磁粉形成磁痕来显示不连续性的位置、大小、形状和严重程度1.4马氏体不锈钢可以进行磁粉探伤。
()1.5磁粉探伤不能检测奥氏体不锈钢材料,也不能检测铜,铝等非磁性材料。
()1.6磁粉探伤方法只能探测开口于试件表面的缺陷,而不能探测近表面缺陷. ( * )可以检测出铁磁性材料表面和近表面(开口和不开口)的缺陷1.7磁粉探伤难以发现埋藏较深的孔洞,以及与工件表面夹角大于20°的分层。
( * )检测时的灵敏度与磁化方向有很大关系,若缺陷方向与磁化方向近似平行或缺陷与工件表面夹角小于20度,缺陷就难以发现。
1.8磁粉探伤方法适用于检测点状缺陷和平行于表面的分层。
( * )1.9被磁化的试件表面有一裂纹,使裂纹吸引磁粉的原因是裂纹的高应力。
(* )裂纹处的漏磁场1.10磁粉探伤可对工件的表面和近表面缺陷进行检测。
( * )铁磁性材料1.11一般认为对表面阳极化的工件和有腐蚀的工件检测,磁粉方法优于渗透方法。
()1.12焊缝的层间未融合缺陷,容易用磁粉探伤方法检出。
(* )2.1由磁粉探伤理论可知,磁力线在缺陷处会断开,产生磁极并吸附磁粉。
(* )漏磁场2.2磁场强度的大小与磁介质的性质无关。
()2.3顺磁性材料和抗磁性材料均不能进行磁粉探伤。
()2.4当使用比探测普通钢焊缝的磁场大10倍以上的磁场强化时,就可以对奥氏体不锈钢焊缝进行磁粉探伤。
(* )所有顺磁性材料、抗磁性材料的磁化率都很小,其相对磁导率几乎等于1,这说明它们对原磁场只产生微弱的影响。
铁磁材料的磁导率
铁磁材料是一类具有特殊磁性的材料,其磁导率是其重要的物理性质之一。
磁
导率是描述材料对磁场强度的响应能力的物理量,它在材料的磁性研究中具有重要的意义。
本文将就铁磁材料的磁导率进行探讨,希望能为相关领域的研究者提供一些参考。
铁磁材料是一类在外加磁场下具有明显磁化特性的材料,其磁导率通常是非常
高的。
磁导率的大小与材料内部的微观结构密切相关,铁磁材料由于其特殊的晶格结构和电子自旋排列,具有较高的磁导率。
在外加磁场的作用下,铁磁材料会产生明显的磁化现象,这一点也与其较高的磁导率密切相关。
铁磁材料的磁导率通常是非线性的,这意味着在不同的磁场强度下,其磁化率
会发生变化。
这种非线性的特性使得铁磁材料在实际应用中具有一些特殊的用途,比如在磁存储器件和传感器中的应用。
研究铁磁材料的磁导率非常重要,可以帮助我们更好地理解其在不同磁场下的磁性响应,为相关器件的设计和应用提供重要的参考。
除了外加磁场的影响,铁磁材料的磁导率还受到温度的影响。
在一定的温度范
围内,铁磁材料的磁导率通常会随着温度的升高而发生变化。
这种温度效应对于一些特定的应用也具有重要的意义,比如在温度传感器中的应用。
因此,研究铁磁材料的磁导率随温度的变化规律,对于相关领域的研究具有一定的理论和实际意义。
总的来说,铁磁材料的磁导率是其重要的物理性质之一,它与材料的微观结构、外加磁场以及温度等因素密切相关。
研究铁磁材料的磁导率对于深入理解其磁性特性,以及在磁存储、传感器等领域的应用具有重要的意义。
希望本文的内容能够为相关领域的研究者提供一些参考,推动铁磁材料磁导率研究的进一步发展。
一、是非题1.1磁粉探伤中所谓的不连续性就是指缺陷。
(X )把影响工件使用性能的不连续性称为缺陷1.2磁粉探伤中对质量控制标准的要求是愈高愈好。
(* )在实际应用中,并不是灵敏度越高越好,因为过高的灵敏度会影响缺陷的分辨率和细小缺陷显示检出的重复性,还将造成产品拒收率增加而导致浪费。
1.3磁粉探伤的基础是磁场与磁粉的磁相互作用。
(* )缺陷处产生漏磁场是磁粉检测的基础。
磁粉检测是利用漏磁场吸附磁粉形成磁痕来显示不连续性的位置、大小、形状和严重程度1.4马氏体不锈钢可以进行磁粉探伤。
()1.5磁粉探伤不能检测奥氏体不锈钢材料,也不能检测铜,铝等非磁性材料。
()1.6磁粉探伤方法只能探测开口于试件表面的缺陷,而不能探测近表面缺陷. ( * )可以检测出铁磁性材料表面和近表面(开口和不开口)的缺陷1.7磁粉探伤难以发现埋藏较深的孔洞,以及与工件表面夹角大于20°的分层。
( * )检测时的灵敏度与磁化方向有很大关系,若缺陷方向与磁化方向近似平行或缺陷与工件表面夹角小于20度,缺陷就难以发现。
1.8磁粉探伤方法适用于检测点状缺陷和平行于表面的分层。
( * )1.9被磁化的试件表面有一裂纹,使裂纹吸引磁粉的原因是裂纹的高应力。
(* )裂纹处的漏磁场1.10磁粉探伤可对工件的表面和近表面缺陷进行检测。
( * )铁磁性材料1.11一般认为对表面阳极化的工件和有腐蚀的工件检测,磁粉方法优于渗透方法。
()1.12焊缝的层间未融合缺陷,容易用磁粉探伤方法检出。
(* )2.1由磁粉探伤理论可知,磁力线在缺陷处会断开,产生磁极并吸附磁粉。
(* )漏磁场2.2磁场强度的大小与磁介质的性质无关。
()2.3顺磁性材料和抗磁性材料均不能进行磁粉探伤。
()2.4当使用比探测普通钢焊缝的磁场大10倍以上的磁场强化时,就可以对奥氏体不锈钢焊缝进行磁粉探伤。
(* )所有顺磁性材料、抗磁性材料的磁化率都很小,其相对磁导率几乎等于1,这说明它们对原磁场只产生微弱的影响。