计算机存储系统(课件)
- 格式:ppt
- 大小:479.50 KB
- 文档页数:75
第6章计算机的存储系统现代计算机采用程序控制方式工作,因此,用来存放程序的存储系统是计算机的重要组成部分。
存储器包括内存储器和外存储器。
内存储器包括主存储器和高速缓冲存储器,外存储器即辅助存储器。
主存储器简称主存,它位于主机内部。
本章介绍计算机的存储系统,包括主存储器的基本组成、层次结构和工作原理,高速缓冲存储器的工作原理,以及各类外存储器。
6.1 存储器与存储系统概述6.1.1 存储器的作用现代计算机都是以存储器为中心的计算机,存储器处于全机的中心地位。
存储器的作用可归纳为:⑴存放程序和数据。
计算机执行的程序、程序运行所需要的数据都是存放在存储器中的。
⑵现代计算机可以配置的输入输出设备越来越多,数据传送速度不断加快,并且多数采用直接存储器存取(DMA)方式和输入输出通道技术,与存储器直接交换数据而不通过CPU。
⑶共享存储器的多处理器计算机的出现,使得可利用存储器来存放共享数据,并实现各处理器之间的通信,更加强了存储器作为整个计算机系统中心的作用。
6.1.2 存储器分类⒈按存取方式分类⑴随机存取存储器RAM(Random Access Memory)特点:存储器中任何一个存储单元都能由CPU或I/O设备随机存取,且存取时间与存取单元的物理位置无关。
用途:常用作主存或高速缓存。
⑵只读存储器ROM(Read-Only Memory)特点:存储器的内容只能读出而不能写入。
用途:常用来存放固定不变的系统程序。
作为固定存储,故又叫“固存”。
随着用户要求的提高,只读存储器产品从ROM→可编程只读存储器PROM→光可擦除可编程只读存储器EPROM→电可擦除可编程的只读存储器EEPROM,为用户方便地存入和改写内容提供了物质条件。
⑶顺序存取存储器SRAM特点:存储器中存储的信息(字或者记录块),完全按顺序进行存放或读出,在信息载体上没有惟一对应的地址号,访问指定信息所花费的时间和信息所在存储单元的物理位置密切相关。
教学内容安排•第一章绪论•第二章数码系统•第三章运算方法和运算器•第四章存储系统•第五章指令系统•第六章中央处理器•第七章输入输出设备•第八章输入输出系统第四章存储系统• 4.1 计算机内存的分类• 4.2 计算机外存的分类• 4.3 主存储器的扩充• 4.4 主存储器的组织• 4.5 主存储器的性能教学重点和难点•计算机内存的分类•主存储器的扩充•主存储器的组织•概述–存储器是计算机系统的重要组成部分,有主存储器和辅助存储器之分。
–主存储器,又可称作内存储器。
–辅助存储器,又可称作外存储器。
–中央处理器与主存储器之间关系非常密切第四章存储系统4.1计算机内存的分类第四章存储系统 4.1计算机内存的分类•根据不同特点进行分类–按材料划分•半导体存储器。
•磁芯存储器。
–按功能划分•RAM(Random Access Memory)——随机读取存储器。
•ROM(Read Only Memory)——只读存储器。
–按存储器中信息的可保存性划分•永久性存储器。
•非永久性存储器。
第四章存储系统 4.1计算机内存的分类•半导体读写存储器–按存储元的结构划分•静态随机读取存储器SRAM(Static RAM)。
–优点:不需要刷新,简化了外部电路。
–缺点:包含管子数目多,功耗较大。
•动态随机读取存储器DRAM(Dynamic RAM)。
–优点:集成度高,功耗低,适于构成大容量的存储器。
–缺点:需增加刷新电路。
第四章存储系统 4.1计算机内存的分类•半导体只读存储器–掩模式只读存储器ROM•优点:结构简单,可靠性高。
•缺点:灵活性差,不允许使用者做任何修改。
–可编程只读存储器PROM(Programmable ROM)•特点:只能一次写入。
–可擦除可编程只读存储器EPROM(Erasable PROM)•优点:可多次写入(但每次写入前需用紫外线擦除设备擦除)。
•缺点:不能对个别存储元单独擦除和重写,需配套的擦除设备。
6.1存储系统:由多种不同工艺的存储器组成;Cache:在计算机存储系统的层次结构中,介于中央处理器和主存储器之间的高速小容量存储器。
页表:是存储管理软件根据主存运行情况自动建立的,主存中的固定区域存放页表;段表:每一行记录了某个段对应的若干信息,包括段号、段起点、段长、装入位和其他控制位等,通常驻留在主存中;虚拟存储器:利用虚拟技术设计的存储器称为虚拟存储器;快表:当前最常用的页表信息存放在一个小容量的高速存储器中;慢表:与快表相对应,存放在主存中的页表称为慢表;虚地址:在虚拟存储器中的一种虚拟地址空间;实地址:与虚地址相对应;相联存储器:是一种按内容访问的存储器;双端口存储器:一个存储器具有两个端口,分别用L和R表示左端口和右端口,每个端口都有各自独立的读/写控制线路和各自的数据总线,地址总线和控制总线,从而可以通过两个端口同时对存储器进行读写操作,来提高存储器的存取速度;RAID:是一组物理磁盘驱动器,在操作系统下被视为一个单逻辑驱动器;集中刷新:在2ms最大刷新周期内,集中对每一行进行刷新。
分散刷新:将存储周期分为两段,前段读/写/保持,后段刷新。
异步刷新:按芯片行数决定所需的刷新周期数,并分散安排在最大刷新周期2ms中。
磁表面存储器:将磁性材料沉积在盘片的基体上形成记录介质,并以绕有线圈的磁头与记录介质的相对运动来写入或读出信息.6.2计算机采用多级结构的存储系统的原因:答:从CPU角度来看,高速缓冲存储器—主存储器这一层次的速度接近与高速缓冲存储器,其容量和位价格却接近与主存储器;主存储器-辅助存储器这一层次的速度接近于主存储器,容量接近于辅助存储器,平均位价格也接近于低速、廉价的辅助存储器,这样就解决了速度、容量、成本三者之间的矛盾。
6.3多级存储系统的建立的原理:程序运行的局部性原理6.4存储器的主要技术指标:容量、技术、位价格;6.5按存取方式分类,存储器分为:随机存取存储器(RAM):可以对存储器的内容随机地存取,RAM读/写方便,使用灵活,主要用作主存储器,也可以用作高速缓冲存储器;只读存储器(ROM):只能随机读出二不能写入;顺序存取存储器(SAM):只能按某种顺序存取,存取时间的长短与信息在存储体上的物理位置有光;直接存取存储器(DAM):是介于DAM和SAM之间。
计算机的存储系统
•计算机的存储系统一般由高速缓存、内存、和外存三级构成.
CPU CACHE
主存(内存)
辅存(外存)
向量计算机
•面向向量型并行计算,以流水线结构为主的并行处理计算机
•采用先行控制和重叠操作技术、运算流水线、交叉访问的并行存储器等并行处理结构
•非常适合进行向量运算
•具有功能功能齐全的向量运算指令
•优势:有向量寄存器,能将一步运算同时作用于向量寄存器中多个操作数上
•不足:读入缓存和写入内存的能力上具有局限性
拥有缓存体系的RISC计算机
•Reduced Instruction Set Computer
•CPU中有大量寄存器,采用优化转移技术,指令取消技术,重叠寄存器窗口技术,优化编译技术
•不足:无向量寄存器
•优势:有多级缓存结构。
计算机存储系统在现代计算机技术中,存储系统扮演着至关重要的角色。
它是计算机的核心组成部分之一,负责存储和管理数据,为计算和检索操作提供支持。
计算机存储系统的设计和性能直接关系到计算机的速度和效率。
本文将介绍计算机存储系统的基本原理和不同类型的存储设备。
一、存储系统的基本原理计算机存储系统的基本原理是将数据存储在不同的介质中,通过电子信号的读写操作来实现数据的存取。
存储器的主要任务是提供一个可以快速读写数据的空间,供计算机进行运算和存储数据。
1. 随机存取存储器(Random Access Memory,RAM)随机存取存储器,简称RAM,是计算机存储系统中使用最广泛的一种存储设备。
RAM是一种易失性存储器,当计算机断电时,其中的数据将会丢失。
RAM的读写速度非常快,可以在很短的时间内读取或写入数据。
它通常被用作临时存储和高速缓存。
2. 只读存储器(Read-Only Memory,ROM)只读存储器,简称ROM,是一种非易失性存储器,其中的数据一经写入就无法更改。
ROM中存储了计算机的启动程序和固件等重要信息。
与RAM不同,ROM的数据读取速度较慢,但能够长时间保存数据。
3. 硬盘驱动器(Hard Disk Drive,HDD)硬盘驱动器,简称HDD,是一种机械式存储设备,使用磁性介质存储数据。
HDD容量大、价格相对较低,被广泛应用于个人电脑和服务器等领域。
然而,HDD的读写速度相对较慢,限制了计算机的整体性能。
4. 固态硬盘(Solid State Drive,SSD)固态硬盘,简称SSD,是一种基于闪存技术的非机械式存储设备。
SSD具有较快的读写速度和良好的耐用性,逐渐替代HDD成为主流存储设备。
尽管SSD的价格较高,但其性能和能耗优势使其成为现代计算机的首选存储设备。
二、存储系统的层次结构为了提高存储系统的性能和效率,存储器通常按照层次结构进行组织。
存储系统的层次结构从上到下包括高速缓存、主存储器和辅助存储器。