2016年浙江省杭州市中考数学(全解全析)
- 格式:doc
- 大小:299.50 KB
- 文档页数:10
一次方程(组)及其应用一、单选题【答案】A【分析】根据碳水化合物、蛋白质与脂肪的含量共30g 列方程.【详解】解:设蛋白质、脂肪的含量分别为g x ,g y ,则碳水化合物含量为(1.5)g x , 则: 1.530x x y ++=,即5302x y +=,故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,找出合适的等量关系,列方程.【答案】A【分析】根据“一根绳子去量一根木条,绳子剩余4.5尺”可知:绳子=木条+4.5,再根据“将绳子对折再量木条,木条剩余1尺”可知:12绳子=木条-1,据此列出方程组即可.【详解】解:设木条长x 尺,绳子长y 尺,那么可列方程组为: 4.50.51y x y x =+⎧⎨=−⎩,故选:A .【点睛】本题考查二元一次方程组的实际应用,解题的关键是明确题意,找出等量关系,列出相应的二元一次方程组.3.(2023·黑龙江齐齐哈尔·统考中考真题)为提高学生学习兴趣,增强动手实践能力,某校为物理兴趣小组的同学购买了一根长度为150cm 的导线,将其全部截成10cm 和20cm 两种长度的导线用于实验操作(每种长度的导线至少一根),则截取方案共有( ) A .5种 B .6种 C .7种 D .8种【答案】C【分析】设10cm 和20cm 两种长度的导线分别为,x y 根,根据题意,得出152x y −=,进而根据,x y 为正整数,即可求解.【详解】解:设10cm 和20cm 两种长度的导线分别为,x y 根,根据题意得,1020150x y +=,即152xy −=,∵,x y 为正整数, ∴1,3,5,7,9,11,13x = 则7,6,5,4,3,2,1y =, 故有7种方案, 故选:C .【点睛】本题考查了二元一次方程的应用,根据题意列出方程求整数解是解题的关键.【答案】A【分析】设木长x 尺,根据题意“用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺”,列出一元一次方程即可求解. 【详解】解:设木长x 尺,根据题意得,1( 4.5)12x x +=−,故选:A.【点睛】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.【答案】A【分析】设长木长为x 尺,则绳子长为()4.5x +尺,根据“将绳子对折再度量长木,长木还剩余1尺”,可列出方程.【详解】设长木长为x 尺,则绳子长为()4.5x +尺,根据题意,得:()14.512x x +=−故选:A.【点睛】本题考查一元一次方程解决实际问题,理解题意,找出等量关系列出方程是解题的关键. 【答案】B【分析】根据题意,由设鸡有x 只,兔有y 只,则由等量关系有35个头和有94条腿列出方程组即可得到答案.【详解】解:设鸡有x 只,兔有y 只,则由题意可得:352494x y x y +=⎧⎨+=⎩, 故选:B .【点睛】本题考查列二元一次方程组解决古代数学问题,读懂题意,找准等量关系列方程组是解决问题的关键.【答案】D【分析】设快马x 天可追上慢马,根据路程相等,列出方程即可求解.【详解】解:设快马x 天可追上慢马,由题意得()24015012x x =+故选:D .【点睛】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.【答案】B【分析】根据某村有土地60公顷,计划将其中10%的土地种植蔬菜,得到种植茶园和种植粮食的面积为90%,结合茶园的面积比种粮食面积的2倍少3公顷,列出方程组即可. 【详解】解:设茶园的面积为x 公顷,种粮食的面积为y 公顷,由题意,得:()60110%23x y x y ⎧+=−⎨=−⎩,即:5423x y x y +=⎧⎨=−⎩ 故选B .【点睛】本题考查根据实际问题列方程组.找准等量关系,正确的列出方程组,是解题的关键.9.(2023·浙江绍兴·统考中考真题)《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容是单位);大容器1个,小容器5个,总容暴为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为x 斛,小容器的容量为y 斛,则可列方程组是( )A .5352x y x y +=⎧⎨+=⎩B .5352x y x y +=⎧⎨+=⎩C .5352x y x y =+⎧⎨=+⎩D .5253x y x y =+⎧⎨=+⎩【答案】B【分析】设大容器的容积为x 斛,小容器的容积为y 斛,根据“大容器5个,小容器1个,总容量为3斛;大容器1个,小容器5个,总容量为2斛”即可得出关于x 、y 的二元一次方程组. 【详解】解:设大容器的容积为x 斛,小容器的容积为y 斛,根据题意得:5352x y x y +=⎧⎨+=⎩. 故选:B .【点睛】本题考查了由实际问题抽象出二元一次方程组,根据数量关系列出关于x 、y 的二元一次方程组是解题的关键.【答案】C【分析】根据等量关系“鸡的只数+兔的只数35=”和“2⨯鸡的只数4+⨯兔的只数94=”即可列出方程组. 【详解】解:设有x 只鸡,y 只兔,由题意可得:352494x y x y +=⎧⎨+=⎩, 故选:C .【点睛】本题主要考查了由实际问题抽象出二元一次方程组,解题的关键是找出等量关系.11.(2023·广西·模拟预测)我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x 天可以追上慢马,则下列方程正确的是( )A .24015015012x x +=⨯B .24015024012x x −=⨯C .24015024012x x +=⨯D .24015015012x x −=⨯【答案】D【分析】设快马x 天可以追上慢马,根据路程=速度×时间,即可得出关于x 的一元一次方程,此题得解. 【详解】解:设快马x 天可以追上慢马, 依题意,得: 240x -150x=150×12. 故选:D .【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.12.(2023·黑龙江·统考中考真题)某社区为了打造“书香社区”,丰富小区居民的业余文化生活,计划出资500元全部用于采购A ,B ,C 三种图书,A 种每本30元,B 种每本25元,C 种每本20元,其中A 种图书至少买5本,最多买6本(三种图书都要买),此次采购的方案有( ) A .5种 B .6种 C .7种 D .8种【答案】B【分析】设采购A 种图书x 本,B 种图书y 本,C 种图书z 本,根据采购三种图书需500元列出方程,再依据x 的数量分两种情况讨论求解即可.【详解】解:设采购A 种图书x 本,B 种图书y 本,C 种图书z 本,其中56,0,0,x y z ≤≤>>且,,x y z 均为整数,根据题意得,302520500x y z ++=, 整理得,654100x y z ++=, ①当5x =时,6554100y z ⨯++=, ∴704,5zy −=∵0,0,y z >>且,y z 均为整数, ∴当70410z −=时,2y =,∴15z =; 当70430z −=时,6y =,∴10z =; 当70450z −=时,10y =,∴5z =; ②当6x =时,6654100y z ⨯++=,∴644,5zy −=∵0,0,y z >>且,y z 均为整数, ∴当64420z −=时,4y =,∴11z =; 当64440z −=时,8y =,∴6z =; 当64460z −=时,12y =,∴1z =; 综上,此次共有6种采购方案, 故选:B .【点睛】本题主要考查了二元一次方程的应用,正确理解题意、进行分类讨论是解答本题的关键.13.(2023·四川南充·统考中考真题)关于x ,y 的方程组321x y m x y n +=−⎧⎨−=⎩的解满足1x y +=,则42m n ÷的值是( ) A .1 B .2 C .4 D .8【答案】D【分析】法一:利用加减法解方程组,用,n m 表示出,x y ,再将求得的代数式代入+1x y =,得到,m n 的关系,最后将42m n÷变形,即可解答.法二:321x y m x y n +=−⎧⎨−=⎩①②中①-②得到()221m n x y −=++,再根据1x y +=求出23m n −=代入代数式进行求解即可.【详解】解:法一:321x y m x y n +=−⎧⎨−=⎩①②,+①②得421x m n =+−,解得214m n x +−=,将214m n x +−=代入②,解得2314m n y −−=,1x y =+,21231144m n m n +−−−∴+=,得到23m n −=,2234222228m n m n m n −∴÷=÷===,法二:321x y m x y n +=−⎧⎨−=⎩①②①-②得:2221x y m n +=−−,即:()221m n x y −=++,∵1x y +=,∴22113m n −=⨯+=,2234222228m n m n m n −∴÷=÷===,故选:D .【点睛】本题考查了根据二元一次方程解的情况求参数,同底数幂除法,幂的乘方,熟练求出,m n 的关系是解题的关键.【答案】C【分析】根据题意第一个等量关系为9枚黄金和11枚白银的重量相等列二元一次方程;再根据第二个等量关系为1枚黄金和10枚白银重量和比8枚黄金和1枚白银重量和大13列二元一次方程,即可得二元一次方程组.【详解】解:设每枚黄金重x 两,每枚白银重y 两,根据题意得,911(10)(8)13x yy x x y =⎧⎨+−+=⎩. 故选:C.【点睛】本题考查二元一次方程组的实际应用,找出两个等量关系是列方程组的关键.15.(2023·四川眉山·统考中考真题)已知关于,x y 的二元一次方程组34125x y m x y m −=+⎧⎨+=−⎩的解满足4x y −=,则m 的值为( ) A .0 B .1C .2D .3【答案】B【分析】将方程组的两个方程相减,可得到3x y m −=+,代入4x y −=,即可解答.【详解】解:34125x y m x y m −=+⎧⎨+=−⎩①②,−①②得2226x y m −=+,3x y m ∴−=+,代入4x y −=,可得34m +=,解得1m =, 故选:B .【点睛】本题考查了根据解的情况求参数,熟练利用加减法整理代入是解题的关键.二、填空题【答案】54573x x +=+【分析】根据题中钱的总数列一元一次方程即可. 【详解】解:设合伙人数为x 人, 根据题意列方程54573x x +=+; 故答案为:54573x x +=+.【点睛】本题主要考查了一元一次方程的应用,准确分析列方程是解题的关键.17.(2023·辽宁大连·统考中考真题)我国的《九章算术》中记载道:“今有共买物,人出八,盈三;人出七,不足四.问有几人.”大意是:今有人合伙购物,每人出8元钱,会多3钱;每人出7元钱,又差4钱,问人数有多少.设有x 人,则可列方程为:_______________. 【答案】8374x x −=+【分析】设有x 人,每人出8元钱,会多3钱,则物品的钱数为:()83x −元,每人出7元钱,又差4钱,则物品的钱数为:()74+x 元,根据题意列出一元一次方程即可求解. 【详解】设有x 人,每人出8元钱,会多3钱,则物品的钱数为:()83x −元,每人出7元钱,又差4钱,则物品的钱数为:()74+x 元, 则可列方程为:8374x x −=+ 故答案为:8374x x −=+.【点睛】本题考查了一元一次方程的应用,根据题意列出一元一次方程是解题的关键.【答案】7(答案不唯一)【分析】先解关于x 、y 的二元一次方程组的解集,再将x y +>代入,然后解关于a 的不等式的解集即可得出答案.【详解】将两个方程相减得3x y a +=−,∵x y +>∴3a −>∴3a >+ ∵489<<,∴23<<,∴536<<,∴a 的一个整数值可以是7. 故答案为:7(答案不唯一).【点睛】本题主要考查了解二元一次方程组和解一元一次不等式,整体代入的思想方法是解答本题的亮点. 19.(2023·内蒙古通辽·统考中考真题)点Q 的横坐标为一元一次方程37322x x +=−的解,纵坐标为a b +的值,其中a ,b 满足二元一次方程组2428a b a b −=⎧⎨−+=−⎩,则点Q 关于y 轴对称点Q '的坐标为___________.【答案】()5,4−−【分析】先分别解一元一次方程37322x x +=−和二元一次方程组2428a b a b −=⎧⎨−+=−⎩,求得点Q 的坐标,再根据直角坐标系中点的坐标的规律即可求解.【详解】解:37322x x +=−,移项合并同类项得,525x =,系数化为1得,5x =,∴点Q 的横坐标为5,∵2428a b a b −=⎧⎨−+=−⎩①②,由2+⨯①②得,3=12b −,解得:4b =−,把4b =−代入①得,24=4a +,解得:0a =,∴=04=4a b +−−,∴点Q 的纵坐标为4−,∴点Q 的坐标为()5,4−,又∴点Q 关于y 轴对称点Q '()5,4−−, 故答案为:()5,4−−.【点睛】本题考查解一元一次方程和解二元一次方程组、代数值求值、直角坐标系中点的坐标的规律,熟练掌握解一元一次方程和解二元一次方程组的方法求得点Q 的坐标是解题的关键. 20.(2023·浙江·统考中考真题)古代中国的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两.今有干丝一十二斤,问生丝几何?”意思是:“今有生丝30斤,干燥后耗损3斤12两(古代中国1斤等于16两).今有干丝12斤,问原有生丝多少?”则原有生丝为__________斤.【答案】967【分析】设原有生丝x 斤,根据题意列出方程,解方程即可求解.【详解】解:设原有生丝x 斤,依题意,30121230316x =−,解得:967x =,故答案为:967.【点睛】本题考查了一元一次方程的应用,根据题意列出方程解题的关键.三、解答题21.(2023·江苏连云港·统考中考真题)解方程组3827x y x y +=⎧⎨−=⎩ 【答案】31x y =⎧⎨=−⎩【分析】方程组运用加减消元法求解即可.【详解】解:3827x y x y +=⎧⎨−=⎩①②①+②得515x =,解得3x =,将3x =代入①得338y ⨯+=,解得1y =−.∴原方程组的解为3,1.x y =⎧⎨=−⎩【点睛】本题主要考查了解二元一次方程组,方法主要有:代入消元法和加减消元法.22.(2023·浙江台州·统考中考真题)解方程组:7,2 2.x y x y +=⎧⎨−=⎩【答案】3,4.x y =⎧⎨=⎩【分析】把两个方程相加消去y ,求解x ,再把x 的值代入第1个方程求解y 即可.【详解】解:722x y x y +=⎧⎨−=⎩①②①+②,得39x =.∴3x =.把3x =代入①,得4y =.∴这个方程组的解是34x y =⎧⎨=⎩.【点睛】本题考查的是二元一次方程组的解法,熟练的利用加减消元法解方程组是解本题的关键.23.(2023·湖南常德·统考中考真题)解方程组:213423x y x y −=⎧⎨+=⎩①② 【答案】52x y =⎧⎨=⎩【分析】方程组利用加减消元法求解即可.【详解】解:将①2⨯得:242x y −=③+②③得:5x =将5x =代入①得:2y =所以52x y =⎧⎨=⎩是原方程组的解.【点睛】此题考查了解二元一次方程组,利用了消元的思想,解题的关键是利用代入消元法或加减消元法消去一个未知数.(1)参加此次研学活动的师生人数是多少?原计划租用多少辆45座客车?(2)若租用同一种客车,要使每位师生都有座位,应该怎样租用才合算?【答案】(1)参加此次研学活动的师生有600人,原计划租用45座客车13辆;(2)租14辆45座客车较合算【分析】(1)设参加此次研学活动的师生有x 人,原计划租用45座客车y 辆,根据题意列出二元一次方程组求解即可;(2)由(1)结论求出所需费用比较即可.【详解】(1)解:设参加此次研学活动的师生有x 人,原计划租用45座客车y 辆依题意得451560(3)y x y x +=⎧⎨−=⎩,解得:60013x y =⎧⎨=⎩,答:参加此次研学活动的师生有600人,原计划租用45座客车13辆;(2)∵要使每位师生都有座位,∴租45座客车14辆,则租60座客车10辆,142002800⨯=,103003000⨯=,∵28003000<∴租14辆45座客车较合算.【点睛】题目主要考查二元一次方程组的应用及有理数乘法的应用,理解题意是解题关键. 25.(2023·四川自贡·统考中考真题)某校组织七年级学生到江姐故里研学旅行,租用同型号客车4辆,还剩30人没有座位;租用5辆,还空10个座位.求该客车的载客量.【答案】该客车的载客量为40人【分析】设该客车的载客量为x 人,由题意知,430510x x +=−,计算求解即可.【详解】解:设该客车的载客量为x 人,由题意知,430510x x +=−,解得,40x =,∴该客车的载客量为40人.【点睛】本题考查了一元一次方程的应用.解题的关键在于根据题意正确的列方程. 26.(2023·安徽·统考中考真题)根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨10%,乙地降价5元,已知销售单价调整前甲地比乙地少10元,调整后甲地比乙地少1元,求调整前甲、乙两地该商品的销售单价.【答案】调整前甲、乙两地该商品的销售单价分别为40,50元【分析】设调整前甲、乙两地该商品的销售单价分别为,x y 元,根据题意,列出二元一次方程组,解方程组即可求解.【详解】解:设调整前甲、乙两地该商品的销售单价分别为,x y 元,根据题意得,()10110%15x y x y +=⎧⎨++=−⎩,解得:4050x y =⎧⎨=⎩答:调整前甲、乙两地该商品的销售单价分别为40,50元【点睛】本题考查了二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键. 27.(2023·全国·统考中考真题)2022年12月28日查干湖冬捕活动后,某商家销售A ,B 两种查干湖野生鱼,如果购买1箱A 种鱼和2箱B 种鱼需花费1300元:如果购买2箱A 种鱼和3箱B 种鱼需花费2300元.分别求每箱A 种鱼和每箱B 种鱼的价格.【答案】每箱A 种鱼的价格是700元,每箱B 种鱼的价格是300元.【分析】设每箱A 种鱼的价格是x 元,每箱B 种鱼的价格是y 元,根据题意建立方程组,解方程组即可得.【详解】解:设每箱A 种鱼的价格是x 元,每箱B 种鱼的价格是y 元,由题意得:21300232300x y x y +=⎧⎨+=⎩,解得700300x y =⎧⎨=⎩,答:每箱A 种鱼的价格是700元,每箱B 种鱼的价格是300元.【点睛】本题考查了二元一次方程组的应用用,正确建立方程组是解题关键.【答案】(1)甲区有农田50000亩,乙区有农田40000亩;(2)100亩【分析】(1)设甲区有农田x 亩,则乙区有农田()10000x −亩,根据甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同建立方程,解方程即可得;(2)设派往甲区每架次无人机平均喷洒y 亩,派往甲区的无人机架次为a 架次,则派往乙区每架次无人机平均喷洒503y ⎛⎫− ⎪⎝⎭亩,派往乙区的无人机架次为1.2a 架次,根据两区喷洒的面积相同建立方程,解方程即可得.【详解】(1)解:设甲区有农田x 亩,则乙区有农田()10000x −亩,由题意得:80%10000x x =−,解得50000x =,则10000500001000040000x −=−=,答:甲区有农田50000亩,乙区有农田40000亩.(2)解:设派往甲区每架次无人机平均喷洒y 亩,派往甲区的无人机架次为a 架次,则派往乙区每架次无人机平均喷洒503y ⎛⎫− ⎪⎝⎭亩,派往乙区的无人机架次为1.2a 架次, 由题意得:5031.2ay a y ⎛⎫=− ⎪⎝⎭,即5031.2y y ⎛⎫=− ⎪⎝⎭, 解得100y =,答:派往甲区每架次无人机平均喷洒100亩.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确建立方程是解题关键.【答案】(1)A 种盐皮蛋每箱价格是30元,B 种盐皮蛋每箱价格是20元;(2)购买A 种盐皮蛋18箱,B 种盐皮蛋12箱才能使总费用最少,最少费用为780元【分析】(1)设A 种盐皮蛋每箱价格是x 元,B 种盐皮蛋每箱价格是y 元,根据题意建立方程组,解方程组即可得;(2)设购买A 种盐皮蛋m 箱,则购买B 种盐皮蛋()30m −箱,根据题意建立不等式组,解不等式组可得m 的取值范围,再结合m 为正整数可得m 所有可能的取值,然后根据(1)的结果逐个计算总费用,找出总费用最少的购买方案即可.【详解】(1)解:设A 种盐皮蛋每箱价格是x 元,B 种盐皮蛋每箱价格是y 元,由题意得:9639058310x y x y +=⎧⎨+=⎩,解得3020x y =⎧⎨=⎩,答:A 种盐皮蛋每箱价格是30元,B 种盐皮蛋每箱价格是20元.(2)解:设购买A 种盐皮蛋m 箱,则购买B 种盐皮蛋()30m −箱,购买A 种的数量至少比B 种的数量多5箱,又不超过B 种的2倍,()()305230m m m m ⎧−−≥⎪∴⎨≤−⎪⎩,解得35202m ≤≤,又m 为正整数,m ∴所有可能的取值为18,19,20,①当18m =,3012m −=时,购买总费用为30182012780⨯+⨯=(元),②当19m =,3011m −=时,购买总费用为30192011790⨯+⨯=(元),③当20m =,3010m −=时,购买总费用为30202010800⨯+⨯=(元),所以购买A 种盐皮蛋18箱,B 种盐皮蛋12箱才能使总费用最少,最少费用为780元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用,正确建立方程组和不等式组是解题关键.(1)一户家庭人口为3人,年用气量为3200m ,则该年此户需缴纳燃气费用为__________元;(2)一户家庭人口不超过4人,年用气量为3m (1200)x x >,该年此户需缴纳燃气费用为y 元,求y 与x 的函数表达式;(3)甲户家庭人口为3人,乙户家庭人口为5人,某年甲户、乙户缴纳的燃气费用均为3855元,求该年乙户比甲户多用多少立方米的燃气?(结果精确到31m )【答案】(1)534;(2) 3.63768(1200)y x x =−>;(3)26立方米【分析】(1)根据第一阶梯的费用计算方法进行计算即可;(2)根据“单价×数量=总价”可得y 与x 之间的函数关系式;(3)根据两户的缴费判断收费标准列式计算即可解答.【详解】(1)∵33200m 400m <,∴该年此户需缴纳燃气费用为:2.67200534⨯=(元),故答案为:534;(2)y 关于x 的表达式为()()400 2.671200400 3.15 3.631200y x =⨯+−⨯+− 3.63768(1200)x x =−> (3)∵()400 2.671200400 3.1535883855⨯+−⨯=<, ∴甲户该年的用气量达到了第三阶梯.由(2)知,当3855y =时,3.637683855x −=,解得1273.6x ≈.又∵()()2.67100400 3.15120020050041703855⨯++⨯+−=>, 且()2.6710040013353855⨯+=<, ∴乙户该年的用气量达到第二阶梯,但末达到第三阶梯.设乙户年用气量为3m a .则有()2.67500 3.155003855a ⨯+−=,解得1300.0a =,∴31300.01273.626.426m −=≈.答:该年乙户比甲户多用约26立方米的燃气.【点睛】本题考查了一次函数的应用,一元一次方程的应用以及列代数式,解题的关键是找准等量关系,正确列出一元一次方程. 31.(2023·江西·统考中考真题)今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?【答案】(1)该班的学生人数为45人;(2)至少购买了甲树苗80棵【分析】(1)设该班的学生人数为x 人,根据两种方案下树苗的总数不变列出方程求解即可;(2)根据(1)所求求出树苗的总数为155棵,设购买了甲树苗m 棵,则购买了乙树苗()155m −棵树苗,再根据总费用不超过5400元列出不等式求解即可.【详解】(1)解:设该班的学生人数为x 人,由题意得,320425x x +=−,解得45x =,∴该班的学生人数为45人;(2)解:由(1)得一共购买了34520155⨯+=棵树苗,设购买了甲树苗m 棵,则购买了乙树苗()155m −棵树苗, 由题意得,()30401555400m m +−≤,解得80m ≥,∴m 得最小值为80,∴至少购买了甲树苗80棵,答:至少购买了甲树苗80棵.【点睛】本题主要考查了一元一次方程的实际应用,一元一次不等式的实际应用,正确理解题意找到等量 32.(2023·山东临沂·统考中考真题)大学生小敏参加暑期实习活动,与公司约定一个月(30天)的报酬是M 型平板电脑一台和1500元现金,当她工作满20天后因故结束实习,结算工资时公司给了她一台该型平板电脑和300元现金.(1)这台M 型平板电脑价值多少元?(2)小敏若工作m 天,将上述工资支付标准折算为现金,她应获得多少报酬(用含m 的代数式表示)?【答案】(1)这台M 型平板电脑的价值为2100元;(2)她应获得120m 元的报酬【分析】(1)设这台M 型平板电脑的价值为x 元,根据题意,列出方程进行求解即可;(2)根据题意,列出代数式即可.【详解】(1)解:设这台M 型平板电脑的价值为x 元,由题意,得:150********x x ++=,解得:2100x =;∴这台M 型平板电脑的价值为2100元;(2)解:由题意,得:2100150012030m m +⋅=;答:她应获得120m 元的报酬.【点睛】本题考查一元一次方程的应用.找准等量关系,正确的列出方程,是解题的关键.【答案】(1)豆沙粽的单价为4元,肉粽的单价为8元;(2)①豆沙粽优惠后的单价为3元,肉粽优惠后的单价为7元;②10m =【分析】(1)设豆沙粽的单价为x 元,则肉粽的单价为2x 元,依题意列一元一次方程即可求解;(2)①设豆沙粽优惠后的单价为a 元,则肉粽优惠后的单价为b 元,依题意列二元一次方程组即可求解; ②根据销售额=销售单价⨯销售量,列一元二次方程,解之即可得出m 的值.【详解】(1)解:设豆沙粽的单价为x 元,则肉粽的单价为2x 元,依题意得10122136x x +⨯=,解得4x =;则28x =;所以豆沙粽的单价为4元,肉粽的单价为8元;(2)解:①设豆沙粽优惠后的单价为a 元,则肉粽优惠后的单价为b 元,依题意得20302703020230a b a b +=⎧⎨+=⎩,解得37a b =⎧⎨=⎩,所以豆沙粽优惠后的单价为3元,肉粽优惠后的单价为7元;②依题意得[3(40)7](804)[3(40)7](48)17280m m m m m m +−⨯⨯−+⨯−+⨯+=,解得19m =或10m =, 1(40)2m m <−,∴403m <,10m ∴=.【点睛】本题考查了一元二次方程的应用、二元一次方程组的应用和一元一次方程的应用,根据题意找到题中的等量关系列出方程或方程组是解题的关键.。
浙江省杭州市中考数学试题分类解析 专题11 圆一、选择题1. (2002年浙江杭州3分)过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm .则OM 的长为【 】. (A )3cm (B )5cm(C )2cm(D )3cm【答案】B 。
【考点】垂径定理,勾股定理。
【分析】⊙O 内一点M 的最长的弦是过点M 的直径;最短的弦是过点M 垂直于过点M 的直径的弦。
如图,AB 是最长的弦,CD 是最短的弦,连接OC 。
∵AB=6cm,CD=4cm ;∴OC=OA=3cm,CM=2cm 。
∴2222OM OC CM 325=-=-=(cm )。
故选B 。
2. (2003年浙江杭州3分)如图,点C 为⊙O 的弦AB 上的一点,点P 为⊙O 上一点,且OC⊥CP,则 有【 】(A )OC 2=CA•CB (B )OC 2=PA•PB (C )PC 2=PA•PB (D )PC 2=CA•CB【答案】D。
【考点】垂径定理,相交弦定理。
【分析】延长PC交圆于D,连接OP,OD。
根据相交弦定理,得CP•CD=CA•CB。
∵OP=OD,OC⊥PC,∴PC=CD。
∴PC2=CA•CB。
故选D。
3. (2004年浙江杭州3分)如图,三个半径为3的圆两两外切,且ΔABC的每一边都与其中的两个圆相切,那么ΔABC的周长是【】(A)12+63(B)18+63(C)18+123(D)12+123【答案】B。
【考点】相切圆的性质,等边三角形、矩形的判定和性质,锐角三角函数定义,特殊角的三角函数值。
【分析】∵三圆两两相切,∴外切的△ABC为等边三角形(证明略)。
如图,连接 BO 2,CO 3,分别过点O 1,O 2作BC 的垂线,垂足为D ,E 。
∴BO 2平分∠ABC,∠O 2BC =30° 。
∵O 2D⊥BD ,∴22O D 3tan O BC tan30BD 3∠︒===。
∵O 2D=3,∴2O D 3BD 33333===。
浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分。
1.计算下列各式,值最小的是()A. 2×0+1-9B. 2+0×1-9C. 2+0-1×9D. 2+0+1-9【答案】 A【考点】有理数的加减乘除混合运算【解析】【解答】解:A.∵原式=0+1-9=-8,B.∵原式=2+0-9=-7,C.∵原式=2+0-9=-7,D.∵原式=2+1-9=-6,∵-8<-7<-6,∴值最小的是-8.故答案为:A.【分析】先分别计算出每个代数式的值,再比较大小,从而可得答案.2.在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A. m=3,n=2B. m=-3,n=2 C. m=3,n=2 B.m=-2,n=3【答案】 B【考点】关于坐标轴对称的点的坐标特征【解析】【解答】解:∵A(m,2)与B(3,n)关于y轴对称,∴m=-3,n=2.故答案为:B.【分析】关于y轴对称的点的特征:横坐标互为相反数,纵坐标不变,依此即可得出答案.3.如图,P为⊙O外一点,PA,PB分别切⊙O于A,B两点,若PA=3,则PB=()A. 2B. 3C. 4D. 5【答案】 B【考点】切线长定理【解析】【解答】解:∵PA、PB分别为⊙O的切线,∴PA=PB,又∵PA=3,∴PB=3.故答案为:B.【分析】根据切线长定理可得PA=PB,结合题意可得答案.4.已知九年级某班30位学生种树72株,男生每人种3棵树,女生每人种2棵树.设e男生有人,则()A. 2x+3(72-x)=30B. 3x+2(72-x)=30C. 2x+3(30-x)=72 D. 3x+2(30-x)=72【答案】 D【考点】一元一次方程的其他应用【解析】【解答】解:依题可得,3x+2(30-x)=72.故答案为:D.【分析】男生种树棵数+女生种树棵数=72,依此列出一元一次方程即可.5.点点同学对数据26,36,36,46,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A. 平均数B. 中位数C. 方差 D. 标准差【答案】 B【考点】中位数【解析】【解答】解:依题可得,这组数据的中位数为:=41,∴计算结果与被涂污数字无关的是中位数.故答案为:B.【分析】中位数:将一组数据从小到大或从大到小排列,如果是奇数个数,则处于中间的那个数即为中位数;若是偶数个数,则中间两个数的平均数即为中位数;依此可得答案.6.如图,在△ABC中,点D,E分别在AB和AC边上,DE∥BC,M为BC边上一点(不与点B、C重合),连接AM交DE于点N,则()A. B. C.D.【答案】 C【考点】平行线分线段成比例【解析】【解答】解:A.∵DE∥BC,∴,,∴,,∵≠ ,∴≠ ,故错误,A不符合题意;B.∵DE∥BC,∴,,∴,,∵≠ ,∴≠ ,故错误,B不符合题意;C.∵DE∥BC,∴,,∴= ,故正确,C符合题意;D.∵DE∥BC,∴,,∴= ,即= ,故错误,D不符合题意;故答案为:C.【分析】根据平行线截线段成比例逐一分析即可判断对错,从而可得答案.7.在△ABC中,若一个内角等于另两个内角的差,则()A. 必有一个内角等于30°B. 必有一个内角等于45°C. 必有一个内角等于60°D. 必有一个内角等于90°【答案】 D【考点】三角形内角和定理【解析】【解答】解:设△ABC的三个内角分别为A、B、C,依题可得,A=B-C ①,又∵A+B+C=180°②,②-①得:2B=180°,∴B=90°,∴△ABC必有一个内角等于90°.故答案为:D.【分析】根据题意列出等式A=B-C①,再由三角形内角和定理得A+B+C=180°②,由②-①可得B=90°,由此即可得出答案.8.已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A B C D【答案】 A【考点】一次函数图象、性质与系数的关系【解析】【解答】解:A.∵y1=ax+b图像过一、二、三象限,∴a>0,b>0,又∵y2=bx+a图像过一、二、三象限,∴b>0,a>0,故正确,A符合题意;B.∵y1=ax+b图像过一、二、三象限,∴a>0,b>0,又∵y2=bx+a图像过一、二、四象限,∴b<0,a>0,故矛盾,B不符合题意;C.∵y1=ax+b图像过一、二、四象限,∴a<0,b>0,又∵y2=bx+a图像过一、二、四象限,∴b<0,a>0,故矛盾,C不符合题意;D.∵y1=ax+b图像过二、三、四象限,∴a<0,b<0,又∵y2=bx+a图像过一、三、四象限,∴b>0,a<0,故矛盾,D不符合题意;故答案为:A.【分析】根据一次函数图像与系数的关系:k>0,b>0时,图像经过一、二、三象限;k>0,b<0时,图像经过一、三、四象限;k<0,b<0时,图像经过二、三、四象限;k>0,b>0时,图像经过一、二、四象限;依此逐一分析即可得出答案.9.如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内).已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A. asinx+bsinxB. acosx+bcosxC. asinx+bcosx.D. acosx+bsin x【答案】 D【考点】解直角三角形的应用【解析】【解答】解:作AG⊥OC交OC于点G,交BC于点H,如图,∵四边形ABCD为矩形,AD=b,∴∠ABH=90°,AD=BC=b,∵OB⊥OC,∴∠O=90°,又∵∠HCG+∠GHC=90°,∠AHB+∠BAH=90°,∠GHC=∠AHB,∠BC0=x,∴∠HCG=∠BAH=x,在Rt△ABH中,∵cos∠BAH=cosx= ,AB=a,∴AH= ,∵tan∠BAH=tanx= ,∴BH=a·tanx,∴CH=BC-BH=b-a·tanx,在Rt△CGH中,∵sin∠HCG=sinx= ,∴GH=(b-a·tanx)·sinx=bsinx-atanxsinx,∴AG=AH+HG= +bsinx-atanxsinx,= +bsinx- ,=bsinx+acosx.故答案为:D.【分析】作AG⊥OC交OC于点G,交BC于点H,由矩形性质得∠ABH=90°,AD=BC=b,根据等角的余角相等得∠HCG=∠BAH=x,在Rt△ABH中,根据锐角三角函数余弦定义cosx= 得AH= ,根据锐角三角函数正切定义tanx= 得BH=a·tanx,从而可得CH长,在Rt△CGH中,根据锐角三角函数正弦定义sinx= 得GH=bsinx-atanxsinx,由AG=AH+HG计算即可得出答案.10.在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A. M=N-1或M=N+1B. M=N-1或M=N+2C. M=N或M=N+1 D. M=N或M=N-1【答案】 C【考点】二次函数图象与坐标轴的交点问题【解析】【解答】解:∵y=(x+a)(x+b),∴函数图像与x轴交点坐标为:(-a,0),(-b,0),又∵y=(ax+1)(bx+1),∴函数图像与x轴交点坐标为:(- ,0),(- ,0),∵a≠b,∴M=N,或M=N+1.故答案为:C.【分析】根据函数解析式分别得出图像与x轴的交点坐标,根据题意a≠b分等于0和不等于0的情况即可得出两个交点个数之间的关系式,从而得出答案.二、填空题:本大题有6个小题,每小题4分,共24分,11.因式分解:1-x2=________.【答案】(1+x)(1-x)【考点】因式分解﹣运用公式法【解析】【解答】解:∵原式=(1+x)(1-x).故答案为:(1+x)(1-x).【分析】根据因式分解的方法——公式法因式分解即可得出答案.12.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于________。
2023年杭州市初中学业水平考试数学考生须知:1.本试卷满分120分,考试时间100分钟.2.答题前,在答题纸上写姓名和准考证号,并在试卷首页的指定位置写上姓名和座位号.3.必须在答题纸的对应答题位置上答题,写在其他地方无效.答题方式详见答题纸上的说明.4.如需画图作答,必须用黑色字迹的钢笔或签字笔将图形线条描黑.5.考试结束后,试题卷和答题纸一并上交.参考公式:二次函数()20y ax bx c a ++≠图象的顶点坐标公式:24,24b ac b a a −− .试题卷一、选择题:(本大题有10个小题,每小题3分,共30分)1. 杭州奥体中心体育场又称“大莲花”,里面有80800个座位.数据80800用科学记数法表示为( )A. 48.810×B. 48.0810×C. 58.810×D. 58.0810×【答案】B【解析】【分析】根据科学记数法的表示方法求解即可.【详解】4808008.0810=×.故选:B .【点睛】本题主要考查科学记数法.科学记数法的表示形式为10n a ×的形式,其中1<10a ≤,n 为整数.解题关键是正确确定a 的值以及n 的值.2. 22(2)2−+=( )A. 0B. 2C. 4D. 8【答案】D【解析】 【分析】先计算乘方,再计算加法即可求解.【详解】解:22(2)2448−+=+=,故选:D �【点睛】本题考查有理数度混合运算,熟练掌握有理数乘方运算法则是解题的关键.3. 分解因式:241a −=( )A. ()()2121a a −+B. ()()22a a −+C. ()()41a a −+D. ()()411a a −+ 【答案】A【解析】【分析】利用平方差公式分解即可.【详解】()()()2241212121a a a a −=−=+−. 故选:A .【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.4. 如图,矩形ABCD 的对角线,AC BD 相交于点O .若60AOB ∠=°,则AB BC=( )A. 12 B. C. D. 【答案】D【解析】【分析】根据矩形性质得出1122OA OC AC OB OD BD AC BD =====,,,推出OA OB =则有等边三角形AOB ,即60BAO ∠=°,然后运用余切函数即可解答.【详解】解:�四边形ABCD 是矩形,�1122OA OC AC OB OD BD AC BD =====,,, �OA OB =,�60AOB ∠=°,�AOB 是等边三角形,�60BAO ∠=°,∴906030ACB ∠=°−°=°,∵tan tan 30AB ACB BC ∠==°=,故D 正确. 故选:D .【点睛】本题考查了等边三角形性质和判定、矩形的性质、余切的定义等知识点,求出60BAO ∠=°是解答本题的关键.5. 在直角坐标系中,把点(),2A m 先向右平移1个单位,再向上平移3个单位得到点B .若点B 的横坐标和纵坐标相等,则m =( )A. 2B. 3C. 4D. 5 【答案】C【解析】【分析】先根据平移方式确定点B 的坐标,再根据点B 的横坐标和纵坐标相等列方程,解方程即可.【详解】解: 点(),2A m 先向右平移1个单位,再向上平移3个单位得到点B , ∴()1,23B m ++,即()1,5B m +,点B 的横坐标和纵坐标相等,∴15m +=,∴4m =,故选C .【点睛】本题考查平面直角坐标系内点的平移,一元一次方程的应用等,解题的关键是掌握平面直角坐标系内点平移时坐标的变化规律:横坐标右加左减,纵坐标上加下减.6. 如图,在O 中,半径,OA OB 互相垂直,点C 在劣弧AB 上.若19ABC ∠=°,则BAC ∠=( )A. 23°B. 24°C. 25°D. 26°【答案】D【解析】 【分析】根据,OA OB 互相垂直可得 ADB 所对的圆心角为270°,根据圆周角定理可得12701352ACB ∠=×°=°,再根据三角形内角和定理即可求解. 【详解】解:如图,半径,OA OB 互相垂直,∴90AOB ∠=°,∴ ADB 所对的圆心角为270°,∴ ADB 所对的圆周角12701352ACB ∠=×°=°, 又 19ABC ∠=°, ∴18026BAC ACB ABC ∠=°−∠−∠=°,故选D .【点睛】本题考查圆周角定理、三角形内角和定理,解题的关键是掌握:同圆或等圆中,同弧所对的圆周角等于圆心角的一半.7. 已知数轴上的点,A B 分别表示数,a b ,其中10a −<<,01b <<.若a b c ×=,数c 在数轴上用点C 表示,则点,,A B C 在数轴上的位置可能是( )A. B.C.D.【答案】B【解析】 分析】先由10a −<<,01b <<,a b c ×=,根据不等式性质得出0a c <<,再分别判定即可.【详解】解:∵10a −<<,01b <<,∴0a ab <<∵a b c ×=∴0a c <<A 、01b c <<<,故此选项不符合题意;B 、0a c <<,故此选项符合题意;C 、1c >,故此选项不符合题意;D 、1c <−,故此选项不符合题意;故选:B .【点睛】本题考查用数轴上的点表示数,不等式性质,由10a −<<,01b <<,a b c ×=得出0a c <<是解题的关键.8. 设二次函数()()(0,,y a x m x m k a m k =−−−>是实数),则( )A. 当2k =时,函数y 的最小值为a −B. 当2k =时,函数y 的最小值为2a −C. 当4k =时,函数y 的最小值为a −D. 当4k =时,函数y 的最小值为2a −【答案】A【解析】 【分析】令0y =,则()()0a x m x m k =−−−,解得:1x m =,2x m k =+,从而求得抛物线对称轴为直线222m m k m k x +++=,再分别求出当2k =或4k =时函数y 的最小值即可求解. 【详解】解:令0y =,则()()0a x m x m k =−−−,解得:1x m =,2x m k =+, ∴抛物线对称轴为直线222m m k m k x +++= 当2k =时, 抛物线对称轴为直线1x m =+,【把1x m =+代入()()2y a x m x m =−−−,得y a =−,∵0a >∴当1x m =+,2k =时,y 有最小值,最小值为a −.故A 正确,B 错误;当4k =时, 抛物线对称轴为直线2x m =+,把2x m =+代入()()4y a x m x m =−−−,得4y a =−,∵0a >∴当2x m =+,4k =时,y 有最小值,最小值为4a −,故C 、D 错误,故选:A .【点睛】本题考查抛物线的最值,抛物线对称轴.利用抛物线的对称性求出抛物线对称轴是解题的关键. 9. 一枚质地均匀的正方体骰子(六个面分别标有数字1,2,3,4,5,6),投掷5次,分别记录每次骰子向上的一面出现的数字.根据下面的统计结果,能判断记录的这5个数字中一定没有..出现数字6的是( ) A. 中位数是3,众数是2B. 平均数是3,中位数是2C. 平均数是3,方差是2D. 平均数是3,众数是2【答案】C【解析】【分析】根据中位数、众数、平均数、方差的定义,结合选项中设定情况,逐项判断即可.【详解】解:当中位数是3,众数是2�,记录的5个数字可能为:2,2,3,4,5或2,2,3,4,6或2,2,3,5,6,故A 选项不合题意;当平均数是3,中位数是2�,5个数之和为15,记录的5个数字可能为1,1,2,5,6或1,2,2,5,5,故B 选项不合题意;当平均数是3,方差是2�,5个数之和为15,假设6出现了1次,方差最小的情况下另外4个数为:1,2,3,3,此时方差()()()()()2222211323333363 2.825s =×−+−+−+−+−=>, 因此假设不成立,即一定没有出现数字6,故C 选项符合题意;当平均数是3,众数是2��5个数之和为15,2至少出现两次,记录的5个数字可能为1,2,2�4,6,故D 选项不合题意;故选:C .【点睛】本题考查中位数、众数、平均数、方差,解题的关键是根据每个选项中的设定情况,列出可能出现的5个数字.10. 第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(,,,DAE ABF BCG CDH △△△△)和中间一个小正方形EFGH 拼成的大正方形ABCD 中,ABF BAF ∠>∠,连接BE .设,BAF BEF αβ∠=∠=,若正方形EFGH 与正方形ABCD 的面积之比为21:,tan tan n αβ=,则n =( )A. 5B. 4C. 3D. 2【答案】C【解析】 【分析】设BF AE a ==,EF b =,首先根据2tan tan αβ=得到22222a ab b +=,然后表示出正方形ABCD 的面积为223AB b =,正方形EFGH 的面积为22EF b =,最后利用正方形EFGH 与正方形ABCD 的面积之比为1:n 求解即可.【详解】设BF AE a ==,EF b =,�2tan tan αβ=,90AFB ∠=°, �2BF BF AF EF = ,即2a a ab b = + , �22a a a b b=+,整理得22a ab b +=, �22222a ab b +=,�90AFB ∠=°,�()22222222223AB AF BF a b a a ab b b =+=++=++=, �正方形ABCD 的面积为223AB b =,�正方形EFGH 面积为22EF b =,�正方形EFGH 与正方形ABCD 的面积之比为1:n , �2213b b n=, �解得3n =.的故选:C .【点睛】此题考查了勾股定理,解直角三角形,赵爽“弦图”等知识,解题的关键是熟练掌握以上知识点.二、填空题:(本大题有6个小题,每小题4分,共24分)11. 计算:=______【答案】【解析】12. 如图,点,D E 分别在ABC 的边,AB AC 上,且DE BC ∥,点F 在线段BC 的延长线上.若28ADE ∠=°,118ACF °∠=,则A ∠=_________.【答案】90°##90度【解析】【分析】首先根据平行线的性质得到28B ADE ∠=∠=°,然后根据三角形外角的性质求解即可.【详解】�DE BC ∥,28ADE ∠=°,�28B ADE ∠=∠=°,�118ACF °∠=,�1182890A ACF B ∠=∠−∠=°−°=°.故答案为:90°.【点睛】此题考查了平行线的性质和三角形外角的性质,解题的关键是熟练掌握以上知识点. 13. 一个仅装有球的不透明布袋里只有6个红球和n 个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为25,则n =_________. 【答案】9【解析】【分析】根据概率公式列分式方程,解方程即可.【详解】解: 从中任意摸出一个球是红球的概率为25,【∴6265n =+, 去分母,得()6526n ×=+, 解得9n =,经检验9n =是所列分式方程的根,∴9n =,故答案为:9.【点睛】本题考查已知概率求数量、解分式方程,解题的关键是掌握概率公式.14. 如图,六边形ABCDEF 是O 的内接正六边形,设正六边形ABCDEF 的面积为1S ,ACE △的面积为2S ,则12S S =_________.【答案】2【解析】【分析】连接,,OA OC OE ,首先证明出ACE △是O 的内接正三角形,然后证明出()ASA BAC OAC ≌ ,得到BAC AFECDE S S S == ,OAC OAE OCE S S S == ,进而求解即可. 【详解】如图所示,连接,,OA OC OE ,�六边形ABCDEF 是O 的内接正六边形,�AC AE CE ==,�ACE △是O 的内接正三角形,�120B ∠=°,AB BC =,�()1180302BAC BCA B ∠=∠=°−∠=°, �60CAE ∠=°, �30OAC OAE ∠=∠=°,�30BAC OAC ∠=∠=°,同理可得,30BCA OCA ∠=∠=°,又�AC AC =,�()ASA BAC OAC ≌ ,�BAC OAC S S = ,由圆和正六边形的性质可得,BAC AFECDE S S S == , 由圆和正三角形的性质可得,OAC OAEOCE S S S == , ∵()2122BAC AFE CDE OAC OAE OCE OAC OAE OCE S S S S S S S S S S S =+++++=++= , �122S S =. 故答案为:2.【点睛】此题考查了圆内接正多边形的性质,正六边形和正三角形的性质,全等三角形的性质和判定等知识,解题的关键是熟练掌握以上知识点.15. 在“ “探索一次函数y kx b =+的系数,k b 与图像的关系”活动中,老师给出了直角坐标系中的三个点:()()()0,2,2,3,3,1A B C .同学们画出了经过这三个点中每两个点的一次函数的图像,并得到对应的函数表达式111222333,,y k x b y k x b y k x b =+=+=+.分别计算11k b +,2233,k b k b ++的值,其中最大的值等于_________.【答案】5【解析】【分析】分别求出三个函数解析式,然后求出11k b +,2233,k b k b ++进行比较即可解答.【详解】解:设111y k x b =+过()()0,2,2,3A B ,则有: 111232b k b = =+ ,解得:11122k b = = ,则1115222k b +=+=; 同理:22275k b +=−+=,3315233k b +=−+= 则分别计算11k b +,2233,k b k b ++的最大值为值22275k b +=−+=. 故答案为5.【点睛】本题主要考查了求一次函数解析式,掌握待定系数法是解答本题的关键.16. 如图,在ABC 中,,90ABAC A =∠<°,点,,D E F 分别在边AB ,,BC CA 上,连接,,DE EF FD ,已知点B 和点F 关于直线DE 对称.设BC k AB =,若AD DF =,则CF FA=_________(结果用含k 的代数式表示). 【答案】222k k− 【解析】【分析】先根据轴对称的性质和已知条件证明DE AC ∥,再证BDE BAC ∽△△,推出12ECk AB =⋅,通过证明ABC ECF ∽,推出212CF k AB =⋅,即可求出CF FA 的值. 【详解】解: 点B 和点F 关于直线DE 对称,∴DB DF =,AD DF =,∴AD DB =.AD DF =,∴A DFA ∠=∠,点B 和点F 关于直线DE 对称,∴BDE FDE ∠=∠,又 BDE FDE BDF A DFA ∠+∠=∠=∠+∠,∴FDE DFA ∠=∠,∴DE AC ∥,∴C DEB ∠=∠,DEF EFC ∠=∠,点B 和点F 关于直线DE 对称,∴DEB DEF ∠=∠,∴C EFC ∠=∠,AB AC =,∴C B ∠=∠,在ABC 和ECF △中,B CACB EFC ∠=∠ ∠=∠ ,∴ABC ECF ∽.在ABC 中,DE AC ∥,∴BDE A ∠=∠,BED C ∠=∠,∴BDE BAC ∽△△, ∴12BE BDBC BA ==, ∴12EC BC =, BC k AB =,∴BC k AB =⋅,12EC k AB =⋅,ABC ECF ∽. ∴ABBC EC CF =, ∴12AB k ABCF k AB ⋅=⋅, 解得212CF k AB =⋅,∴222212122k AB CF CF CF k FA AC CF AB CF k AB k AB ⋅====−−−−⋅. 故答案为:222k k−. 【点睛】本题考查相似三角形的判定与性质,轴对称的性质,平行线的判定与性质,等腰三角形的性质,三角形外角的定义和性质等,有一定难度,解题的关键是证明ABC ECF ∽.三、解答题:(本大题有7个小题,共66分)17. 设一元二次方程20x bx c ++=.在下面的四组条件中选择其中一组..,b c 的值,使这个方程有两个不相等的实数根,并解这个方程.①2,1b c ==;②3,1b c ==;③3,1b c ==−;④2,2b c ==. 注:如果选择多组条件分别作答,按第一个解答计分.【答案】选②,1x =2x =1x =,2x =【解析】【分析】先根据判别式判断一元二次方程根的情况,再利用公式法解一元二次方程即可.【详解】解:20x bx c ++=中1a =, ①2,1b c ==时,22424110b ac ∆=−=−××=,方程有两个相等的实数根;②3,1b c ==时,224341150b ac ∆=−=−××=>,方程有两个不相等的实数根; ③3,1b c ==−时,()2243411130b ac ∆=−=−××−=>,方程有两个不相等的实数根; ④2,2b c ==时,224241240b ac ∆=−=−××=−<,方程没有实数根; 因此可选择②或③.选择②3,1b c ==时, 2310x x ++=,224341150b ac ∆=−=−××=>,x ,1x =2x =选择③3,1b c ==−时,2310x x +−=,()2243411130b ac ∆=−=−××−=>,x ,1x =2x = 【点睛】本题考查根据判别式判断一元二次方程根的情况,解一元二次方程,解题的关键是掌握:对于一元二次方程20ax bx c ++=,当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个不相等的实数根;当Δ0<时,方程没有实数根.18. 某校为了了解家长和学生观看安全教育视频的情况,随机抽取本校部分学生作调查,把收集的数据按照A ,B ,C ,D 四类(A 表示仅学生参与;B 表示家长和学生一起参与;C 表示仅家长参与;D 表示其他)进行统计,得到每一类的学生人数,并把统计结果绘制成如图所示的未完成的条形统计图和扇形统计图.(1)在这次抽样调查中,共调查了多少名学生?(2)补全条形统计图.(3)已知该校共有1000名学生,估计B 类的学生人数.【答案】(1)200名(2)见解析 (3)600名【解析】【分析】(1)由A 类别人数及其所占百分比可得总人数;(2)先求出B 类学生人数为:200601010120−−−=(名),再补画长形图即可;(3)用该校学生总数1000乘以B 类的学生所占百分比即可求解.【小问1详解】解:6030%200÷=(名),答:这次抽样调查中,共调查了200名学生;【小问2详解】解:B 类学生人数为:200601010120−−−=(名),补全条形统计图如图所示:【小问3详解】 解:1201000100%600200××=(名), 答:估计B 类的学生人数600名.【点睛】本题考查样本容量,条形统计图,扇形统计图,用样本估计总体,从条形统计图与扇形统计图获取到有用信息是解题的关键.19. 如图,平行四边形ABCD 的对角线,AC BD 相交于点O ,点,E F 在对角线BD 上,且BE EF FD ==,连接,AE EC ,,CF FA .(1)求证:四边形AECF 是平行四边形.(2)若ABE 的面积等于2,求CFO △的面积.【答案】(1)见解析 (2)1【解析】【分析】(1)根据平行四边形对角线互相平分可得OA OC =,OB OD =,结合BE FD =可得OE OF =,即可证明四边形AECF 是平行四边形;(2)根据等底等高的三角形面积相等可得2AEF ABES S == ,再根据平行四边形的性质可得11121222CFO CEF AEF S S S ===×= . 【小问1详解】证明: 四边形ABCD 是平行四边形,∴OA OC =,OB OD =,BE FD =,∴OB BE OD FD −=−,∴OE OF =,又 OA OC =,∴四边形AECF 是平行四边形.【小问2详解】解: 2ABE S = ,BE EF =,∴2AEF ABES S == , 四边形AECF 是平行四边形, ∴11121222CFO CEF AEF S S S ===×= . 【点睛】本题考查平行四边形的判定与性质,解题的关键是掌握平行四边形的对角线互相平分. 20. 在直角坐标系中,已知120k k ≠,设函数11k y x=与函数()2225y k x =−+的图象交于点A 和点B .已知点A 的横坐标是2,点B 的纵坐标是4−.(1)求12,k k 的值.(2)过点A 作y 轴的垂线,过点B 作x 轴的垂线,在第二象限交于点C ;过点A 作x 轴的垂线,过点B 作y 轴的垂线,在第四象限交于点D .求证:直线CD 经过原点.【答案】(1)110k =,22k =(2)见解析【解析】【分析】(1)首先将点A 的横坐标代入()2225y k x =−+求出点A 的坐标,然后代入11k y x=求出110k =,然后将点B 的纵坐标代入110y x =求出5,42B −−,然后代入()2225y k x =−+即可求出22k =; (2)首先根据题意画出图形,然后求出点C 和点D 的坐标,然后利用待定系数法求出CD 所在直线的表达式,进而求解即可.【小问1详解】�点A 的横坐标是2,�将2x =代入()22255y k x =−+=�()2,5A ,�将()2,5A 代入11ky x =得,110k =, �110y x =,�点B 的纵坐标是4−,�将4y =−代入110y x =得,52x =−, �5,42B−− ,�将5,42B −− 代入()2225y k x =−+得,254252k −=−−+ ,�解得22k =,�()222521y x x −++;【小问2详解】如图所示,由题意可得,5,52C −,()2,4D −, �设CD 所在直线的表达式为y kx b =+, �55224k b k b −+= +=− ,解得20k b =− = , �2y x =−,�当0x =时,0y =,�直线CD 经过原点.【点睛】此题考查了反比例函数和一次函数综合,待定系数法求函数表达式等知识,解题关键是熟练掌握以上知识点.21. 在边长为1的正方形ABCD 中,点E 在边AD 上(不与点A ,D 重合),射线BE 与射线CD 交于点F .(1)若13ED =,求DF 的长. (2)求证:1AE CF ⋅=.(3)以点B 为圆心,BC 长为半径画弧,交线段BE 于点G .若EG ED =,求ED 的长.【答案】(1)12(2)见解析 (3)14的【解析】【分析】(1)证明AEB DEF △∽△,利用相似三角形的对应边成比例求解;(2)证明AEB CBF ∽,利用相似三角形的对应边成比例证明;(3)设EG ED x ==,则1AE x =−,1BE x =+,在Rt ABE △中,利用勾股定理求解.【小问1详解】解:由题知,1AB BC CD DA ====, 若13ED =,则23AE AD ED =−=.四边形ABCD 是正方形,∴90A FDE ∠=∠=°,又 AEB FED ∠=∠,∴AEB DEF △∽△, ∴ABAEDF ED =, 即21313DF =, ∴12DF =.【小问2详解】证明: 四边形ABCD 是正方形,∴90A C ∠=∠=°,AB CD ∥,∴ABE F ∠=∠,∴ABE CFB ∽, ∴ABAECF BC =,∴111AE CF AB BC ⋅=⋅=×=.【小问3详解】解:设EG ED x ==,则1AE AD AE x =−=−,1BE BG GE BC GE x =+=+=+.在Rt ABE △中,222AB AE BE +=,即2221(1)(1)x x +−=+, 解得14x =. ∴14ED =. 【点睛】本题考查了相似三角形的性质与判定,勾股定理的应用,正方形的性质等,熟练掌握相关性质定理是解题的关键.22. 设二次函数21y ax bx ++,(0a ≠,b 是实数).已知函数值y 和自变量x 的部分对应取值如下表所示: x … 1− 0 1 2 3 …y … m 1n 1 p …(1)若4m =,求二次函数的表达式;(2)写出一个符合条件的x 的取值范围,使得y 随x 的增大而减小.(3)若在m 、n 、p 这三个实数中,只有一个是正数,求a 的取值范围.【答案】(1)221y x x =−+(2)当0a >时,则1x <时,y 随x 的增大而减小;当a<0时,则1x >时,y 随x 的增大而减小 (3)13a ≤−【解析】【分析】(1)用待定系数法求解即可.(2)利用抛物线的对称性质求得抛物线的对称轴为直线1x =;再根据抛物线的增减性求解即可.(3)先把()2,1代入21y ax bx ++,得2b a =−,从而得221y ax ax =−+,再求出31m a =+,1n a =−+,31p a =+,从而得m p =,然后m 、n 、p 这三个实数中,只有一个是正数,得10310a a −+>+≤,求解即可. 【小问1详解】解:把()1,4−,()2,1代入21y ax bx ++,得 144211a b a b −+= ++=,解得:12a b = =− ,∴221y x x =−+.【小问2详解】解:∵()0,1,()2,1在21y ax bx ++图象上, ∴抛物线的对称轴为直线0212x +=, ∴当0a >时,则1x <时,y 随x 的增大而减小,当a<0时,则1x >时,y 随x 的增大而减小.【小问3详解】解:把()2,1代入21y ax bx ++,得1421a b =++,∴2b a =−∴22121y ax bx ax ax =++=−+把()1,m −代入221y ax ax =−+得,2131m a a a =++=+,把()1,n 代入221y ax ax =−+得,211n a a a =−+=−+,把()3,p 代入221y ax ax =−+得,96131p a a a =−+=+,∴m p =,∵m 、n 、p 这三个实数中,只有一个是正数,∴10310a a −+> +≤ ,解得:13a ≤−. 【点睛】本题考查用待定系数法求抛物线解析式,抛物线的图象性质,解不等式组,熟练掌握用待定系数法求抛物线解析式和抛物线的图象性质是解析的关键.23. 如图,在O 中,直径AB 垂直弦CD 于点E ,连接,,AC AD BC ,作CF AD ⊥于点F ,交线段OB 于点G (不与点,O B 重合),连接OF .(1)若1BE =,求GE 的长.(2)求证:2BC BG BO =⋅.(3)若FO FG =,猜想CAD ∠的度数,并证明你的结论.【答案】(1)1 (2)见解析(3)45CAD ∠=°,证明见解析【解析】【分析】(1)由垂径定理可得90AED ∠=°,结合CF AD ⊥可得DAE FCD ∠=∠,根据圆周角定理可得DAE BCD ∠=∠,进而可得BCD FCD ∠=∠,通过证明BCE GCE ≌可得1GE BE ==;(2)证明ACB △CEB ∽,根据对应边成比例可得2BC BA BE =⋅,再根据2AB BO =,12BE BG =,可证2BC BG BO =⋅;(3)设DAE CAE α∠=∠=,FOG FGO β∠=∠=,可证90αβ=°−,903OCF α∠=°−,通过SAS 证明COF AOF ≌,进而可得OCF OAF ∠=∠,即903αα°−=,则245CAD α∠==°.【小问1详解】解: 直径AB 垂直弦CD ,∴90AED ∠=°,∴90DAE D ∠+∠=°,CF AD ⊥,∴90FCD D ∠+∠=°,∴DAE FCD ∠=∠,由圆周角定理得DAE BCD ∠=∠,∴BCD FCD ∠=∠,在BCE 和GCE 中,BCE GCECE CE BEC GEC∠=∠ = ∠=∠ ,∴BCE GCE ≌()ASA ,∴1GE BE ==;【小问2详解】证明: AB 是O 的直径,∴90ACB ∠=°,在ACB △和CEB 中,90ACB CEB ABC CBE ∠=∠=°∠=∠ ,∴ACB △CEB ∽, ∴BC BABE BC =,∴2BC BA BE =⋅,由(1)知GE BE =, ∴12BE BG =,又 2AB BO =, ∴2122BC BA BE BO BG BG BO =⋅=⋅=⋅;【小问3详解】解:45CAD ∠=°,证明如下:如图,连接OC ,FO FG =,∴FOG FGO ∠=∠,直径AB 垂直弦CD ,∴CE DE =,90AED AEC ∠=∠=°,又 AE AE =,∴ACE △ADE ≌()SAS ,∴DAE CAE ∠=∠,设DAE CAE α∠=∠=,FOG FGO β∠=∠=, 则FCD BCD DAE α∠=∠=∠=,OA OC =,∴OCA OAC α∠=∠=,又 90ACB ∠=°, ∴903OCF ACB OCA FCD BCD α∠=∠−∠−∠−∠=°−,CGE OGF β∠=∠=,GCE α∠=,90CGE GCE ∠+∠=°∴90βα+=°,∴90αβ=°−,2COG OAC OCA ααα∠=∠+∠=+=,∴()2290180COF COG GOF αββββ∠=∠+∠=+=°−+=°−,∴COF AOF ∠=∠,COF 和AOF 中,CO AO COF AOF OF OF = ∠=∠ =∴()SAS COF AOF ≌,∴OCF OAF ∠=∠,即903αα°−=,∴22.5α=°,∴245CAD α∠==°.【点睛】本题考查垂径定理,圆周角定理,全等三角形的判定与性质,相似三角形的判定与性质,等腰三角形的性质等,难度较大,解题的关键是综合应用上述知识点,特别是第3问,需要大胆猜想,再逐步论证.在。
某某省某某市2015届中考数学模拟试题27一.选择题(本题有10个小题,每小题3分,共30分)1.下列各数中,最小的是()A.0 B.1 C.﹣D.﹣A.1.00553×109B.1.00553×1010 C.1.00553×1011 D.1.00553×10123.某市测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和404.正八边形的每个外角为()A.60° B.45° C.35° D.36°5.已知x=1是方程x2+x﹣2a=0的一个根,则方程的另一个根是()A.1 B.2 C.﹣2 D.﹣16.在一个不透明的口袋中装有7个完全相同的小球,把它们分别标号为1,2,3,4,5,6,7,从中随机摸出一个小球,其标号大于3的概率为()A.B.C.D.7.如图,关于抛物线y=x2+2x﹣1,下列说法错误的是()A.顶点坐标为(﹣1,﹣2)B.对称轴是直线x=﹣lC.开口方向向上D.当x>﹣1时,y随x的增大而减小8.如图,P为线段AB上一点,AD与BC交于E,∠CPD=∠A=∠B,BC交PD于F,AD交PC于G,则图中相似三角形有()A.1对B.2对C.3对D.4对9.如图,某航天飞机在地球表面点P的正上方A处,从A处观测到地球上的最远点Q,若∠QAP=α,地球半径为R,则航天飞机距地球表面的最近距离AP,以及P、Q两点间的地面距离分别是()A.B.C.D.10.小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A.点M B.点N C.点P D.点Q二.填空题(本题有6个小题,每小题4分,共24分)11.计算()÷=.12.已知反比例函数y=的图象经过点A(1,﹣2),则k=.13.已知⊙O的直径CD为5cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=4,则AC=.14.三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”,如果一个“特征三角形”的“特征角”为110°,那么这个“特征三角形”的最小内角的度数为.15.已知﹣2<x+y<3且1<x﹣y<4,则z=2x﹣3y的取值X围是.16.如图,在平面直角坐标系xOy中,我们把由两条射线AE,BF和以AB为直径的半圆所组成的图形叫作图形C(注:不含AB线段).已知A(﹣1,0),B(1,0),AE∥BF,且半圆与y轴的交点D在射线AE的反向延长线上. 当一次函数y=x+b的图象与图形C恰好只有一个公共点时,b的取值X围为; 已知▱AMPQ(四个顶点A,M,P,Q按顺时针方向排列)的各顶点都在图形C上,且不都在两条射线上,则点M的横坐标x的取值X围为.三.解答题(本题有7个小题,共66分)17.如图是一座人行天桥的引桥部分的示意图,上桥通道由两段互相平行并且与地面成36°角的楼梯AD、BE和一段水平平台DE构成.已知天桥高度BC≈4.5米,引桥水平跨度AC=7米.(1)求水平平台DE的长度;(2)若与地面垂直的平台立枉MN的高度为2.5米,求两段楼梯AD与BE的长度之比.(参考数据:取sin36°=0.59,cos36°=0.81,tan36°=0.73.18.我校艺术节期间,向九年级学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是(填:“普查”或“抽样调查”),王老师所调查的4个班征集到作品其中B班征集到作品件,请把图2补充完整.(2)如果全年级参展作品中有4件获得一等奖,其中有2名作者是男生,2名作者是女生.现在要在其中抽两人去参见学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求写出用树状图或列表分析过程).19.已知△ABC,以顶点C为圆心、CB为半径作圆交AC于点D,连接DB.若∠ACB=2∠ABD,①求证:边AB所在直线于⊙C相切;②AC=3,BC=2,求AD和DB的长.20.某某地铁5号线全长48.18公里,投资315.9亿元,规划建设预期2014﹣2019年,某某工程地铁对负责建设,分两个班组分别从某某南站外香樟路站和余杭科技岛站同时开工掘进.已知甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.7米,乙组平均每天能比原来多掘进1.3米.按此施工进度,能够比原来少用多少天完成任务?21.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1;(画图工具不限)(2)若∠PAB=25°,求∠ADF的度数;(3)如图2,若60°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.22.在平面直角坐标系中,一次函数y=kx+b的图象与x轴、y轴分别相交于点A(﹣3,0)、B(0,﹣3)两点,二次函数y=x2+mx+n的图象经过点A.(1)求一次函数y=kx+b的表达式;(2)若二次函数y=x2+mx+n图象的顶点在直线AB上,求m,n;(3)① 设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;②若当﹣3≤x≤0时,二次函数y=x2+mx+n的最小值为﹣4,求m,n的值.23.如图(1),边长为a的正方形发生形变后成为边长为a的菱形,如果这个菱形的一组对边之间的距离为h,记=k,我们把k叫做这个菱形的“形变度”.(1)若变形后的菱形有一个内角是60°,则k=.(2)如图1(2),已知菱形ABCD,若k=.①这个菱形形变前的面积与形变后的面积之比为;②点E、F、G、H分别是菱形ABCD各边的中点,求四边形EFGH形变前与形变后的面积之比.(3)如图1(3),正方形ABCD由16个边长为1的小正方形组成,形变后成为菱形A′B′C′D′,△AEF(E、F是小正方形的顶点),同时形变为△A′E′F′,设这个菱形的“形变度”为k.对于△AEF与△A′E′F′的面积之比你有何猜想?并证明你的猜想.当△AEF与△A′E′F′的面积之比等于2:时,求A′C′的长.2015年某某省某某市中考数学模拟试卷(27)参考答案与试题解析一.选择题(本题有10个小题,每小题3分,共30分)1.下列各数中,最小的是()A.0 B.1 C.﹣D.﹣【考点】实数大小比较.【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可解答.【解答】解:因为在A、B、C、D四个选项中行只有只有C、D为负数,故应从C、D中选择;因为|﹣|>|﹣|,所以,故选C.【点评】此题主要考查了实数的大小的比较,实数比较大小的方法:(1)正数都大于0,负数都小于0,正数大于一切负数;(2)两个负数绝对值大的反而小.A.1.00553×109B.1.00553×1010 C.1.00553×1011 D.1.00553×1012【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】11.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.某市测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和40【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:从小到大排列此数据为:37、40、40、50、50、50、75,数据50出现了三次最多,所以50为众数;50处在第4位是中位数.故选:A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.正八边形的每个外角为()A.60° B.45° C.35° D.36°【考点】多边形内角与外角.【分析】利用正八边形的外角和等于360度即可求出答案.【解答】解:360°÷8=45°.故选B.【点评】本题主要考查了多边形的外角和定理,任何一个多边形的外角和都是360°.5.已知x=1是方程x2+x﹣2a=0的一个根,则方程的另一个根是()A.1 B.2 C.﹣2 D.﹣1【考点】根与系数的关系.【分析】已知x=1是方程x2+x﹣2a=0的一个根,设另一根是a,利用根与系数的关系则有1+a=﹣1,由此可以求出另一个根.【解答】解:∵x=1是方程x2+x﹣2a=0的一个根,设另一根是a,利用根与系数的关系则有1+a=﹣1,解得a=﹣2.故选C.【点评】本题考查一元二次方程ax2+bx+c=0的根与系数关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.6.在一个不透明的口袋中装有7个完全相同的小球,把它们分别标号为1,2,3,4,5,6,7,从中随机摸出一个小球,其标号大于3的概率为()A.B.C.D.【考点】概率公式.【分析】由在一个不透明的口袋中装有7个完全相同的小球,把它们分别标号为1,2,3,4,5,6,7,直接利用概率公式求解即可求得答案.【解答】解:∵在一个不透明的口袋中装有7个完全相同的小球,把它们分别标号为1,2,3,4,5,6,7,∴从中随机摸出一个小球,其标号大于3的概率为:.故选C.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.7.如图,关于抛物线y=x2+2x﹣1,下列说法错误的是()A.顶点坐标为(﹣1,﹣2)B.对称轴是直线x=﹣lC.开口方向向上D.当x>﹣1时,y随x的增大而减小【考点】二次函数的性质;二次函数的图象.【分析】先将一般式化为顶点式,得到y=x2+2x﹣1=(x+1)2﹣2,根据二次函数的性质得出顶点坐标是(﹣1,﹣2),对称轴是直线x=﹣1,根据a=1>0,得出开口向上,当x>﹣1时,y随x的增大而增大,根据结论即可判断选项.【解答】解:抛物线y=x2+2x﹣1=(x+1)2﹣2,A、因为顶点坐标是(﹣1,﹣2),故说法正确;B、因为对称轴是直线x=﹣1,故说法正确;C、因为a=1>0,开口向上,故说法正确;D、当x>﹣1时,y随x的增大而增大,故说法错误.故选D.【点评】本题主要考查对二次函数的性质的理解和掌握,能熟练地运用二次函数的性质进行判断是解此题的关键.也考查了配方法.8.如图,P为线段AB上一点,AD与BC交于E,∠CPD=∠A=∠B,BC交PD于F,AD交PC于G,则图中相似三角形有()A.1对B.2对C.3对D.4对【考点】相似三角形的判定.【分析】先根据条件证明△PCF∽△BCP,利用相似三角形的性质:对应角相等,再证明△APD∽△PGD,进而证明△APG∽△BFP再证明时注意图形中隐含的相等的角.【解答】解:∵∠CPD=∠B,∠C=∠C,∴△PCF∽△BCP.∵∠CPD=∠A,∠D=∠D,∴△APD∽△PGD.∵∠CPD=∠A=∠B,∠APG=∠B+∠C,∠BFP=∠CPD+∠C∴∠APG=∠BFP,∴△APG∽△BFP.故选C.【点评】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角.9.如图,某航天飞机在地球表面点P的正上方A处,从A处观测到地球上的最远点Q,若∠QAP=α,地球半径为R,则航天飞机距地球表面的最近距离AP,以及P、Q两点间的地面距离分别是()A.B.C.D.【考点】解直角三角形的应用;切线的性质;弧长的计算.【分析】由题意,连接OQ,则OQ垂直于AQ,在直角三角形OQA中,利用三角函数解得.【解答】解:由题意,从A处观测到地球上的最远点Q,∴AQ是⊙O的切线,切点为Q,连接OQ,则OQ垂直于AQ,如图则在直角△OAQ中有,即AP=.在直角△OAQ中则∠O为:90°﹣α,由弧长公式得PQ为.故选B.【点评】本题考查了直角三角形的应用,由题意在直角三角形OAQ中,利用三角函数从而解得.10.小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A.点M B.点N C.点P D.点Q【考点】动点问题的函数图象.【专题】应用题;压轴题.【分析】分别假设这个位置在点M、N、P、Q,然后结合函数图象进行判断.利用排除法即可得出答案.【解答】解:A、假设这个位置在点M,则从A至B这段时间,y不随时间的变化改变,与函数图象不符,故本选项错误;B、假设这个位置在点N,则从A至C这段时间,A点与C点对应y的大小应该相同,与函数图象不符,故本选项错误;C、,假设这个位置在点P,则由函数图象可得,从A到C的过程中,会有一个时刻,教练到小翔的距离等于经过30秒时教练到小翔的距离,而点P不符合这个条件,故本选项错误;D、经判断点Q符合函数图象,故本选项正确;故选:D.【点评】此题考查了动点问题的函数图象,解答本题要注意依次判断各点位置的可能性,点P的位置不好排除,同学们要注意仔细观察.二.填空题(本题有6个小题,每小题4分,共24分)11.计算()÷= 6 .【考点】二次根式的混合运算.【专题】计算题.【分析】先将二次根式化为最简,然后再进行二次根式的除法运算.【解答】解:原式=(12﹣6)÷=6.故答案为:6.【点评】此题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.12.已知反比例函数y=的图象经过点A(1,﹣2),则k= ﹣2 .【考点】反比例函数图象上点的坐标特征.【分析】直接把点A(1,﹣2)代入y=求出k的值即可.【解答】解:∵反比例函数y=的图象经过点A(1,﹣2),∴﹣2=,解得k=﹣2.故答案为:﹣2.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.已知⊙O的直径CD为5cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=4,则AC= 2或.【考点】垂径定理;勾股定理.【专题】分类讨论.【分析】先画图,分两种情况:①AC>AD,如图1,连接OA,根据垂径定理得出AM,再由勾股定理得出AC;②AC<AD,如图2,连接OA,根据垂径定理得出AM,再由勾股定理得出OM,即可得出AC.【解答】解:分两种情况:①AC>AD,如图1,连接OA,∵CD=5,∴OA=OC=2.5,∵AB⊥CD,∴AM=BM,∵AB=4,∴AM=2,∴OM=1.5,∴CM=4,∴由勾股定理得AC=2;②AC<AD,如图2,连接OA,∵CD=5,∴OA=OC=2.5,∵AB⊥CD,∴AM=BM,∵AB=4,∴AM=2,∴OM=1.5,∴CM=1,∴由勾股定理得AC=;故答案为2或.【点评】本题考查了垂径定理,以及勾股定理,分类讨论是解题的关键.14.三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”,如果一个“特征三角形”的“特征角”为110°,那么这个“特征三角形”的最小内角的度数为15°.【考点】三角形内角和定理.【专题】新定义.【分析】根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最小内角即可.【解答】解:由题意得:α=2β,α=110°,则β=55°,180°﹣110°﹣55°=15°,故答案为:15°.【点评】此题主要考查了新定义以及三角形的内角和定理,根据已知得出β的度数是解题关键.15.已知﹣2<x+y<3且1<x﹣y<4,则z=2x﹣3y的取值X围是1<z<11 .【考点】不等式的性质.【分析】根据不等式的性质,设a(x+y)+b(x﹣y)=2x﹣3y;根据不等式的性质来求解;【解答】解:﹣2<x+y<3 ①,1<x﹣y<4 ②,设a(x+y)+b(x﹣y)=2x﹣3y则有解得:a=b=故z=,即﹣×(3)+1×<z<所以1<z<11故答案为:1<z<11.【点评】本题考查了了不等式的性质,利用了不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.16.如图,在平面直角坐标系xOy中,我们把由两条射线AE,BF和以AB为直径的半圆所组成的图形叫作图形C(注:不含AB线段).已知A(﹣1,0),B(1,0),AE∥BF,且半圆与y轴的交点D在射线AE的反向延长线上. 当一次函数y=x+b的图象与图形C恰好只有一个公共点时,b的取值X围为b=或﹣1≤b<1 ; 已知▱AMPQ(四个顶点A,M,P,Q按顺时针方向排列)的各顶点都在图形C上,且不都在两条射线上,则点M的横坐标x的取值X围为﹣2<x<﹣1或0≤x <.【考点】一次函数综合题.【分析】利用直径所对的圆周角是直角,从而判定三角形ADB为等腰直角三角形,其直角边的长等于两直线间的距离,可利用数形结合的方法得到当直线与图形C有一个交点时自变量x的取值X围;根据平行四边形的性质及其四个顶点均在图形C上,可能会出现四种情况,分类讨论即可得出答案.【解答】解:如图,分别连接AD、DB,则点D在直线AE上,∵点D在以AB为直径的半圆上,∴∠ADB=90°,∴BD⊥AD,在Rt△DOB中,由勾股定理得,BD=,∵AE∥BF,∴两条射线AE、BF所在直线的距离为,则当一次函数y=x+b的图象与图形C恰好只有一个公共点时,b的取值X围是b=或﹣1≤b<1.假设存在满足题意的平行四边形AMPQ,根据点M的位置,分以下四种情况讨论:①当点M在射线AE上时,如图2,∵AMPQ四点按顺时针方向排列,∴直线PQ必在直线AM的上方∴PQ两点都在弧AD上,且不与点A、D重合,∴0<PQ<.∵AM∥PQ且AM=PQ,∴0<AM<,∴﹣2<x<﹣1,②当点M在弧AD上时,如图3,∵点A、M、P、Q四点按顺时针方向排列∴直线PQ必在直线AM的下方,此时,不存在满足题意的平行四边形.③当点M在弧BD上时,设弧DB的中点为R,则OR∥BF,当点M在弧DB上时,如图4,过点M作OR的垂线交弧DB于点Q,垂足为点S,可得S是MQ的中点.∴四边形AMPQ为满足题意的平行四边形,∴0≤x<.当点M在弧RB上时,如图5,直线PQ必在直线AM的下方,此时不存在满足题意的平行四边形.④当点M在射线BF上时,如图6,直线PQ必在直线AM的下方,此时,不存在满足题意的平行四边形.综上,点M的横坐标x的取值X围是﹣2<x<﹣1或0≤x<.故答案为:b=或﹣1<b<1,﹣2<x<﹣1或0≤x<.【点评】此题考查了一次函数的综合,题目中还涉及到了勾股定理、平行四边形的性质及圆周角定理的相关知识,题目中还渗透了分类讨论思想.三.解答题(本题有7个小题,共66分)17.如图是一座人行天桥的引桥部分的示意图,上桥通道由两段互相平行并且与地面成36°角的楼梯AD、BE和一段水平平台DE构成.已知天桥高度BC≈4.5米,引桥水平跨度AC=7米.(1)求水平平台DE的长度;(2)若与地面垂直的平台立枉MN的高度为2.5米,求两段楼梯AD与BE的长度之比.(参考数据:取sin36°=0.59,cos36°=0.81,tan36°=0.73.【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)首先由已知构造直角三角形如图,延长BE交AC于F,过点E作EG⊥AC,垂足为G,解直角三角形BCF求得CF,又由已知BE∥AD,四边形AFED为平行四边形,所以DE=AF=AC﹣CF.(2)如图解直角三角形BCF,可求出BF,EG=MN=3米,解直角三角形EGF可求出EF,则BE=BF﹣EF,而AD=EF,从而求得两段楼梯AD与BE的长度之比.【解答】解:(1)延长BE交AC于F,过点E作EG⊥AC,垂足为G,在Rt△BCF中,CF==≈6.16(米),∴AF=AC﹣CF=7﹣6.16=0.84(米),∵BE∥AD,∴四边形AFED为平行四边形,∴DE=AF=0.84米.答:水平平台DE的长度为0.84米.(2)作EH⊥A C于H.∵MN⊥AC,∴EH=MN=2.5,∵EH∥BC,∴.【点评】此题考查的知识点是解直角三角形的应用,关键是由已知首先构建直角三角形,运用三角函数求解.18.我校艺术节期间,向九年级学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是抽样调查(填:“普查”或“抽样调查”),王老师所调查的4个班征集到作品其中B班征集到作品 3 件,请把图2补充完整.(2)如果全年级参展作品中有4件获得一等奖,其中有2名作者是男生,2名作者是女生.现在要在其中抽两人去参见学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求写出用树状图或列表分析过程).【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)根据条形统计图与扇形统计图的知识,即可求得王老师所调查的4个班征集到作品其中B班征集到作品;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽中一男一女的情况,再利用概率公式即可求得答案.【解答】解:(1)根据题意得:王老师采取的调查方式是抽样调查;∵王老师所调查的4个班征集到作品共有:5÷=12(件),∴王老师所调查的4个班征集到作品其中B班征集到作品:12﹣2﹣5﹣2=3(件);故答案为:抽样调查,3;(2)画树状图得:∵共有12种等可能的结果,抽中一男一女的有8种情况,∴抽中一男一女的概率为: =.【点评】此题考查了列表法或树状图法求概率以及扇形统计图与条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.19.已知△ABC,以顶点C为圆心、CB为半径作圆交AC于点D,连接DB.若∠ACB=2∠ABD,①求证:边AB所在直线于⊙C相切;②AC=3,BC=2,求AD和DB的长.【考点】切线的判定.【分析】(1)证得AB⊥BC即可判定切线;(2)首先根据AD=AC﹣CD求得AD的长,然后勾股定理得到AB的长,根据△ADG∽△ACB,对应边成比例得出,从而求得,根据勾股定理求得BD的长即可.【解答】解:(1)∵CB=CD,∴∠CDB=∠CBD,∵∠CDB=∠A+∠DBA,∠ACB=2∠ABD,∴在△ABC中,由三角形的内角和定理得:2(∠A+∠DBA)+2∠ABD=180°,∴∠A+2∠DBA=90°,即∠A+∠ACB=90°,∴∠ABC=90°,∴边AB所在直线于⊙C相切;(2)作DG⊥AB于G.AD=AC﹣CD=AC﹣BC=3﹣2=1,∵BC⊥AB,AC=3,BC=2,∴,∵DG⊥AB,BC⊥AB,∴DG∥BC.∴△ADG∽△ACB,∴,∴,∴,∴,∴.【点评】本题考查了切线的判定与性质,三角形内角和定理三角形相似的判定和性质,勾股定理的应用等,在解决切线问题时,常常连接圆心和切点,证明垂直或利用垂直求解.20.某某地铁5号线全长48.18公里,投资315.9亿元,规划建设预期2014﹣2019年,某某工程地铁对负责建设,分两个班组分别从某某南站外香樟路站和余杭科技岛站同时开工掘进.已知甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.7米,乙组平均每天能比原来多掘进1.3米.按此施工进度,能够比原来少用多少天完成任务?【考点】二元一次方程组的应用.【分析】(1)设甲、乙班组平均每天掘进x米,y米,根据“甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米,”列出方程组解答即可;(2)设按原来的施工进度和改进施工技术后的进度分别还需a天,b填完成任务,根据题意列式计算得出答案,再进一步相减即可.【解答】解:(1)设甲、乙班组平均每天掘进x米,y米,由题意得,解得.答:甲班组平均每天掘进12.2米,乙班组平均每天掘进9.8米.(2)设按原来的施工进度和改进施工技术后的进度分别还需a天,b填完成任务,则a=(48180﹣110)÷(12.2+9.8)=2185(天),b=(48180﹣110)÷(12.2+1.7+9.8+1.3)=1922.8(天),因此a﹣b=2185﹣1922.8=262.2(天).答:少用262.2天完成任务.【点评】此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系,理清工程问题的计算方法是解决问题的关键.21.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1;(画图工具不限)(2)若∠PAB=25°,求∠ADF的度数;(3)如图2,若60°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.【考点】作图—复杂作图;正方形的性质;轴对称的性质.【分析】(1)直接利用对称点作法得出E点位置进而得出答案;(2)利用轴对称的性质以及等腰三角形的性质得出即可;(3)由轴对称的性质可得:EF=BF,AE=AB=AD,∠ABF=∠AEF=∠ADF,进而利用勾股定理得出即可.【解答】解:(1)如图1所示:(保留作图迹)(2)如图2,连接AE,则∠PAB=∠PAE=25°,AE=AB=AD,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAD=140°,∴∠ADF=20°;(3)BF2+FD2=2AB2.理由:如图3,连接AE,BF,BD,由轴对称的性质可得:EF=BF,AE=AB=AD,∠ABF=∠AEF=∠ADF,则∠BFD=∠BAD=90°,故BF2+FD2=BD2,则BF2+FD2=2AB2.【点评】此题主要考查了复杂作图以及对称点的性质和正方形的性质以及勾股定理等知识,熟练应用轴对称的性质得出是解题关键.22.在平面直角坐标系中,一次函数y=kx+b的图象与x轴、y轴分别相交于点A(﹣3,0)、B(0,﹣3)两点,二次函数y=x2+mx+n的图象经过点A.(1)求一次函数y=kx+b的表达式;(2)若二次函数y=x2+mx+n图象的顶点在直线AB上,求m,n;(3)① 设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;②若当﹣3≤x≤0时,二次函数y=x2+mx+n的最小值为﹣4,求m,n的值.【考点】二次函数综合题.【分析】(1)利用待定系数法求出解析式,(2)先表示出二次函数y=x2+mx+n图象的顶点,利用直线AB列出式子,再与点A在二次函数上得到的式子组成方程组求得m,n的值,(3)①易求抛物线解析式为y=x2﹣2x﹣15.根据抛物线的对称性和增减性来求二次函数y=x2+mx+n 的最小值;②本题要分四种情况:当对称轴﹣3<﹣<0时;当对称轴﹣>0时;当对称轴﹣=0时;当对称轴﹣≤﹣3时,结合二次函数y=x2+mx+n的图象经过点A得出式子9﹣3m+n=0,求出m,n但一定要验证是否符合题意.【解答】解:(1)A(﹣3,0),B(0,﹣3)代入y=kx+b得,解得.∴一次函数y=kx+b的解析式为:y=﹣x﹣3;(2)二次函数y=x2+mx+n图象的顶点为(﹣,)∵顶点在直线AB上,∴=﹣3,又∵二次函数y=x2+mx+n的图象经过点A(﹣3,0),∴9﹣3m+n=0,∴组成方程组为,解得或.(3)①当m=﹣2时,9﹣3m+n=0,解得 n=﹣15,∴y=x2﹣2x﹣15.∵对称轴直线x=1在﹣3≤x≤0右侧,∴x=0时,y最小值是﹣15.∵二次函数y=x2+mx+n的图象经过点A.。
2024年中考数学临考押题卷(浙江卷)01一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,最大的是()A.﹣2B.﹣1C.0D.﹣(﹣2)【分析】根据相反数的定义可得﹣(﹣2)=2,再根据有理数大小比较方法判断即可.【解答】解:∵﹣(﹣2)=2,∴﹣(﹣2)>0>﹣1>﹣2,∴其中最大的是﹣(﹣2).故选:D.【点评】此题主要考查了有理数大小比较以及相反数,解答此题的关键是要明确:(1)正数>0>负数;(2)两个负数比较大小,绝对值大的其值反而小.2.下列计算正确的是()A.(a2)3=a5B.a3•a3=a6C.a9÷a3=a3D.(ab)3=ab3【分析】根据同底数幂的乘除法法则、幂的乘方与积的乘方法则进行解题即可.【解答】解:A、(a2)3=a6,故该项不正确,不符合题意;B、a3•a3=a6,故该项正确,符合题意;C、a9÷a3=a6,故该项不正确,不符合题意;D、(ab)3=a3b3,故该项不正确,不符合题意;故选:B.【点评】本题考查同底数幂的乘除法、幂的乘方与积的乘方,熟练掌握运算法则是解题的关键.3.“生活在这个世界上,我们必须全力以赴”这是2024年2月10日大年初一全国上映的电影《热辣滚烫》中的一句话,这部电影首日票房约402000000元,数字402000000用科学记数法可表示为()A.4.02×109B.4.02×108C.4.02×107D.4.02×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:402000000=4.02×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.如图,几何体的俯视图为()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看,是一个正方形,正方形内部左上角是一个小正方形.故选:D.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.5.2022北京冬奥会延庆赛区正在筹建的高山滑雪速滑雪道的平均坡角约为20°,在此雪道向下滑行100米,高度大约下降了()米.A.B.C.100sin20°D.100cos20°【分析】根据题意可得:AB⊥BC,然后在Rt△ABC中,利用锐角三角函数的定义进行计算,即可解答.【解答】解:由题意得:AB⊥BC,在Rt△ABC中,∠ACB=20°,AC=100米,∴AB=AC•sin20°=100sin20°(米),∴高度大约下降了100sin20°米,故选:C.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题,熟练掌握锐角三角函数的定义是解题的关键.6.某校组织九年级各班开展学生排球一次性垫球团队比赛,每班各选派7名学生组成参赛团队,其中九年级(1)班选派的7名学生一次性垫球成绩(单位:个)如图所示.则下列结论中,正确的是()A.中位数为17B.众数为26C.平均成绩为20D.方差为0【分析】根据中位数、众数、平均数和方差概念即可解答.【解答】解:A选项:将这组数据从小到大排列为:17、19、22、26、26、30、35,从中可以看出,一共7个数据,第4个数据为26,所以这组数据的中位数为26;B选项:这组数据中26出现的次数最多,所以这组数据的众数为26;C选项:(17+19+22+26+26+30+35)÷7=25(个),所以这组数据的平均数为25;D选项:方差是一组数据中各数据与它们的平均数的差的平方的平均数,所以当方差等于0时,这组7个数据应相同,不符合题意;故答案为:B.【点评】本题考查中位数、众数、平均数和方差概念,理解题意,读懂统计图,熟练运用中位数、众数、平均数和方差概念分析问题是解题的关键.7.2023年10月28日,全国和美乡村篮球大赛——“村BA”总决赛在贵州省台江县台盘村落下帷幕,广东中山沙溪队取得首届全国“村BA”大赛总冠军.某县“村BA”赛区预选赛规定每两个球队之间都要进行一场比赛,共要比赛15场.设参加比赛的球队有x支,根据题意,下面列出的方程正确的是()A.x(x+1)=15B.x(x﹣1)=15C.D.【分析】利用比赛的总场数=参加比赛的班级球队数×(参加比赛的班级球队数﹣1)÷2,即可列出关于x的一元二次方程,此题得解.【解答】解:根据题意得:.故选:D.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.如图,在Rt△ABC中,∠B=90°,在边AB、AC上分别截取AD、AE,使AD=AE,分别以D、E为圆心,以大于的长为半径作弧,两弧在∠BAC内交于点M,作射线AM交BC边于点F.若FB=2,则点F到AC的距离为()A.1B.2C.3D.4【分析】过点F作FG⊥AC于点G.由作图过程可知,AF为∠BAC的平分线,进而可得FG=BF=2,结合点到直线的距离可知,点F到AC的距离为2.【解答】解:过点F作FG⊥AC于点G.由作图过程可知,AF为∠BAC的平分线,∵∠B=90°,∴FG=BF=2,∴点F到AC的距离为2.故选:B.【点评】本题考查作图—基本作图、角平分线的性质、点到直线的距离,熟练掌握角平分线的性质、点到直线的距离是解答本题的关键.9.如图,点A在函数的图象上,点B在函数的图象上,且AB∥x轴,BC⊥x 轴于点C,则四边形ABCO的面积为()A.1B.2C.D.=S矩形OCBD﹣S△ADO计算即【分析】延长BA交y轴于点D,利用反比例函数k值几何意义及S梯形ABCO可.【解答】解:如图,延长BA交y轴于点D,∵点A在函数的图象上,==,∴S△ADO∵点B在函数的图象上,=5,∴S矩形OCBD=S矩形OCBD﹣S△ADO=5﹣=.∴S梯形ABCO故选:C.【点评】本题考查了反比例函数k值的几何意义,熟练掌握k值的几何意义是关键.10.如图,正方形ABCD边长为6,点E、F分别在BC、AB上,且AE⊥DF,点G、H分别为线段AE、DF的中点,连接GH,若GH=2,则BE的长为()A.2B.C.D.【分析】连接AH并延长,交CD于点M,连接EM,根据正方形的性质推出AB∥CD,AB=BC=CD=DA,∠C=∠DAF=∠ABE=90°,根据AE⊥DF得到∠DAE+∠ADF=90°,从而推出∠BAE=∠ADF,判定△ABE≌△DAF后根据全等三角形的性质得到AF=BE,根据AB∥CD推出∠AFH=∠MDH,∠FAH =∠DMH,根据H是DF的中点得到DH=FH,从而判定△AFH≌△MDH,根据全等三角形的性质得到AF=DM,根据等量代换得到BE=DM,CE=CM,判定△CEM为等腰直角三角形,根据三角形中位线的定义判定GH是△AEM的中位线后求出EM的长,根据等腰直角三角形的性质求出CE和CM的长,最后用BC减去CE即可求出BE的长.【解答】解:如图,连接AH并延长,交CD于点M,连接EM,∵四边形ABCD是正方形,∴AB∥CD,AB=BC=CD=DA=6,∠C=∠DAF=∠ABE=90°,∴∠BAE+∠DAE=90°,∵AE⊥DF,∴∠DAE+∠ADF=90°,∴∠BAE=∠ADF,又∵DA=AB,∠DAF=∠ABE=90°,∴△ABE≌△DAF(ASA),∴AF=BE,∵AB∥CD,∴∠AFH=∠MDH,∠FAH=∠DMH,∵H是DF的中点,∴DH=FH,∴△AFH≌△MDH(ASA),∴AF=DM,AH=MH,又∵AF=BE,∴BE=DM,∴CE=CM,又∵∠C=90°,∴△CEM为等腰直角三角形,∵G是AE中点,AH=MH,∴GH是三角形AEM的中位线,∴EM=2GH=,∴CE=CM=4,∴BE=BC﹣CE=6﹣4=2.故选:A.【点评】本题主要考查正方形的性质,全等三角形的判定与性质以及三角形中位线定理,熟练掌握正方形的性质和全等三角形的判定方法是解决问题的关键.二、填空题:本题共6小题,每小题3分,共18分。
【中考12年】浙江省杭州市-中考数学试题分类解析专题4 图形的变换一、选择题1. (年浙江杭州3分)在时刻8∶30,时钟上的时针和分针之间的夹角为【】.(A)85°(B)75°(C)70°(D)60°【答案】B。
【考点】钟面角。
【分析】∵时针走一圈(3600)要12小时,即速度为003603600.5/121260==⨯分小分钟时钟;分针走一圈(3600)要1小时,即速度为000 3603606/160==分小分钟时钟。
∴时针从数字8开始到8点30分,走过的角度为30×0.50=150,即时针在8点30分的位置离开数字6的角度为300×2+15=750 (钟面360度被分成了12等份,每份是300)。
又∵分针从8点(数字12)开始到8点30分时,分针指向数字6,所以8点30分时,时钟上时针和分针夹角750。
故选B。
2. (年浙江杭州3分)为解决四个村庄用电问题,政府在已建电厂与这四个村庄之间架设输电线路.现已知这四个村庄及电厂之间的距离如图所示(距离单位:公里),则能把电力输送到这四个村庄的输电线路的最短总长度应该是【】.(A)19.5 (B)20.5 (C)21.5 (D)25.5【答案】B。
3. (年浙江杭州大纲卷3分)边长为4的正方形绕一条边旋转一周,所得几何体的侧面积等于【】A.16 B.16πC.32πD.64π【答案】C。
【考点】圆柱的计算。
【分析】边长为4的正方形绕一条边旋转一周,所得几何体是圆柱体,根据圆柱的侧面积公式圆柱侧面积=底面周长×高可得:π×4×2×4=32π。
故选C。
4. (年浙江杭州大纲卷3分)如图,把△PQR沿着PQ的方向平移到△P′Q′R′的位置,它们重叠部分的面积是△PQR面积的一半,若PQ=2,则此三角形移动的距离PP′是【】A.12B2C.1 D21-【答案】D。
2016年浙江省杭州市滨江区中考数学一模试卷2016年浙江省杭州市滨江区中考数学一模试卷一、选择题(共10小题,每小题3分,满分30分)1.下列四个图案中既是轴对称图形,又是中心对称图形的是()A.B.C. D.2.下列运算正确的是()A.()3=B.3a3•2a2=6a6C.4a6÷2a2=2a3 D.(3a2)3=27a63.某校九(1)班进行了一次体育测试,期中第一小组的成绩分别是(单位:分)30,25,29,28,28,30,29,28,20,28,27,30.这组数据的众数和中位数分别是()A.28分,28分B.30分,28分 C.28分,27.5分D.30分,27.5分4.一次函数y=﹣2x+3的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.化简的结果是()A.x﹣1 B.C.x+1 D.6.一个几何体的三视图如图所示,则这个几何体是()A.三棱柱B.三棱锥C.四棱柱D.四棱锥7.已知一个正多边形的每个外角都等于72°,则这个正多边形是()A.正五边形B.正六边形C.正七边形D.正八边形8.某商品的标价为400元,8折销售仍赚120元,则商品进价为()A.150元B.200元C.300元D.440元9.如图,圆锥的轴截面(过圆锥顶点和底面圆心的截面)△ABC是直角三角形,则圆锥的侧面展开图扇形的圆心角度约为()A.127°B.180°C.201°D.255°10.已知正方形ABCD内接于⊙O,⊙O的半径为3,点E是弧AD上的一点,连接BE,CE,CE交AD于H点,作OG垂直BE于G点,且OG=,则EH:CH=()A.B.C. D.二、填空题(共6小题,每小题4分,满分24分)11.因式分解:a3b﹣ab3=.12.某班参加学校六个社团的人数分别为4,4,5,x,3,6.已知这组数据的平均数是4,则这组数据的方差是.13.如图,C是⊙O上的一点,过点C的⊙O的切线交直径AB的延长线于点P,若OB=PB=2,则BC的长为.14.一反比例函数的图象经过第一象限的点A,AB⊥y轴于点B,O为坐标原点,△ABO的面积为2,则此反比例函数的解析式为.15.如图,抛物线y=a(x﹣1)2+(a≠0)经过y 轴正半轴上的点A,点B,C分别是此抛物线和x轴上的动点,点D在OB上,且AD平分△ABO的面积,过D作DF∥BC交x轴于F点,则DF的最小值为.16.如图,在△ABC中,AB=AC=10,BC=12,AD⊥BC 于点D,点E在边AB上运动,过点E作EF∥BC 与边AC交于点F,连结FD,以EF、FD为邻边作▱EFDG,当▱EFDG与△ABC重叠部分为△ABC的面积的时,线段EF的长为.三、解答题(共7小题,满分66分)17.计算:(1)(﹣2)2﹣23﹣()0+|﹣3|(2)(x﹣2)2﹣2(x﹣2)+1.18.如图,在等腰△ABC中,AB=AC,△ADE是等边三角形,且DE∥BC,AD,AE分别交BC于点M,N.求证:BM=CN.19.(1)已知∠α和线段m,h,用直尺和圆规作▱ABCD,使AB=m,∠DAB=∠α,AB和CD之间的距离为h(作出图形,不写作法,保留痕迹)(2)在(1)中,若m比h大2,且m与h的和小于10,求h的取值范围.20.英语王老师为了了解某校八年级学生英语听力情况,从各板随机抽取一部分学生组成一组进行英语听力测试,王老师将该组测试的乘积分甲,乙,丙,丁四个等级进行统计,并绘制了如下两幅不完整的统计图:(1)求丙等级所对扇形的圆心角,并将条形统计图补充完整;(2)该组达到甲等级的同学只有1位男同学,王老师打算从该组达到甲等级的同学中随机选出2位同学到全年级大会上介绍经验,请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率;(3)请你估计该校八年级学生工360人中,属于丙等级的学生为多少人?21.如图,A,B,C分别表示三所不同的学校,B,C在东西向的一条马路边,A学校在B学校北偏西15°方向上,在C学校北偏西60°方向上,A,B两学校之间的距离是1000米,请求出∠BAC的度数以及A,C两学校之间的距离.22.在Rt△ABC中,点D为斜边AB的中点,P为AC边一动点,△BDP沿着PD所在的直线对折,点B的对应点为E.(1)若BC=5,AC=12,PD⊥AB,求AP的长;(2)当AD=PE时,求证:四边形BDEP为菱形;(3)若BC=5,∠A=30°,P点从C点运动到A点,在这个过程中,求E点所经过的路径长.23.如图,在△ABC中,点A,B分别在x轴的正、负半轴上(其中OA<OB),点C在y轴的正半轴上,AB=10,OC=4,∠ABC=∠ACO.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点D的坐标为(﹣4,0),P是该抛物线上的一个动点.①直线DP交直线BC于点E,当△BDE是等腰三角形时,直接写出此时点E的坐标;②连结CD,CP,若∠PCD=∠CBD,请求出点P的坐标.2016年浙江省杭州市滨江区中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列四个图案中既是轴对称图形,又是中心对称图形的是()A.B.C. D.【考点】中心对称图形;轴对称图形.【分析】根据正多边形的性质和轴对称图形与中心对称图形的定义解答.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,又是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故此选项错误.故选:C.【点评】此题考查正多边形对称性.关键要记住偶数边的正多边形既是轴对称图形,又是中心对称图形,奇数边的正多边形只是轴对称图形.2.下列运算正确的是()A.()3=B.3a3•2a2=6a6C.4a6÷2a2=2a3 D.(3a2)3=27a6【考点】分式的乘除法;幂的乘方与积的乘方;单项式乘单项式;整式的除法.【专题】计算题;分式.【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式=,错误;B、原式=6a5,错误;C、原式=2a4,错误;D、原式=27a6,正确,故选D【点评】此题考查了分式的乘除法,幂的乘方与积的乘方,单项式乘单项式,以及整式的除法,熟练掌握运算法则是解本题的关键.3.某校九(1)班进行了一次体育测试,期中第一小组的成绩分别是(单位:分)30,25,29,28,28,30,29,28,20,28,27,30.这组数据的众数和中位数分别是()A.28分,28分B.30分,28分 C.28分,27.5分D.30分,27.5分【考点】众数;中位数.【分析】众数是一组数据中出现次数最多的数,在这一组数据中28是出现次数最多的,故众数是28;而将这组数据从小到大的顺序排列后,处于中间位置的那个数是这组数据的中位数.【解答】解:在这一组数据中28是出现次数最多的,故众数是28分;而将这组数据从小到大的顺序排列(20,25,27,28,28,28,28,29,29,30,30,30),处于中间位置的那两个数是28,那么由中位数的定义可知,这组数据的中位数是28.故选A.【点评】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.4.一次函数y=﹣2x+3的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数的性质.【分析】首先确定k,k>0,必过第二、四象限,再确定b,看与y轴交点,即可得到答案.【解答】解:∵y=﹣2x+3中,k=﹣2<0,∴必过第二、四象限,∵b=3,∴交y轴于正半轴.∴过第一、二、四象限,不过第三象限,故选:C.【点评】此题主要考查了一次函数的性质,直线所过象限,受k,b的影响.5.化简的结果是()A.x﹣1 B.C.x+1 D.【考点】分式的加减法.【专题】计算题;分式.【分析】原式变形后,通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:原式===,故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.一个几何体的三视图如图所示,则这个几何体是()A.三棱柱B.三棱锥C.四棱柱D.四棱锥【考点】由三视图判断几何体.【分析】如图所示,根据三视图的知识可使用排除法来解答.【解答】解:根据主视图为三角形,左视图以及俯视图都是矩形,可得这个几何体为三棱柱,故选:A.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认识.7.已知一个正多边形的每个外角都等于72°,则这个正多边形是()A.正五边形B.正六边形C.正七边形D.正八边形【考点】多边形内角与外角.【分析】正多边形的外角和是360°,这个正多边形的每个外角相等,因而用360°除以外角的度数,就得到外角和中外角的个数,外角的个数就是多边形的边数.【解答】解:这个正多边形的边数:360°÷72°=5.故选A.【点评】本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.8.某商品的标价为400元,8折销售仍赚120元,则商品进价为()A.150元B.200元C.300元D.440元【考点】一元一次方程的应用.【分析】设该商品的进价为x元,那么售价是400×80%,利润是400×80%﹣x,根据其相等关系列方程得400×80%﹣x=120,解这个方程即可.【解答】解:设该商品的进价为x元,则:400×80%﹣x=120,解得:x=200.则该商品的进价为200元.故选B.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.9.如图,圆锥的轴截面(过圆锥顶点和底面圆心的截面)△ABC是直角三角形,则圆锥的侧面展开图扇形的圆心角度约为()A.127°B.180°C.201°D.255°【考点】圆锥的计算.【分析】由△ABC是直角三角形,而AB=AC,得出△ABC是等腰直角三角形,设圆锥底面圆的半径OB=r,则母线AB=AC=r,设所求圆心角度数为n,根据圆锥的侧面展开图中扇形的弧长等于圆锥底面的周长列出关于n的方程,解方程即可.【解答】解:∵圆锥的轴截面(过圆锥顶点和底面圆心的截面)△ABC是直角三角形,∴△ABC是等腰直角三角形,设圆锥底面圆的半径OB=r,则母线AB=AC=r,设所求圆心角度数为n,则=2πr,解得n=180≈255.故选D.【点评】本题考查了圆锥的计算,理解圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.由圆锥的轴截面△ABC是直角三角形得出△ABC是等腰直角三角形是解题的关键.10.已知正方形ABCD内接于⊙O,⊙O的半径为3,点E是弧AD上的一点,连接BE,CE,CE交AD于H点,作OG垂直BE于G点,且OG=,则EH:CH=()A.B.C. D.【考点】相似三角形的判定与性质;正方形的性质;圆周角定理.【分析】连接AC、BD、DE,根据垂径定理和三角形中位线定理得到DE=2OG=2,根据勾股定理求出BE,利用△CDH∽△BED和△ACH∽△EDH得到成比例线段,计算即可.【解答】解:连接AC、BD、DE,∵OG⊥BE,∴BG=GE,又BO=OD,∴OG=DE,则DE=2OG=2,由勾股定理得,BE==8,∵∠EBD=∠ECD,∠BED=∠CDH=90°,∴△CDH∽△BED,∴=,∴DH==,∴AH=6﹣=,CH==,∵∠CAD=∠DEC,∠ACE=∠DEC,∴△ACH∽△EDH,∴=,则EH==,∴=,故选:B.【点评】本题考查的是圆周角定理、正方形的性质、相似三角形的判定和性质,掌握相关的判定定理和性质定理、正确作出辅助线是解题的关键.二、填空题(共6小题,每小题4分,满分24分)11.因式分解:a3b﹣ab3=ab(a+b)(a﹣b).【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=ab(a2﹣b2)=ab(+b)(a﹣b),故答案为:ab(a+b)(a﹣b)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.某班参加学校六个社团的人数分别为4,4,5,x,3,6.已知这组数据的平均数是4,则这组数据的方差是.【考点】方差;算术平均数.【分析】先由平均数的值根据方差的公式计算即可.【解答】解:∵数据4,4,5,x,3,6平均数为4,∴(4+4+x+3+5+6)÷6=4,解得:x=2,这组数据的方差是=,故答案为:【点评】本题考查方差和平均数,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.平均数是所有数据的和除以数据的个数.13.如图,C是⊙O上的一点,过点C的⊙O的切线交直径AB的延长线于点P,若OB=PB=2,则BC的长为2.【考点】切线的性质.【分析】由切线的性质可知∠PCO=90°,再根据斜边中线定理即可解决问题.【解答】解:如图,连接OC.∵PC切⊙O于C,∴OC⊥PC,∴∠PCO=90°,∵OB=PB,OB=2,∴BC=BO=PB=2,故答案为2.【点评】本题考查切线的性质、直角三角形斜边中线定理,解题的关键是掌握切线的性质,知道切线垂直于过切点的半径,直角三角形斜边中线等于斜边一半,属于基础题.14.一反比例函数的图象经过第一象限的点A,AB⊥y轴于点B,O为坐标原点,△ABO的面积为2,则此反比例函数的解析式为y=.【考点】反比例函数系数k的几何意义.【分析】在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积为|k|,且保持不变.【解答】解:由题意得,k>0,|k|=2,故可得:k=4,即函数解析式为:y=,故答案为:y=.【点评】本题考查了反比例函数系数k的几何意义,注意掌握在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积为|k|,且保持不变.15.如图,抛物线y=a(x﹣1)2+(a≠0)经过y 轴正半轴上的点A,点B,C分别是此抛物线和x轴上的动点,点D在OB上,且AD平分△ABO的面积,过D作DF∥BC交x轴于F点,则DF的最小值为.【考点】二次函数综合题.【分析】设点B的坐标为(m,a(m﹣1)2+),点C坐标为(n,0),由AD平分△ABO的面积可知点D为线段OB的中点,结合DF∥BC可知DF是△OBC的中位线,即DF=BC,用两点间的距离公式表示出线段BC的长度,根据实数的平方非负可找出BC的最小值,从而得出结论.【解答】解:设点B的坐标为(m,a(m﹣1)2+),点C坐标为(n,0).∵点D在OB上,且AD平分△ABO的面积,∴OD=BD,又∵DF∥BC,∴DF是△OBC的中位线,∴DF=BC.根据两点间的距离公式可知:BC2=(m﹣n)2+=(m﹣n)2+a2(m﹣1)4+2a(m﹣1)2+2,结合抛物线开口向上可知a>0,∴(m﹣n)2≥0,a2(m﹣1)4≥0,2a(m﹣1)2≥0,∴BC2≥2,∴BC=.∵DF=BC,∴DF≥.故答案为:.【点评】本题考查了二次函数的应用、两点间距离公式以及实数的平方非负,解题的关键是根据实数的平方非负找出线段BC的最小值.本题属于中档题,难度不大,巧妙的利用了两点间的距离公式寻找最值,两点间的距离公式虽说高中知识,单在初中阶段我们已经经常用到,此处使用给做题带来了极大的方便,故在日常做题中应适度的增加该部分的练习.16.如图,在△ABC中,AB=AC=10,BC=12,AD⊥BC 于点D,点E在边AB上运动,过点E作EF∥BC 与边AC交于点F,连结FD,以EF、FD为邻边作▱EFDG,当▱EFDG与△ABC重叠部分为△ABC的面积的时,线段EF的长为6﹣2或3+.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由FE与BC平行,得到△AFE与△形ABC 相似,根据相似三角形的性质即可得到结论,注意对重叠部分形状进行分类讨论.【解答】解:∵AB=AC=10,BC=12,AD⊥BC,∴BD=BC=6,∴AD==8,∴S△ABC=×12×8=48,∵▱EFDG与△ABC重叠部分为△ABC的面积的,∴S四边形EFDG=48=16,设AD,EF交于H,∵FE∥BC,∴△AFE∽△ABC,∴==,∴AH=,∴HD=8﹣,①当重叠面积为平行四边形时(如图),S重叠=S四边形EFDG=EF•DH=EF(8﹣)=16,∴EF=6﹣2(6+2不合题意,舍去),②当重叠面积为梯形时(如图)S重叠=S梯形EFDB==16解得EF=3+(3﹣不合题意,舍去);故答案为:6﹣2或3+.【点评】本题考查了相似三角形的判定与性质,平行四边形的面积,熟练掌握相似三角形的判定与性质是解本题的关键.三、解答题(共7小题,满分66分)17.计算:(1)(﹣2)2﹣23﹣()0+|﹣3|(2)(x﹣2)2﹣2(x﹣2)+1.【考点】因式分解-运用公式法;零指数幂.【专题】计算题;因式分解.【分析】(1)原式利用乘方的意义,零指数幂法则,以及绝对值的代数意义化简,计算即可得到结果;(2)原式利用完全平方公式分解即可.【解答】解:(1)原式=4﹣8﹣1+3=﹣2;(2)原式=(x﹣2﹣1)2=(x﹣3)2.【点评】此题考查了因式分解﹣运用公式法,以及实数的运算,熟练掌握运算法则是解本题的关键.18.如图,在等腰△ABC中,AB=AC,△ADE是等边三角形,且DE∥BC,AD,AE分别交BC于点M,N.求证:BM=CN.【考点】全等三角形的判定与性质.【专题】证明题.【分析】利用等边三角形的性质和等腰三角形的性质,证明△ABM≌△ACN,利用全等三角形的对应边相等即可解答.【解答】解:∵△ADE是等边三角形,∴∠D=∠E=60°,∵DE∥BC,∴∠AMN=∠D,∠ANM=∠E,∴∠AMN=∠ANM=60°,∴∠AMB=∠ANC=120°,∵AB=AC,∴∠B=∠C,在△ABM和△ACN中,∴△ABM≌△ACN,∴BM=CN.【点评】本题考查了全等三角形的性质定理与判定定理,解决本题的关键是证明△ABM≌△ACN.19.(1)已知∠α和线段m,h,用直尺和圆规作▱ABCD,使AB=m,∠DAB=∠α,AB和CD之间的距离为h(作出图形,不写作法,保留痕迹)(2)在(1)中,若m比h大2,且m与h的和小于10,求h的取值范围.【考点】作图—复杂作图.【专题】作图题.【分析】(1)先作∠BAD=α,再截取AB=m,过点B作BE⊥AB于B,接着截取BE=h,过点E作DE⊥BE交AD于D,然后在DE上截取DC=m,则四边形ABCD满足条件;(2)根据题意得到m=h+2,m+h<10,然后消去m 得到h的不等式,再解不等式即可.【解答】解:(1)如图,平行四边形ABCD为所作;(2)m=h+2,m+h<10,则h+2+h<10,解得h<4,而h>0,所以0<h<4.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.英语王老师为了了解某校八年级学生英语听力情况,从各板随机抽取一部分学生组成一组进行英语听力测试,王老师将该组测试的乘积分甲,乙,丙,丁四个等级进行统计,并绘制了如下两幅不完整的统计图:(1)求丙等级所对扇形的圆心角,并将条形统计图补充完整;(2)该组达到甲等级的同学只有1位男同学,王老师打算从该组达到甲等级的同学中随机选出2位同学到全年级大会上介绍经验,请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率;(3)请你估计该校八年级学生工360人中,属于丙等级的学生为多少人?【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.【分析】(1)根据丁等级人数与百分比可得总人数,用丙等级人数占总人数的比例乘以360度可得圆心角度数,将总人数乘以乙等级百分率可得乙等级人数,总人数减去其他三个等级人数得甲等级人数,补全条形图;(2)4人中选取2人,列表表示出所有可能结果,确定一男一女的结果数,可得概率;(3)将样本中丙等级所占比例乘以八年级总人数可得.【解答】解:(1)参与调查的总人数为:6÷20%=30(人),丙等级所对扇形的圆心角为:×360°=96°,乙等级人数为:30×40%=12(人),甲等级人数为:30﹣12﹣8﹣6=4(人),补全图形如下:(2)从4人中选取2人参赛,所有等可能情况如下表:男女1 女2 女3男男,女1 男,女2 男,女3女1 男,女1 女1,女2 女1,女3 女2 男,女2 女1,女2 女2,女3 女3 男,女3 女1,女3 女2,女3所选两位同学恰好是1位男同学和1位女同学有6中结果,故所选两位同学恰好是1位男同学和1位女同学概率P=;(3)估计该校丙等级人数为:×360=96(人).【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.21.如图,A,B,C分别表示三所不同的学校,B,C在东西向的一条马路边,A学校在B学校北偏西15°方向上,在C学校北偏西60°方向上,A,B两学校之间的距离是1000米,请求出∠BAC的度数以及A,C两学校之间的距离.【考点】解直角三角形的应用-方向角问题.【专题】探究型.【分析】根据题意可以得到∠ABC和∠BCA的度数,从而可以得到∠BAC的度数,作辅助线BD⊥AC,根据题目中的信息可以分别求得AD和CD的长,从而可以得到AC的长.【解答】解:由已知可得,图形如下,∵∠ABC=90°+15°=105°,∠ACB=90°﹣60°=30°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣105°﹣30°=45°,作BD⊥AC于点D,如上图所示,∵∠BDA=90°,∠A=45°,AB=1000,∴BD=AD=500,又∵∠BDC=90°,∠BCD=30°,BD=500,∴CD=,∴AC=AD+CD=,即∠BAC=45°,A,C两学校之间的距离是()米.【点评】本题考查解直角三角形的应用﹣方向角问题,解题的关键是明确题意,找出所求问题需要的条件,作出合适的辅助线,注意辅助线要用虚线.22.在Rt△ABC中,点D为斜边AB的中点,P为AC边一动点,△BDP沿着PD所在的直线对折,点B的对应点为E.(1)若BC=5,AC=12,PD⊥AB,求AP的长;(2)当AD=PE时,求证:四边形BDEP为菱形;(3)若BC=5,∠A=30°,P点从C点运动到A点,在这个过程中,求E点所经过的路径长.【考点】四边形综合题.【分析】(1)根据勾股定理求出AB,根据相似三角形的判定定理证明△ADP∽△ACB,根据相似三角形的性质得到比例式,计算即可;(2)根据四条边相等的四边形是菱形证明即可;(3)根据等边三角形的性质和平角的定义求出P点从C点运动到A点E点运动的圆心角,根据弧长公式计算即可.【解答】(1)解:∵∠C=90°,BC=5,AC=12,∴AB==13,∵PD⊥AB,∠C=90°,∴△ADP∽△ACB,∴=,即=,解得,AP=;(2)证明:由翻折变换的性质可知,PB=PE,DB=DE,∵AD=PE,BD=AD,∴BP=PE=ED=DB,∴四边形BDEP为菱形;(3)∵BC=5,∠A=30°,∴AB=2BC=10,∴DE=BD=AB=5,当P点与C点重合时,△BPD是等边三角形,∴∠BDP=60°,∴∠EDP=60°,∴∠EDA=60°,当P点与A点重合时,∠EDA=180°,∴P点从C点运动到A点E点运动的圆心角为60°+180°=240°,=,∴E点所经过的路径长为.【点评】本题考查的是菱形的判定、弧长的计算、翻折变换的性质,掌握四条边相等的四边形是菱形、弧长的计算公式是解题的关键.23.如图,在△ABC中,点A,B分别在x轴的正、负半轴上(其中OA<OB),点C在y轴的正半轴上,AB=10,OC=4,∠ABC=∠ACO.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点D的坐标为(﹣4,0),P是该抛物线上的一个动点.①直线DP交直线BC于点E,当△BDE是等腰三角形时,直接写出此时点E的坐标;②连结CD,CP,若∠PCD=∠CBD,请求出点P的坐标.【考点】二次函数综合题.【分析】(1)利用△BOC~△C0A得出比例式求出OA,OB,从而得出A(2,0),B(﹣8,0),再利用两根式求解析式的方法即可求解;(2)①根据点E在直线BC上,设出点E的坐标,再根据平面坐标系中两点间的距离公式分别求出BE=,DE=,BD=4,而△BDE为等腰三角形,分三种情况:BE=BD,BE=DE,BD=DE,再求解方程,从而得到点E的坐标;②根据∠PCD=∠CBD作出直角三角形,利用平面坐标系中互相垂直的直线的比例系数之积为﹣1,根据直线CD的解析式为y=x+4,设出直线PF的解析式为y=﹣x+4,利用锐角的三角函数求出CF=2PF,设出点P的坐标,确定出CF=,PF=,求解绝对值方程即可.【解答】解:(1)设OA=x,则OB=10﹣x,∴∠ABC=∠ACO,∠AOC=∠COB,∴△BOC~△C0A,∴=,∴OC2=OA×OB,∴16=x(10﹣x),∴x=8或x=2,∴A(2,0),B(﹣8,0),设抛物线的解析式为y=a(x+8)(x﹣2)∴4=(0+8)(0﹣2),∴a=﹣,∴y=﹣(x+8)(x﹣2)=﹣x2﹣x+4.(2)①∵B(﹣8,0),C(0,4),∴直线BC的解析式为y=x+4,设E(m,m+4),且B(﹣8,0),D(0,4),∴BE=,DE=,BD=4,∵△BDE为等腰三角形,Ⅰ、当BE=DE时,有=,∴m=﹣6,∴m+4=1,∴E(﹣6,1),Ⅱ、当BE=BD时,有=4,∴m=或m=,∴E(,),E(,﹣),Ⅲ、当BD=DE时,有=4,∴m=﹣或m=﹣8(舍)∴E(﹣,),∴E(﹣6,1),E(,),E(,﹣),E(﹣,).②∵C(0,4),D(﹣4,0),∴直线CD的解析式为y=x+4,作PF⊥CD,设直线PF的解析式为y=﹣x+4,∴F(,),设P(m,﹣m+b),∴﹣m+b=﹣m2﹣m+4,∴b=﹣m2﹣m+4,∵P(﹣m,﹣m+b),F(,),C(0,4),∴CF==,PF==,∵tan∠CBD=,∠CBD=∠PCF,∴tan∠PCF==,∴CF=2PF,∴=2×,∴m=﹣或m=﹣18,∴b=﹣m2﹣m+4=﹣或b=﹣m2﹣m+4=﹣68,∴P(﹣,)或P(﹣18,﹣50).【点评】本题是二次函数的综合题,涉及到的知识点有,平面坐标系中两点间的距离公式,如BE=,DE=,BD=4,相似矩形的判定和性质,求解方程,解题的关键是利用平面坐标系中两点间的距离公式和作出辅助线.。
2016年浙江省丽水市中考数学试卷一、选择题:每小题3分,共30分1.(3分)下列四个数中,与﹣2的和为0的数是()A.﹣2 B.2 C.0 D.﹣2.(3分)计算32×3﹣1的结果是()A.3 B.﹣3 C.2 D.﹣23.(3分)下列图形中,属于立体图形的是()A. B. C. D.4.(3分)+的运算结果正确的是()A. B. C. D.a+b5.(3分)某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是()年级七年级八年级九年级合格人数270262254A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少6.(3分)下列一元二次方程没有实数根的是()A.x2+2x+1=0 B.x2+x+2=0 C.x2﹣1=0 D.x2﹣2x﹣1=07.(3分)如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为()A.13 B.17 C.20 D.268.(3分)在直角坐标系中,点M,N在同一个正比例函数图象上的是()A.M(2,﹣3),N(﹣4,6) B.M(﹣2,3),N(4,6)C.M(﹣2,﹣3),N(4,﹣6)D.M(2,3),N(﹣4,6)9.(3分)用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是()A. B. C. D.10.(3分)如图,已知⊙O是等腰Rt△ABC的外接圆,点D是上一点,BD交AC 于点E,若BC=4,AD=,则AE的长是()A.3 B.2 C.1 D.1.2二、填空题:每小题4分,共24分11.(4分)分解因式:am﹣3a=.12.(4分)如图,在△ABC中,∠A=63°,直线MN∥BC,且分别与AB,AC相交于点D,E,若∠AEN=133°,则∠B的度数为.13.(4分)箱子里放有2个黑球和2个红球,它们除颜色外其余都相同,现从箱子里随机摸出两个球,恰好为1个黑球和1个红球的概率是.14.(4分)已知x2+2x﹣1=0,则3x2+6x﹣2=.15.(4分)如图,在菱形ABCD中,过点B作BE⊥AD,BF⊥CD,垂足分别为点E,F,延长BD至G,使得DG=BD,连结EG,FG,若AE=DE,则=.16.(4分)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于A,B 两点,与x轴、y轴分别交于C,D两点,连结OA,OB,过A作AE⊥x轴于点E,交OB于点F,设点A的横坐标为m.(1)b=(用含m的代数式表示);(2)若S△OAF +S四边形EFBC=4,则m的值是.三、解答题17.(6分)计算:(﹣3)0﹣|﹣|+.18.(6分)解不等式:3x﹣5<2(2+3x)19.(6分)数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°的三角板的斜边与含30°的三角板的长直角边相等,于是,小陆同学提出一个问题:如图,将一副三角板直角顶点重合拼放在一起,点B,C,E在同一直线上,若BC=2,求AF的长.请你运用所学的数学知识解决这个问题.20.(8分)为了帮助九年级学生做好体育考试项目的选考工作,某校统计了本县上届九年级毕业生体育考试各个项目参加的男、女生人数及平均成绩,并绘制成如图两个统计图,请结合统计图信息解决问题.(1)“掷实心球”项目男、女生总人数是“跳绳”项目男、女生总人数的2倍,求“跳绳”项目的女生人数;(2)若一个考试项目的男、女生总平均成绩不小于9分为“优秀”,试判断该县上届毕业生的考试项目中达到“优秀”的有哪些项目,并说明理由;(3)请结合统计图信息和实际情况,给该校九年级学生体育考试项目的选择提出合理化建议.21.(8分)2016年3月27日“丽水半程马拉松竞赛”在莲都举行,某运动员从起点万地广场西门出发,途经紫金大桥,沿比赛路线跑回终点万地广场西门.设该运动员离开起点的路程S(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到紫金大桥的平均速度是0。
2016年数学模拟试卷班级_________姓名_________一.仔细选一选(本题有10个小题,每小题4分,共40分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.关于m 的不等式﹣m >1的解为( )A .m >0B .m <0C .m <﹣1D .m >﹣12.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是( )A .甲比乙的成绩稳定B .乙比甲的成绩稳定C .甲、乙两人的成绩一样稳定D .无法确定谁的成绩更稳定 3.如图所示零件的左视图是( )A .B .C .D .4.已知点A (1,m )与点(3,n )都在反比例函数y=﹣的图象上,则m 与n 的大小关系是( )A .m <nB .m >nC .m=nD .不能确定5.的平方根( )A .4B .2C .±4D .±2 6.已知点(x 1,y 1),(x 2,y 2)均在抛物线y=x 2﹣1上,下列说法中正确的是( )A .若y 1=y 2,则x 1=x 2B .若x 1=﹣x 2,则y 1=﹣y 2C .若0<x 1<x 2,则y 1>y 2D .若x 1<x 2<0,则y 1>y 27.如图,AB 是半圆O 的直径,AC 为弦,OD ⊥AC 于D ,过点O 作OE ∥AC 交半圆O 于点E ,过点E 作EF ⊥AB 于F ,若AC=4,则OF 的长为( )A.1 B. C.2 D.48.如图,如果△ABC与△DEF都是正方形网格中的格点三角形(顶点在格点上),那么△DEF与△ABC的周长比为()A.4:1 B.3:1 C.2:1 D.:19.△ABC的一边长为5,另两边分别是方程x2﹣6x+m=0的两根,则m的取值范围是()A.m> B.<m≤9 C.≤m≤9 D.m≤10.在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),连结AD,作∠ADE=∠B=α,DE交AC于点E,且cosα=.有下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③当△DCE为直角三角形时,BD=8;④3.6≤AE<10.其中正确的结论是()A.①③ B.①④C.①②④ D.①②③二.认真填一填(本题有6个小题,每小题5分,共30分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.从﹣2,﹣8,5中任取两个不同的数作为点的坐标,该点在第三象限的概率为.12.函数y=x2﹣6x+8(0≤x≤4)的最大值与最小值分别为,.13.已知:如图,在菱形ABCD中,AE⊥BC,垂足为E,对角线BD=4,tan∠CBD=,则AB= ,sin∠ABE= .14.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是____________.15.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A,C分别在x,y轴的正半轴上,点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P,则点P与Q的坐标分别为.16.已知函数y=k (x+1)(x ﹣),下列说法:①方程k (x+1)(x ﹣)=﹣3必有实数根;②若移动函数图象使其经过原点,则只能将图象向右移动1个单位;③当k >3时,抛物线顶点在第三象限;④若k <0,则当x <﹣1时,y 随着x 的增大而增大,其中正确的序号是 .16.如图,一次函数y=﹣x+b 与反比例函数y=(x >0)的图象交于A ,B 两点,与x 轴、y 轴分别交于C ,D 两点,连结OA ,OB ,过A 作AE ⊥x 轴于点E ,交OB 于点F ,设点A 的横坐标为m .(1)b= (用含m 的代数式表示);(2)若S △OAF +S 四边形EFBC =4,则m 的值是 .三、解答题(本题共8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.计算:0(3)4sin 4581-π+-.解不等式组:253(1)742x x x x +>-⎧⎪⎨+>⎪⎩17.某学校抽查了某班级某月5天的用电量,数据如下表(单位:度):(1)求这5天的用电量的平均数;(2)求这5天用电量的众数、中位数;(3)学校共有36个班级,若该月按22天计,试估计该校该月的总用电量.18.小明在数学课外小组活动中遇到这样一个“新定义”问题:定义运算“※”为:a ※b=,求1※(﹣4)的值.小明是这样解决问题的:由新定义可知a=1,b=﹣4,又b <0,所以1※(﹣4)=。
浙江省杭州市中考数学试卷一.选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.(杭州)下列“表情图”中,属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称的定义,结合各选项进行判断即可.解答:解:A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确;故选D.点评:本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题.2.(杭州)下列计算正确的是()A.m3+m2=m5B.m3m2=m6C.(1﹣m)(1+m)=m2﹣1 D.考点:平方差公式;合并同类项;同底数幂的乘法;分式的基本性质.分析:根据同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质即可判断.解答:解:A.不是同类项,不能合并,故选项错误;B.m3m2=m5,故选项错误;C.(1﹣m)(1+m)=1﹣m2,选项错误;D.正确.故选D.点评:本题考查了同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质,理解平方差公式的结构是关键.3.(杭州)在▱ABCD中,下列结论一定正确的是()A.AC⊥BD B.∠A+∠B=180°C.AB=AD D.∠A≠∠C考点:平行四边形的性质.分析:由四边形ABCD是平行四边形,可得AD∥BC,即可证得∠A+∠B=180°.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.故选B.点评:此题考查了平行四边形的性质.此题比较简单,注意掌握数形结合思想的应用.4.(杭州)若a+b=3,a﹣b=7,则ab=()A.﹣10 B.﹣40 C.10 D.40考点:完全平方公式.分析:联立已知两方程求出a与b的值,即可求出ab的值.解答:解:联立得:,解得:a=5,b=﹣2,则ab=﹣10.故选A.点评:此题考查了解二元一次方程组,求出a与b的值是解本题的关键.5.(杭州)根据~杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.~杭州市每年GDP增长率相同B.杭州市的GDP比翻一番C.杭州市的GDP未达到5500亿元D.~杭州市的GDP逐年增长考点:条形统计图.分析:根据条形统计图可以算~GDP增长率,~GDP增长率,进行比较可得A的正误;根据统计图可以大约得到和GDP,可判断出B的正误;根据条形统计图可得杭州市的GDP,可判断出C的正误,根据条形统计图可直接得到~杭州市的GDP逐年增长.解答:解:A.~GDP增长率约为:=,~GDP增长率约为=,增长率不同,故此选项错误;B.杭州市的GDP约为7900,GDP约为4900,故此选项错误;C.杭州市的GDP超过到5500亿元,故此选项错误;D.~杭州市的GDP逐年增长,故此选项正确,故选:D.点评:本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.6.(杭州)如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.考点:分式的乘除法.分析:分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.解答:解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,故选B.点评:本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.7.(杭州)在一个圆中,给出下列命题,其中正确的是()A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径考点:直线与圆的位置关系;命题与定理.分析:根据直线与圆的位置关系进行判断即可.解答:解:A.圆心到两条直线的距离都等于圆的半径时,两条直线可能垂直,故本选项错误;B.当两圆经过两条直线的交点时,圆与两条直线有三个交点;C.两条平行弦所在直线没有交点,故本选项正确;D.两条平行弦之间的距离一定小于直径,但不一定小于半径,故本选项错误,故选C.点评:本题考查了直线与圆的位置关系、命题与定理,解题的关键是熟悉直线与圆的位置关系.8.(杭州)如图是某几何体的三视图,则该几何体的体积是()A.B.C.D.考点:由三视图判断几何体.分析:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2.根据正六棱柱的体积=底面积×高即可求解.解答:解:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2,所以该几何体的体积=6××62×2=108.故选C.点评:本题考查了由三视图求原几何体的体积,正确恢复原几何体是解决问题的关键.9.(杭州)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于()A.B.C.D.考点:解直角三角形.分析:在直角三角形ABC中,由AB与sinA的值,求出BC的长,根据勾股定理求出AC的长,根据面积法求出CD的长,即为斜边上的高.解答:解:根据题意画出图形,如图所示,在Rt△ABC中,AB=4,sinA=,∴BC=ABsinA=2.4,根据勾股定理得:AC==3.2,∵S△ABC=AC•BC=AB•CD,∴CD==.故选B点评:此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键.10.(杭州)给出下列命题及函数y=x,y=x2和y=①如果,那么0<a<1;②如果,那么a>1;③如果,那么﹣1<a<0;④如果时,那么a<﹣1.则()A.正确的命题是①④B.错误的命题是②③④C.正确的命题是①②D.错误的命题只有③考点:二次函数与不等式(组);命题与定理.分析:先确定出三函数图象的交点坐标为(1,1),再根据二次函数与不等式组的关系求解即可.所以,交点坐标为(1,1),根据对称性,y=x和y=在第三象限的交点坐标为(﹣1,﹣1),①如果,那么0<a<1正确;②如果,那么a>1或﹣1<a<0,故本小题错误;③如果,那么a值不存在,故本小题错误;④如果时,那么a<﹣1正确.综上所述,正确的命题是①④.故选A.点评:本题考查了二次函数与不等式组的关系,命题与定理,求出两交点的坐标,并准确识图是解题的关键.二.填空题(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(杭州)32×3.14+3×(﹣9.42)= .考点:有理数的混合运算.分析:根据32×3.14+3×(﹣9.42)=3×9.42﹣3×(﹣9.42)即可求解.解答:解:原式=3×9.42﹣3×(﹣9.42)=0.故答案是:0.点评:本题考查了有理数的混合运算,理解运算顺序是关键.12.(杭州)把7的平方根和立方根按从小到大的顺序排列为.考点:实数大小比较.专题:计算题.分析:先分别得到7的平方根和立方根,然后比较大小.解答:解:7的平方根为﹣,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为﹣<<.故答案为:﹣<<.点评:本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.13.(杭州)在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sinA=;②cosB=;③tanA=;④tanB=,其中正确的结论是(只需填上正确结论的序号)考点:特殊角的三角函数值;含30度角的直角三角形.专题:探究型.分析:先根据题意画出图形,再由直角三角形的性质求出各角的度数,由特殊角的三角函数值即可得出结论.解答:解:如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sinA==,故①错误;∴∠B=60°,∴cosB=cos60°=,故②正确;∵∠A=30°,∴tanA=tan30°=,故③正确;∵∠B=60°,∴tanB=tan60°=,故④正确.故答案为:③③④.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.14.(杭州)杭州市某4所高中近两年的最低录取分数线如下表(单位:分),设4所高中和的平均最低录取分数线分别为,,则= 分杭州市某4所高中最低录取分数线统计表学校2011年2012年杭州A中438 442杭州B中435 442杭州C中435 439杭州D中435 439考点:算术平均数.分析:先算出的平均最低录取分数线和的平均最低录取分数线,再进行相减即可.解答:解:的平均最低录取分数线=(438+435+435+435)÷4=435.75(分),的平均最低录取分数线=(442+442+439+439)÷4=440.5(分),则=440.5﹣435.75=4.75(分);故答案为:4.75.点评:此题考查了算术平均数,掌握平均数的计算公式是解题的关键,是一道基础题,比较简单.15.(杭州)四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1﹣S2|= (平方单位)考点:圆锥的计算;点、线、面、体;圆柱的计算.分析:梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形解答:解:AB旋转一周形成的圆柱的侧面的面积是:2π×2×3=12π;AC旋转一周形成的圆柱的侧面的面积是:2π×2×2=8π,则|S1﹣S2|=4π.故答案是:4π.点评:本题考查了图形的旋转,理解梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差是关键.16.(杭州)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)考点:切线的性质;等边三角形的性质.专题:分类讨论.分析:求出AB=AC=BC=4cm,MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:画出图形,结合图形求出即可;解答:解:∵△ABC是等边三角形,∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°,∵QN∥AC,AM=BM.∴N为BC中点,∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:①如图1,当⊙P切AB于M′时,连接PM′,则PM′=cm,∠PM′M=90°,∵∠PMM′=∠BMN=60°,∴M′M=1cm,PM=2MM′=2cm,∴QP=4cm﹣2cm=2cm,即t=2;②如图2,当⊙P于AC切于A点时,连接PA,则∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm,∴PM=1cm,∴QP=4cm﹣1cm=3cm,即t=3,当当⊙P于AC切于C点时,连接PC,则∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′=cm,∴P′N=1cm,∴QP=4cm+2cm+1cm=7cm,即当3≤t≤7时,⊙P和AC边相切;③如图1,当⊙P切BC于N′时,连接PN′3则PN′=cm,∠PM\N′N=90°,∵∠PNN′=∠BNM=60°,∴N′N=1cm,PN=2NN′=2cm,∴QP=4cm+2cm+2cm=8cm,即t=8;故答案为:t=2或3≤t≤7或t=8.点评:本题考查了等边三角形的性质,平行线的性质,勾股定理,含30度角的直角三角形性质,切线的性质的应用,主要考查学生综合运用定理进行计算的能力,注意要进行分类讨论啊.三.解答题(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(杭州)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.考点:作图—复杂作图.分析:根据角平分线的作法以及线段垂直平分线的作法得出Q点位置,进而利用垂直平分线的作法得出解答:解:如图所示:发现:DQ=AQ或者∠QAD=∠QDA等等.点评:此题主要考查了复杂作图以及线段垂直平分线的作法和性质等知识,熟练应用其性质得出系等量关系是解题关键.18.(杭州)当x满足条件时,求出方程x2﹣2x﹣4=0的根.考点:解一元二次方程-公式法;解一元一次不等式组.分析:通过解一元一次方程组求得2<x<4.然后利用求根公式x=求得方程程x2﹣2x﹣4=0的根,由x的取值范围来取舍该方程的根.解答:解:由求得,则2<x<4.解方程x2﹣2x﹣4=0可得x1=1+,x2=1﹣,∵2<<3,∴3<1+<4,符合题意∴x=1+.点评:本题考查了解一元二次方程﹣﹣公式法,解一元一次不等式组.要会熟练运用公式法求得一元二次方程的解.19.(杭州)如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.求证:△GAB是等腰三角形.考点:等腰梯形的性质;全等三角形的判定与性质;等腰三角形的判定.专题:证明题.分析:由在等腰梯形ABCD中,AB∥DC,DE=CF,利用SAS,易证得△ADE≌△BCF,即可得∠DAE=∠CBF,则可得∠GAB=∠GBA,然后由等角对等边,证得:△GAB是等腰三角形.∴∠D=∠C,∠DAB=∠CBA,在△ADE和△BCF中,,∴△ADE≌△BCF(SAS),∴∠DAE=∠CBF,∴∠GAB=∠GBA,∴GA=GB,即△GAB为等腰三角形.点评:此题考查了等腰梯形的性质、全等三角形的判定与性质以及等腰三角形的判定.此题难度不大,注意掌握数形结合思想的应用.20.(杭州)已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y轴相交于点C,且点A,C在一次函数y2=x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.考点:二次函数的性质;抛物线与x轴的交点.专题:分类讨论.分析:根据OC的长度确定出n的值为8或﹣8,然后分①n=8时求出点A的坐标,然后确定抛物线开口方向向下并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围;②n=﹣8时求出点A的坐标,然后确定抛物线开口方向向上并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围.解答:解:根据OC长为8可得一次函数中的n的值为8或﹣8.分类讨论:①n=8时,易得A(﹣6,0)如图1,∵抛物线经过点A、C,且与x轴交点A、B在原点的两侧,∴抛物线开口向下,则a<0,∵AB=16,且A(﹣6,0),∴B(10,0),而A、B关于对称轴对称,∴对称轴直线x==2,要使y1随着x的增大而减小,则a<0,∴x>2;(2)n=﹣8时,易得A(6,0),如图2,∵抛物线过A、C两点,且与x轴交点A,B在原点两侧,∴抛物线开口向上,则a>0,∵AB=16,且A(6,0),∴B(﹣10,0),而A、B关于对称轴对称,∴对称轴直线x==﹣2,要使y1随着x的增大而减小,且a>0,∴x<﹣2.点评:本题考查了二次函数的性质,主要利用了一次函数图象上的点的坐标特征,二次函数的增减性,难点在于要分情况讨论.21.(杭州)某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其它均相同打乱顺序重新排列,从中任意抽取1张卡片(1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率;(2)若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.考点:游戏公平性.分析:(1)由在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),直接利用概率公式求解即可求得答案;(2)由无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.可知此游戏不公平;(3)可设计为:先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.解答:解:(1)∵在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),∴是20倍数或者能整除20的数有7个,则取到的卡片上序号是20的倍数或能整除20的概率为:;(2)不公平,∵无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.∴不公平;(3)先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.(为保证每个数字每次被抽到的概率都是)点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.22.(杭州)(1)先求解下列两题:①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数;②如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数的图象经过点B,D,求k的值.(2)解题后,你发现以上两小题有什么共同点?请简单地写出.考点:等腰三角形的性质;反比例函数图象上点的坐标特征.分析:(1)①根据等边对等角可得∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,然后用∠A表示出∠EDM,计算即可求解;②先根据反比例函数图象上的点的坐标特征表示出点B的坐标,再表示出点C的坐标,然后根据AC∥x 轴可得点C、D的纵坐标相同,从而表示出点D的坐标,再代入反比例函数解析式进行计算即可得解.(2)从数学思想上考虑解答.解答:解:(1)①∵AB=BC=CD=DE,∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,根据三角形的外角性质,∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,又∵∠EDM=84°,∴∠A+3∠A=84°,解得,∠A=21°;②∵点B在反比例函数y=图象上,点B,C的横坐标都是3,∴点B(3,),∵BC=3,∴点C(3,+2),∵AC∥x轴,点D在AC上,且横坐标为1,∴A(1,+2),∵点A也在反比例函数图象上,∴+2=k,解得,k=3;(2)用已知的量通过关系去表达未知的量,使用转换的思维和方法.(开放题)点评:本题考查了等腰三角形两底角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,以及反比例函数图象上点的坐标特征,是基础题.23.(杭州)如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.(1)求证:∠APE=∠CFP;(2)设四边形CMPF的面积为S2,CF=x,.①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.考点:四边形综合题.分析:(1)利用正方形与三角形的相关角之间的关系可以证明结论;(2)本问关键是求出y与x之间的函数解析式.①首先分别用x表示出S1与S2,然后计算出y与x的函数解析式.这是一个二次函数,求出其最大值;②注意中心对称、轴对称的几何性质.解答:(1)证明:∵∠EPF=45°,∴∠APE+∠FPC=180°﹣45°=135°;而在△PFC中,由于PF为正方形ABCD的对角线,则∠PCF=45°,则∠CFP+∠FPC=180°﹣45°=135°,∴∠APE=∠CFP.(2)解:①∵∠APE=∠CFP,且∠FCP=∠PAE=45°,∴△APE∽△CPF,则.而在正方形ABCD中,AC为对角线,则AC=AB=,又∵P为对称中心,则AP=CP=,∴AE===.如图,过点P作PH⊥AB于点H,PG⊥BC于点G,P为AC中点,则PH∥BC,且PH=BC=2,同理PG=2.S△APE==×2×=,∵阴影部分关于直线AC轴对称,∴△APE与△APN也关于直线AC对称,则S四边形AEPN=2S△APE=;而S2=2S△PFC=2×=2x,∴S1=S正方形ABCD﹣S四边形AEPN﹣S2=16﹣﹣2x,∴y===+﹣1.∵E在AB上运动,F在BC上运动,且∠EPF=45°,∴2≤x≤4.令=a,则y=﹣8a2+8a﹣1,当a==,即x=2时,y取得最大值.而x=2在x的取值范围内,代入x=2,则y最大=4﹣2﹣1=1.∴y关于x的函数解析式为:y=+﹣1(2≤x≤4),y的最大值为1.②图中两块阴影部分图形关于点P成中心对称,而此两块图形也关于直线AC成轴对称,则阴影部分图形自身关于直线BD对称,则EB=BF,即AE=FC,∴=x,解得x=,代入x=,得y=﹣2.点评:本题是代数几何综合题,考查了正方形的性质、相似三角形、二次函数的解析式与最值、几何变换(轴对称与中心对称)、图形面积的计算等知识点,涉及的考点较多,有一定的难度.本题重点与难点在于求出y与x的函数解析式,在计算几何图形面积时涉及大量的计算,需要细心计算避免出错.。
1由视图确定几何体的形状一、选择题1. (2013 山东省德州市) 图中三视图所对应的直观图是( )2. (2013 湖北省孝感市) 由8个大小相同的正方体组成的几何体的主视图和俯视图如图所示,则这个几何体的左视图是3. (2014 北京市) 右图是几何体的三视图,该几何体是( )A 、圆锥B 、圆柱C 、正三棱柱D 、正三棱锥4. (2014 甘肃省天水市) 右图的主视图、左视图、俯视图是下列那个物体的三视图( )主视图 左视图 俯视图A. B. C. D.5. (2014 湖南省永州市) 若某几何体的三视图如图所示,则这个几何体是()6. (2014 浙江省杭州市) 已知某几何体的三视图(单位:cm)则该几何体的侧面积等于()2cmA. 12πB. 15πC. 24πD. 30π7. (2015 贵州省毕节地区) 如图是由5个相同的正方形组成的几何体的左视图和俯视图,则该几何体的主视图不可能是()A. B. C. D.8. (2015 河北省) 如图所示的三视图所对应的几何体是()俯视图左视图主视图6423A .B .C .D .9. (2015 湖北省孝感市) 如图是一个几何体的三视图,则这个几何体是A .正方体B .长方体C .三棱柱D .三棱锥10. (2015 山东省日照市) 小红在观察由一些相同小立方块搭成的几何体时,发现它的右视图、俯视图、左视图均为如图,则构成该几何体的小立方块的个数有( )A.3个B . 4个 C. 5个 D . 6个11. (2016 内蒙古呼伦贝尔市) 三棱柱的三视图如图所示,△EFG 中,EF=6cm ,∠EFG=45°,则AB 的长为( )A .6cmB .3cmC .3cmD .6cm 12. (2016 内蒙古呼和浩特市) 一个几何体的三视图如图所示,则该几何体的表面积为( ))4(题第A.4π B.3π C.2π+4 D.3π+413. (2016 四川省凉山州) 如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是()A.6 B.4 C.3 D.214. (2016 四川省资阳市) 如图是一个正方体纸盒的外表面展开图,则这个正方体是()A.B.C.D.15. (2017 湖北省荆州市) 如图是某几何体的三视图,根据图中的数据,求得该几何体的体积为()A.800π+1200 B.160π+1700 C.3200π+1200 D.800π+300016. (2017 湖南省常德市) 如图是一个几何体的三视图,则这个几何体是()45A .B .C .D .17. (2017 山东省泰安市) 下面四个几何体:其中,俯视图是四边形的几何体个数是( )A .1B . 2C .3D .418. (2017 湖北省武汉市) 某物体的主视图如图所示,则该物体可能为( ) A . B . C . D .19. (2018 北京市) (2分)下列几何体中,是圆柱的为( )A .B .C .D .20. (2018 山东省济宁市) (3.00分)一个几何体的三视图如图所示,则该几何体的表面积是( )A .24+2π B .16+4π C .16+8π D .16+12π21. (2018 山东省泰安市)如图是下列哪个几何体的主视图与俯视图( )A. B.C.D.22. (2018 陕西省) 如图,是一个几何体的表面展开图,则该几何体是()A.正方体B.长方体C.三棱柱D.四棱锥23. (2018 浙江省金华市) 一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体24. (2019 广西梧州市) (3分)一个几何体的主视图和左视图都是矩形,俯视图是圆,则这个几何体是()A.圆柱B.圆锥C.球D.正方体25. (2019 黑龙江省绥化市) (3分)若一个几何体的主视图、俯视图、左视图都是半径相等的圆,则这个几何体是()A.球体B.圆锥C.圆柱D.正方体26. (2019 湖南省长沙市)某个几何体的三视图如图所示,该几何体是()A. B. C. D.627. (2019 江苏省无锡市) (3分)一个几何体的主视图、左视图、俯视图都是长方形,这个几何体可能是()A.长方体B.四棱锥C.三棱锥D.圆锥28. (2019 浙江省台州市) (4分)如图是某几何体的三视图,则该几何体是()A.长方体B.正方体C.圆柱D.球29. (2019 内蒙古赤峰市)如图是一个几何体的三视图,则这个几何体是()A.三棱锥B.圆锥C.三棱柱D.圆柱二、填空题30. (2014 四川省攀枝花市) 如图是一个几何体的三视图,这个几何体是圆锥,它的侧面积是(结果不取近似值).7参考答案一、选择题1. C2. B3. C4. A5. C6. B7.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:根据题意可得:选项A不正确,它的俯视图是:则该几何体的主视图不可能是A.故选A.8点评:此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.8.分析:对所给四个几何体,分别从主视图和俯视图进行判断.解答:解:从主视图可判断A错误;从俯视图可判断C、D错误.故选B.点评:本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.9.B10.分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:从俯视图发现有3个立方体,从左视图发现第二层最多有1个立方块,则构成该几何体的小立方块的个数有4个;故选B.点评:此题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.911.考点由三视图判断几何体.分析根据三视图的对应情况可得出,△EFG中FG上的高即为AB的长,进而求出即可.解答解:过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EF=6cm,∠EFG=45°,∴EQ=AB=EF×sin45°=3cm,故选B.点评此题主要考查了由三视图解决实际问题,根据已知得出EQ=AB是解题关键.12.考点由三视图判断几何体.分析首先根据三视图判断几何体的形状,然后计算其表面积即可.解答解:观察该几何体的三视图发现其为半个圆柱放在一个长方体的上面组成的一个几何体,半圆柱的直径为2,长方体的长为2,宽为1,高为1,故其表面积为:π×12+(π+2)×2=3π+4,故选D.13.考点由三视图判断几何体.分析主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.10解答解:综合三视图可知,这个几何体的底层有3个小正方体,第2层有1个小正方体,第3层有1个小正方体,第4层有1个小正方体,因此搭成这个几何体所用小正方体的个数是3+1+1+1=6个.故选:A.14.考点几何体的展开图.分析根据几何体的展开图先判断出实心圆点与空心圆点的关系,进而可得出结论.解答解:∵由图可知,实心圆点与空心圆点一定在紧相邻的三个侧面上,∴C符合题意.故选C.15.考点U3:由三视图判断几何体.分析根据给出的几何体的三视图可知几何体是由一个圆柱和一个长方体组成,从而利用三视图中的数据,根据体积公式计算即可.解答解:由三视图可知,几何体是由一个圆柱和一个长方体组成,圆柱底面直径为20,高为8,长方体的长为30,宽为20,高为5,故该几何体的体积为:π×102×8+30×20×5=800π+3000,故选:D.16.答案B.解析试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B.考点:由三视图判断几何体.17.考点U1:简单几何体的三视图.分析根据俯视图是分别从物体上面看,所得到的图形进行解答即可.解答解:俯视图是四边形的几何体有正方体和三棱柱,故选:B.18.答案D试题解析:只有选项A的图形的主视图是拨给图形,其余均不是.故选A.考点:三视图.19.分析根据立体图形的定义及其命名规则逐一判断即可.解答解:A、此几何体是圆柱体;B、此几何体是圆锥体;C、此几何体是正方体;D、此几何体是四棱锥;故选:A.20.分析根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.解答解:该几何体的表面积为2וπ•22+4×4+×2π•2×4=12π+16,故选:D.21.分析直接利用主视图以及俯视图的观察角度结合结合几何体的形状得出答案.解答解:由已知主视图和俯视图可得到该几何体是圆柱体的一半,只有选项C 符合题意.故选:C.22. A.正方体B.长方体C.三棱柱D.四棱锥分析由展开图得这个几何体为棱柱,底面为三边形,则为三棱柱.解答解:由图得,这个几何体为三棱柱.故选:C.23.分析根据三视图的形状可判断几何体的形状.解答解:观察三视图可知,该几何体是直三棱柱.故选:A.24.分析根据几何体的主视图和左视图都是矩形,得出几何体是柱体,再根据俯视图为圆,易判断该几何体是一个圆柱.解答解:一个几何体的主视图和左视图都是矩形,俯视图是圆,符合这个条件的几何体只有圆柱,因此这个几何体是圆柱体.故选:A.点评本题考查由三视图判断几何体,主要考查学生空间想象能力.由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.25.分析利用三视图都是圆,则可得出几何体的形状.解答解:主视图、俯视图和左视图都是圆的几何体是球体.故选:A.点评本题考查了由三视图确定几何体的形状,学生的思考能力和对几何体三种视图的空间想象能力.26.分析根据几何体的三视图判断即可.解答解:由三视图可知:该几何体为圆锥.故选:D.点评考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大.27. A28.C.29.分析主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答解:由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选:B.点评此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.二、填空题30. 圆锥,2π。
2024年中考数学考前最后一卷【浙江卷】全解全析一、选择题(本大题包括10小题,每小题3分,共30分。
在每小题列出的四个选项中,只有一个是正确的.)1.【答案】C【分析】根据无理数是无限不循环小数,可得答案. 【详解】解:17,313是分数,属于有理数; 0.3149,0.3是有限小数,属于有理数; √49=7是整数,属于有理数; 无理数有-π,−√2,共2个, 故选:C .【点睛】本题考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√2,0.8080080008…(每两个8之间依次多1个0)等形式. 2.【答案】A【详解】根据要表示的数的绝对值大于10,其科学记数法表示的n 值为原数中整数部分的位数减去1,进而可得n 值.解:由题意知596万=5960000=5.96×106, ∴n =6. 故选A .【点睛】本题考查了科学记数法.解题的关键在于熟练掌握科学记数法. 3.【答案】C【分析】根据因式分解定义解答.【详解】解:A. x(x−1)=x2−x 是整式乘法,故该项不符合题意; B. x2+1=x(x+1x )出现了分式,所以也是错误,故该项不符合题意; C. 4x 2−1=(2x +1)(2x −1)是因式分解,故该项符合题意;D. x 2−4x +1=x(x −4)+1不是整式乘法也不是因式分解,故该项不符合题意; 故选:C .【点睛】此题考查了因式分解的定义:将一个多项式分解为几个整式的积的形式,叫将多项式分解因式,熟记定义是解题的关键.4.【答案】B【分析】根据矩形的性质可得AB=DC=3,∠BCD=90°,OD=OC,由∠ACB=30°,可证△OCD是等边三角形,再根据DE∥OC,OD∥CE,可证四边形OCED是菱形,即可计算出结果.【详解】解:∵四边形ABCD是矩形,∴AB=DC=3,∠BCD=90°,OD=OC,∵∠ACB=30°,∴∠OCD=60°,∴△OCD是等边三角形,∴OD=OC=DC=3,又∵DE∥OC,OD∥CE,∴四边形OCED是菱形,∴菱形OCED的周长为:3×4=12,故选:B.【点睛】本题考查矩形的性质、等边三角形的判定与性质、菱形的判定与性质,熟练掌握菱形的判定与性质,证明四边形OCED是菱形是解题的关键.5.【答案】C【分析】根据原计划规定的时间=1小时+以原来速度的1.5倍匀速行驶的时间+13小时列方程计算即可.【详解】由题意,可得原计划规定的时间为:1+x−60×160×1.5+13=1+x90−23+13=x90+23(小时).故选C.【点睛】本题考查了列代数式,根据时间=路程÷速度得出以原来速度的1.5倍匀速行驶的时间是解题的关键.6.【答案】B【分析】本题考查了垂径定理和圆周角定理,证明DE=OE,求出∠DOE=∠ODE=45°是解题的关键.由垂径定理知CD=2ED=2CE,可得DE=OE,则∠DOE=∠ODE=45°,利用圆周角定理即可求解.【详解】解:连接OD,∵AB是⊙O的直径,弦CD⊥AB于点E,∴CD=2ED=2CE,∵CD=2OE,∴DE=OE,∵CD⊥AB,∴∠DOE=∠ODE=45°,∠DOE=22.5°.∴∠BCD=12故选:B.7.【答案】D【分析】先利用数轴特点确定a,b的关系从而求出a,b的值,确定原点.【详解】解:∵MN=NP=PQ=QR=1,∴ MR=4,NR=3;如图,①当原点在P点时,|a|+|b|=PA+PB<3,又因为|a|+|b|=3,所以,原点不可能在P点;②当原点在N或R时且|NA|=|BR|时,|a|+|b|=NA+NB=NB+BR=3;③当原点在M点时,|a|+|b|>MA+MB>3,又因为|a|+|b|=3,所以,原点不可能在M点;综上所述,此原点应是在N或R点.故选:D.【点睛】此题主要考查了数轴的定义和绝对值的意义.解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简后根据整点的特点求解.8.【答案】C【分析】本题考查了二次函数与反比例函数的交点问题,熟练掌握二次函数与反比例函数的性质是解答本题的关键.先判断y=mx2+x−4m(m≠0)的图象一定经过定点(2,2),(−2,−2),然后画出y=mx2+x−的图象,根据图象即可求解.4m(m≠0)和y=3x【详解】解:∵y=mx2+x−4m(m≠0)中,当x=2时,y=2;当x=−2时,y=−2,∴y=mx2+x−4m(m≠0)的图象一定经过定点(2,2),(−2,−2),的图象在第一、三象限,∵反比例函数y=3x∴函数图象的草图如下:由图象可知,y=mx2+x−4m(m≠0)的图象与y=3x的图象总有三个交点,∴于x的方程mx2+x−4m=3x(m≠0)有三个交点.故选C.9.【答案】B【分析】根据平均数、中位数、方差的求法分别求解后即可进行判断.【详解】解:①第1组数据的平均数为:0+0+0+1+1+16=0.5,当m=n时,第2组数据的平均数为:0×m+1×nm+n =m2m=0.5,故①正确;②第1组数据的平均数为:0+0+0+1+1+16=0.5,当m>n时,m+n>2n,则第2组数据的平均数为:0×m+1×nm+n=nm+n<n2n=0.5,∴第1组数据的平均数大于第2组数据的平均数;故②错误;③第1组数据的中位数是0+12=0.5,当m<n时,若m+n是奇数,则第2组数据的中位数是1;当m<n时,若m+n是奇数,则第2组数据的中位数是1+12=1;即当m<n时,第2组数据的中位数是1,∴当m<n时,第1组数据的中位数小于第2组数据的中位数;故③正确;④第1组数据的方差为(0−0.5)2×3+(1−0.5)2×36=0.25,当m=n时,第2组数据的方差为(0−0.5)2×m+(1−0.5)2×nm+n =0.25m+0.25m2m=0.25,∴当m=n时,第2组数据的方差等于第1组数据的方差.故④错误,综上所述,其中正确的是①③;故选:B【点睛】此题考查了平均数、中位数、方差的求法,熟练掌握求解方法是解题的关键.10.【答案】D【分析】本题考查了正方形的性质,相似三角形、矩形的性质与判定,黄金分割的意义,比例的性质,三角形的面积,根据正方形的性质得出BC=CD=DA=AB,EH=HF=FA=AE,FH∥AE,根据黄金分割的意义得出AEAB =BEAE=√5−12,由△FHG∽△BEG,得出GHGE=FHBE,根据合比性质得出GHHE=AEAB=√5−12,即可得到GH=√5−12AE,根据矩形的性质与判定得出IC=BE,最后根据三角形的面积求出即可求解,掌握黄金分割的意义是解题的关键.【详解】解:∵四边形ABCD是正方形,∴BC=CD=DA=AB,∵点E是正方形ABCD的AB边上的黄金分割点,且AE>EB,∴AE AB =BEAE=√5−12,∵四边形AEHF是正方形,∴EH=HF=FA=AE,FH∥AE,∴△FHG∽△BEG,∴GH GE =FHBE,∴GH HE =FHFH+BE=AEAB=√5−12,∴GH=√5−12HE=√5−12AE,∵∠C=∠CBE=∠BEI=90°,∴四边形BCIE是矩形,∴IC=BE,∴S△BCI∶S△FGH=12BC·IC12FH·HG=AB·BEAE·HG=BEAE·ABHG=BEAE√5−12AE=√5−12·√5−12×√5−12=√5+12,故选:D.二、填空题(本大题包括6小题,每小题4分,共24分。
2024年中考数学临考押题卷(浙江卷)02一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.﹣的绝对值是()A.B.﹣C.D.﹣【答案】C【分析】根据绝对值是数轴上的点到原点的距离,可得答案.【解答】解:﹣的绝对值是,故选:C.【点评】本题考查了实数的性质,绝对值是数轴上的点到原点的距离.2.若分式有意义,则x的取值范围是()A.x≠0B.x≠﹣1C.x≠1D.x≥1【答案】C【分析】根据分母不为零分式有意义,可得答案.【解答】解:由题可知,x﹣1≠0,解得x≠1,故选:C.【点评】本题主要考查分式有意义的条件,掌握分母不为零的条件是解题的关键.3.如图,已知AB∥CD,点E在线段AD上(不与点A,点D重合),连接CE,若∠C=20°,∠CED=120°,则∠A的度数为()A.10°B.20°C.30°D.40°【答案】D【分析】由三角形内角和定理求出∠D=40°,由平行线的性质推出∠A=∠D=40°.【解答】解:∵∠C=20°,∠CED=120°,∴∠D=180°﹣20°﹣120°=40°,∵AB∥CD,∴∠A=∠D=40°.故选:D.【点评】本题考查平行线的性质,三角形内角和定理,关键是由三角形内角和定理求出∠D的度数,由平行线的性质推出∠A=∠D=40°.4.“春江潮水连海平,海上明月共潮生”,水是诗人钟爱的意象,经测算,一个水分子的直径约为0.0000000004m,数据0.0000000004用科学记数法表示为()A.4×10﹣11B.4×10﹣10C.4×10﹣9D.0.4×10﹣9【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000000004=4×10﹣10.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.沿正方体相邻的三条棱的中点截掉一个角,得到如图所示的几何体,则他的主视图是()A.B.C.D.【答案】B【分析】根据主视图的定义,画出这个几何体的主视图即可.【解答】解:这个几何体的主视图如下:故选:B.【点评】本题考查简单组几何体的三视图,理解视图的定义,掌握简单几何体三视图的画法和形状是正确判断的前提.6.一位射击运动员在一次训练效果测试中射击了10次,成绩如图所示,对于这10次射击的成绩有如下结论,其中不正确的是()A.方差是1B.中位数是8C.平均数是8D.众数是8【答案】A【分析】根据众数、中位数、平均数以及方差的算法进行计算,即可得出答案.【解答】解:由图可得,数据8出现4次,次数最多,所以众数为8,故D正确;10次成绩排序后为:6,7,7,8,8,8,8,9,9,10,所以中位数是(8+8)=8,故B正确;平均数为(6+7×2+8×4+9×2+10)=8,故C正确;方差为[(6﹣8)2+(7﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2+(9﹣8)2+(10﹣8)2]=1.2,故A不正确;不正确的有1个;故选:A.【点评】本题主要考查了众数、中位数、平均数以及方差,用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差.7.已知x﹣y=1,且2﹣y>0,则x的取值范围是()A.x>1B.x>3C.x<1D.x<3【答案】D【分析】根据已知易得:y=x﹣1,从而可得2﹣(x﹣1)>0,然后按照解一元一次不等式的步骤进行计算,即可解答.【解答】解:∵x﹣y=1,∴y=x﹣1,∵2﹣y>0,∴2﹣(x﹣1)>0,2﹣x+1>0,﹣x>﹣1﹣2,﹣x>﹣3,x<3,故选:D.【点评】本题考查了解一元一次不等式,不等式的性质,准确熟练地进行计算是解题的关键.8.《九章算术》中曾记载:“今有牛五羊二,直金十两;牛二羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?若设每头牛值金x两,每只羊值金y两,则可列方程组为()A.B.C.D.【答案】A【分析】根据“5头牛,2只羊,值金10两;2头牛,5只羊,值金8两”列出方程组即可得答案.【解答】解:由题意可列方程组为,故选:A.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是找出题目中的等量关系.9.已知点A(m,k),B(n,k+1)(m>0>n)是二次函数y=x2+1函数图象上的两个点,若关于x的一元二次方程mx2+nx+k=0有两根x1,x2,则()A.0<x1+x2<1,x1•x2>0B.x1+x2<0,x1•x2>0C.x1+x2>1,x1•x2>0D.x1+x2=0,x1•x2<0【答案】C【分析】依据题意,由点A(m,k),B(n,k+1)是二次函数y=x2+1函数图象上的两个点,结合m>0>n,则点A(m,k)在其第一象限的图象上,则m>0,k>0,点B(n,k+1)在其第二象限的图象上,则n<0,且k+1=n2,即n2=m2+1,则()2=1+>1,进而求解.【解答】解:∵点A(m,k),B(n,k+1)是二次函数y=x2+1函数图象上的两个点,又m>0>n,∴点A(m,k)在其第一象限的图象上,点B(n,k+1)在其第二象限的图象上.∴n<0,k+1=n2,m>0,k>0,k=m2,∴n2=m2+1.∴()2=1+>1∵m、n异号,<0,设x=<0,即x2>1,即x2﹣1>0,则x<﹣1,故﹣>1,∵m>0,k>0,∴>0.由mx2+nx+k=0得,x1+x2=﹣>1,x1x2=>0.故选:C.【点评】本题主要考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征和求表达式等,由n2=m2+1得到()2=1+>1是解题的关键.10.如图,E是平行四边形ABCD边AD中点,BE与AC交于点F,连接BD,已知AD=10,BE=9,AC =12.下列命题:①点F是△ABD的重心;②△BFC与△ABC相似;③BD=13;④平行四边形ABCD的面积为72.其中正确的命题为()A.①②B.②③C.③④D.①④【答案】D【分析】①设AC与BD交于点O,在△ABD中,AO为BD边上的中线,BE为AD边上的中线,根据三角形重心的定义可对命题①进行判断;②在OC上取一点H,是OH=OF,连接DF,DH,BH,证四边形BHDF为平行四边形,得EF为△ADH的中位线,则EF=DH=BF,AF=FH,再根据BE=9,AC=12得EF=3,OF=2,则BF=6,AF =4,CF=8,再证△BFC为直角三角形,△ABC不是直角三角形,由此可对命题②进行判断;③在Rt△BOF中利用勾股定理得OB=,进而得BD=2OB=≠13,由此可对命题③进行判断;④根据S△ABC=AC•BF=36,则S平行四边形ABCD=2S△ABC=72,据此可对命题④进行判断,综上所述即可得出答案.【解答】解:①设AC与BD交于点O,如图1所示:∵四边形ABCD为平行四边形,∴OA=OC,OB=OD,在△ABD中,AO为BD边上的中线,又∵点E是AD的中点,∴BE为AD边上的中线,∴点F是△ABD的重心,故命题①正确;②在OC上取一点H,是OH=OF,连接DF,DH,BH,如图2所示:∵四边形ABCD为平行四边形,AD=10,BE=9,AC=12,点E是AD的中点,∴OB=OD,OA=OC=AC=6,AE=DE=AD=5,BC=AD=10,∴四边形BHDF为平行四边形,∴BF∥DH,BF=DH,即EF∥DH,∴EF为△ADH的中位线,∴EF=DH=BF,AF=FH,∴EF=BE=3,OF=OA=2,∴BF=BE﹣EF=9﹣﹣3=6,AF=OA﹣OF=6﹣2=4,∴CF=OC+OF=6+2=8,在△BFC中,BF2+CF2=62+82=100,BC2=100,∴BF2+CF2=BC2,∴△BFC为直角三角形,即BF⊥AC,在Rt△ABF中,由勾股定理得:AB===,在△ABC中,AB2+BC2=()2+102=152,AC2=122=144,∵AB2+BC2≠AC2,∴△ABC不是直角三角形,∴△BFC与△ABC不相似,故命题②不正确;③在Rt△BOF中,BF=6,OF=2,由勾股定理得:OB==,∴BD=2OB=≠13,故命题③不正确;④在△ABC中,AC=12,BF=6,BF⊥AC,=AC•BF=×12×6=36,∴S△ABC=2S△ABC=72.∴S平行四边形ABCD故命题④正确,综上所述:正确的命题是①④,故选:D.【点评】此题主要考查了平行四边形的判定和性质,三角形重心的定义,相似三角形的判定,三角形中位线定理,勾股定理及其逆定理,理解平行四边形的判定和性质,三角形重心的定义,相似三角形的判定,熟练掌握三角形中位线定理,勾股定理及其逆定理是解决问题的关键.二、填空题:本题共6小题,每小题3分,共18分。
2019年浙江省杭州市中考数学试卷(答案解析版)2019年浙江省杭州市中考数学试卷⼀、选择题(本⼤题共10⼩题,共30.0分)1.计算下列各式,值最⼩的是()A. B. C. D.2.在平⾯直⾓坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A. ,B. ,C. ,D. ,3.如图,P为圆O外⼀点,PA,PB分别切圆O于A,B两点,若PA=3,则PB=()A. 2B. 3C. 4D. 54.已知九年级某班30位学⽣种树72棵,男⽣每⼈种3棵树,⼥⽣每⼈种2棵树,设男⽣有x⼈,则()A. B.C. D.5.点点同学对数据26,36,46,5□,52进⾏统计分析,发现其中⼀个两位数的各位数字被⿊⽔涂污看不到了,则计算结果与被涂污数字⽆关的是()A. 平均数B. 中位数C. ⽅差D. 标准差6.如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上⼀点(不与点B,C重合),连接AM交DE于点N,则()A.B.C.D.7.在△ABC中,若⼀个内⾓等于另外两个内⾓的差,则()A. 必有⼀个内⾓等于B. 必有⼀个内⾓等于C. 必有⼀个内⾓等于D. 必有⼀个内⾓等于8.已知⼀次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A. B.C. D.9.如图,⼀块矩形⽊板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同⼀平⾯内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A.B.C.D.10.在平⾯直⾓坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A. 或B. 或C. 或D. 或⼆、填空题(本⼤题共6⼩题,共24.0分)11.因式分解:1-x2=______.12.某计算机程序第⼀次算得m个数据的平均数为x,第⼆次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于______.13.如图是⼀个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm,底⾯圆半径为3cm,则这个冰淇淋外壳的侧⾯积等于______cm2(结果精确到个位).14.在直⾓三⾓形ABC中,若2AB=AC,则cos C=______.15.某函数满⾜当⾃变量x=1时,函数值y=0,当⾃变量x=0时,函数值y=1,写出⼀个满⾜条件的函数表达式______.16.如图,把某矩形纸⽚ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同⼀点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的⾯积为4,△D′PH的⾯积为1,则矩形ABCD的⾯积等于______.三、解答题(本⼤题共7⼩题,共66.0分)17.化简:--1圆圆的解答如下:--1=4x-2(x+2)-(x2-4)=-x2+2x圆圆的解答正确吗?如果不正确,写出正确的答案.18.称量五筐⽔果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不⾜基准部分的千克数记为负数,甲组为实际称量读数,⼄组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表(1)补充完成⼄组数据的折线统计图.(2)①甲,⼄两组数据的平均数分别为甲,⼄,写出甲与⼄之间的等量关系.②甲,⼄两组数据的⽅差分别为S甲2,S⼄2,⽐较S甲2与S⼄2的⼤⼩,并说明理由.19.如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆⼼,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.20.⽅⽅驾驶⼩汽车匀速地从A地⾏驶到B地,⾏驶⾥程为480千⽶,设⼩汽车的⾏驶时间为t(单位:⼩时),⾏驶速度为v(单位:千⽶/⼩时),且全程速度限定为不超过120千⽶/⼩时.(1)求v关于t的函数表达式;(2)⽅⽅上午8点驾驶⼩汽车从A地出发.①⽅⽅需在当天12点48分⾄14点(含12点48分和14点)间到达B地,求⼩汽车⾏驶速度v的范围.②⽅⽅能否在当天11点30分前到达B地?说明理由.21.如图,已知正⽅形ABCD的边长为1,正⽅形CEFG的⾯积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的⾯积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.22.设⼆次函数y=(x-x1)(x-x2)(x1,x2是实数).(1)甲求得当x=0时,y=0;当x=1时,y=0;⼄求得当x=时,y=-.若甲求得的结果都正确,你认为⼄求得的结果正确吗?说明理由.(2)写出⼆次函数图象的对称轴,并求该函数的最⼩值(⽤含x1,x2的代数式表⽰).(3)已知⼆次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0<x1<x2<1时,求证:0<mn<.23.如图,已知锐⾓三⾓形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=OA.②当OA=1时,求△ABC⾯积的最⼤值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m-n+2=0.答案和解析1.【答案】A【解析】解:A.2×0+1-9=-8,B.2+0×1-9=-7C.2+0-1×9=-7D.2+0+1-9=-6,故选:A.有理数混合运算顺序:先算乘⽅,再算乘除,最后算加减;同级运算,应按从左到右的顺序进⾏计算;如果有括号,要先做括号内的运算.本题考查了有理数的混合运算,熟练掌握有理数的运算法则是解题的关键.2.【答案】B解:∵点A(m,2)与点B(3,n)关于y轴对称,∴m=-3,n=2.故选:B.直接利⽤关于y轴对称点的性质得出答案.此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.3.【答案】B【解析】解:连接OA、OB、OP,∵PA,PB分别切圆O于A,B两点,∴OA⊥PA,OB⊥PB,在Rt△AOP和Rt△BOP中,,∴Rt△AOP≌Rt△BOP(HL),∴PB=PA=3,故选:B.连接OA、OB、OP,根据切线的性质得出OA⊥PA,OB⊥PB,然后证得Rt△AOP≌Rt△BOP,即可求得PB=PA=3.本题考查了切线长定理,三⾓形全等的判定和性质,作出辅助线根据全等三⾓形是解题的关键.4.【答案】D【解析】解:设男⽣有x⼈,则⼥⽣(30-x)⼈,根据题意可得:3x+2(30-x)=72.故选:D.直接根据题意表⽰出⼥⽣⼈数,进⽽利⽤30位学⽣种树72棵,得出等式求出答案.此题主要考查了由实际问题抽象出⼀元⼀次⽅程,正确表⽰出男⼥⽣的植树棵树是解题关键.5.【答案】B【解析】解:这组数据的平均数、⽅差和标准差都与第4个数有关,⽽这组数据的中位数为46,与第4个数⽆关.故选:B.利⽤平均数、中位数、⽅差和标准差的定义对各选项进⾏判断.本题考查了标准差:样本⽅差的算术平⽅根表⽰样本的标准差,它也描述了数据对平均数的离散程度.也考查了中位数、平均数.6.【答案】C解:∵DN∥BM,∴△ADN∽△ABM,∴=,∵NE∥MC,∴△ANE∽△AMC,∴=,∴=.故选:C.先证明△ADN∽△ABM得到=,再证明△ANE∽△AMC得到=,则=,从⽽可对各选项进⾏判断.本题考查了相似三⾓形的判定与性质:三在判定两个三⾓形相似时,应注意利⽤图形中已有的公共⾓、公共边等隐含条件,以充分发挥基本图形的作⽤,寻找相似三⾓形的⼀般⽅法是通过作平⾏线构造相似三⾓形;灵活运⽤相似三⾓形的性质表⽰线段之间的关系.7.【答案】D【解析】解:∵∠A+∠B+∠C=180°,∠A=∠C-∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直⾓三⾓形,故选:D.根据三⾓形内⾓和定理得出∠A+∠B+∠C=180°,把∠C=∠A+∠B代⼊求出∠C即可.本题考查了三⾓形内⾓和定理的应⽤,能求出三⾓形最⼤⾓的度数是解此题的关键,注意:三⾓形的内⾓和等于180°.8.【答案】A【解析】解:A、由①可知:a>0,b>0.∴直线②经过⼀、⼆、三象限,故A正确;B、由①可知:a<0,b>0.∴直线②经过⼀、⼆、三象限,故B错误;C、由①可知:a<0,b>0.∴直线②经过⼀、⼆、四象限,交点不对,故C错误;D、由①可知:a<0,b<0,∴直线②经过⼆、三、四象限,故D错误.故选:A.根据直线①判断出a、b的符号,然后根据a、b的符号判断出直线②经过的象限即可,做出判断.本题主要考查的是⼀次函数的图象和性质,掌握⼀次函数的图象和性质是解题的关键.9.【答案】D【解析】解:作AE⊥OC于点E,作AF⊥OB于点F,∵四边形ABCD是矩形,∴∠ABC=90°,∵∠ABC=∠AEC,∠BCO=x,∴∠EAB=x,∴∠FBA=x,∵AB=a,AD=b,∴FO=FB+BO=a?cosx+b?sinx,故选:D.根据题意,作出合适的辅助线,然后利⽤锐⾓三⾓函数即可表⽰出点A到OC 的距离,本题得以解决.本题考查解直⾓三⾓形的应⽤-坡度坡⾓问题、矩形的性质,解答本题的关键是明确题意,利⽤数形结合的思想解答.10.【答案】C【解析】解:∵y=(x+a)(x+b)=x2+(a+b)x+1,∴△=(a+b)2-4ab=(a-b)2>0,∴函数y=(x+a)(x+b)的图象与x轴有2个交点,∴M=2,∵函数y=(ax+1)(bx+1)=abx2+(a+b)x+1,∴当ab≠0时,△=(a+b)2-4ab=(a-b)2>0,函数y=(ax+1)(bx+1)的图象与x轴有2个交点,即N=2,此时M=N;当ab=0时,不妨令a=0,∵a≠b,∴b≠0,函数y=(ax+1)(bx+1)=bx+1为⼀次函数,与x轴有⼀个交点,即N=1,此时M=N+1;综上可知,M=N或M=N+1.故选:C.先把两个函数化成⼀般形式,若为⼆次函数,再计算根的判别式,从⽽确定图象与x轴的交点个数,若⼀次函数,则与x轴只有⼀个交点,据此解答.本题主要考查⼀次函数与⼆次函数与x轴的交点问题,关键是根据根的判别式的取值确定抛物线与x轴的交点个数,⼆次项系数为字母的代数式时,要根据系数是否为0,确定它是什么函数,进⽽确定与x轴的交点个数.11.【答案】(1-x)(1+x)【解析】解:∵1-x2=(1-x)(1+x),故答案为:(1-x)(1+x).根据平⽅差公式可以将题⽬中的式⼦进⾏因式分解.本题考查因式分解-运⽤公式法,解题的关键是明确平⽅差公式,会运⽤平⽅差公式进⾏因式分解.12.【答案】【解析】解:∵某计算机程序第⼀次算得m个数据的平均数为x,第⼆次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于:.故答案为:.直接利⽤已知表⽰出两组数据的总和,进⽽求出平均数.此题主要考查了加权平均数,正确得出两组数据的总和是解题关键.13.【答案】113【解析】解:这个冰淇淋外壳的侧⾯积=×2π×3×12=36π≈113(cm2).故答案为113.利⽤圆锥的侧⾯展开图为⼀扇形,这个扇形的弧长等于圆锥底⾯的周长,扇形的半径等于圆锥的母线长和扇形的⾯积公式计算.本题考查了圆锥的计算:圆锥的侧⾯展开图为⼀扇形,这个扇形的弧长等于圆锥底⾯的周长,扇形的半径等于圆锥的母线长.14.【答案】或【解析】解:若∠B=90°,设AB=x,则AC=2x,所以BC==x,所以cosC===;若∠A=90°,设AB=x,则AC=2x,所以BC==x,所以cosC===;综上所述,cosC的值为或.故答案为或.讨论:若∠B=90°,设AB=x,则AC=2x,利⽤勾股定理计算出BC=x,然后根据余弦的定义求cosC的值;若∠A=90°,设AB=x,则AC=2x,利⽤勾股定理计算出BC=x,然后根据余弦的定义求cosC的值.本题考查了锐⾓三⾓函数的定义:熟练掌握锐⾓三⾓函数的定义,灵活运⽤它们进⾏⼏何计算.15.【答案】y=-x+1【解析】解:设该函数的解析式为y=kx+b,∵函数满⾜当⾃变量x=1时,函数值y=0,当⾃变量x=0时,函数值y=1,∴解得:,所以函数的解析式为y=-x+1,故答案为:y=-x+1.根据题意写出⼀个⼀次函数即可.本题考查了各种函数的性质,题⽬中x、y均可以取0,故不能是反⽐例函数.16.【答案】2(5+3)【解析】解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的⾯积为4,△D′PH的⾯积为1,∴A′E=4D′H,设D′H=a,则A′E=4a,∵△A′EP∽△D′PH,∴=,∴=,∴x2=4a2,∴x=2a或-2a(舍弃),∴PA′=PD′=2a,∴a=1,∴x=2,∴AB=CD=2,PE==2,PH==,∴AD=4+2++1=5+3,∴矩形ABCD的⾯积=2(5+3).故答案为2(5+3)设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,因为△A′EP的⾯积为4,△D′PH的⾯积为1,推出A′E=4D′H,设D′H=a,则A′E=4a,由△A′EP∽△D′PH,推出=,推出=,可得x=2a,再利⽤三⾓形的⾯积公式求出a即可解决问题.本题考查翻折变换,矩形的性质,勾股定理,相似三⾓形的判定和性质等知识,解题的关键是学会利⽤参数解决问题,属于中考填空题中的压轴题.17.【答案】解:圆圆的解答错误,正确解法:--1=--===-.【解析】直接将分式进⾏通分,进⽽化简得出答案.此题主要考查了分式的加减运算,正确进⾏通分运算是解题关键.18.【答案】解:(1)⼄组数据的折线统计图如图所⽰:(2)①甲=50+⼄.理由:∵S甲2=[(48-50)2+(52-50)2+(47-50)2+(49-50)2+(54-50)2]=6.8.S⼄2=[(-2-0)2+(2-0)2+(-3-0)2+(-1-0)2+(4-0)2]=6.8,∴S甲2=S⼄2.【解析】(1)利⽤描点法画出折线图即可.(2)利⽤⽅差公式计算即可判断.本题考查折线统计图,算术平均数,⽅差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.【答案】解:(1)证明:∵线段AB的垂直平分线与BC边交于点P,∴PA=PB,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠B;(2)根据题意可知BA=BQ,∴∠BAQ=∠BQA,∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,∴∠BQA=2∠B,∵∠BAQ+∠BQA+∠B=180°,∴5∠B=180°,∴∠B=36°.【解析】(1)根据线段垂直平分线的性质可知PA=PB,根据等腰三⾓形的性质可得∠B=∠BAP,根据三⾓形的外⾓性质即可证得APC=2∠B;(2)根据题意可知BA=BQ,根据等腰三⾓形的性质可得∠BAQ=∠BQA,再根据三⾓形的内⾓和公式即可解答.本题主要考查了等腰三⾓形的性质、垂直平分线的性质以及三⾓形的外⾓性质,难度适中.20.【答案】解:(1)∵vt=480,且全程速度限定为不超过120千⽶/⼩时,∴v关于t的函数表达式为:v=,(0≤t≤4).(2)①8点⾄12点48分时间长为⼩时,8点⾄14点时间长为6⼩时将t=6代⼊v=得v=80;将t=代⼊v=得v=100.∴⼩汽车⾏驶速度v的范围为:80≤v≤100.②⽅⽅不能在当天11点30分前到达B地.理由如下:8点⾄11点30分时间长为⼩时,将t=代⼊v=得v=>120千⽶/⼩时,超速了.故⽅⽅不能在当天11点30分前到达B地.【解析】(1)由速度乘以时间等于路程,变形即可得速度等于路程⽐时间,从⽽得解;(2)①8点⾄12点48分时间长为⼩时,8点⾄14点时间长为6⼩时,将它们分别代⼊v关于t的函数表达式,即可得⼩汽车⾏驶的速度范围;②8点⾄11点30分时间长为⼩时,将其代⼊v关于t的函数表达式,可得速度⼤于120千⽶/时,从⽽得答案.本题是反⽐例函数在⾏程问题中的应⽤,根据时间速度和路程的关系可以求解,本题属于中档题.21.【答案】解:(1)设正⽅形CEFG的边长为a,∵正⽅形ABCD的边长为1,∴DE=1-a,∵S1=S2,∴a2=1×(1-a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH=.=,∵CH=0.5,CG=,∴HG=,∴HD=HG.【解析】(1)设出正⽅形CEFG的边长,然后根据S1=S2,即可求得线段CE的长;(2)根据(1)中的结果可以题⽬中的条件,可以分别计算出HD和HG的长,即可证明结论成⽴.本题考查正⽅形的性质、矩形的性质,解答本题的关键是明确题意,利⽤数形结合的思想解答.22.【答案】解:(1)当x=0时,y=0;当x=1时,y=0;∴⼆次函数经过点(0,0),(1,0),∴x1=0,x2=1,∴y═x(x-1)=x2-x,当x=时,y=-,∴⼄说点的不对;(2)对称轴为x=,当x=时,y=-是函数的最⼩值;(3)⼆次函数的图象经过(0,m)和(1,n)两点,∴m=x1x2,n=1-x1-x2+x1x2,∴mn=[-][-]∵0<x1<x2<1,∴0≤-≤,0≤-≤,∴0<mn<.【解析】(1)将(0,0),(1,0)代⼊y=(x-x1)(x-x2)求出函数解析式即可求解;(2)对称轴为x=,当x=时,y=-是函数的最⼩值;(3)将已知两点代⼊求出m=x1x2,n=1-x1-x2+x1x2,再表⽰出mn=[-][-],由已知0<x1<x2<1,可求出0≤-≤,0≤-≤,即可求解.本题考查⼆次函数的性质;函数最值的求法;熟练掌握⼆次函数的性质,能够将mn准确的⽤x1和x2表⽰出来是解题的关键.23.【答案】解:(1)①连接OB、OC,则∠BOD=BOC=∠BAC=60°,∴∠OBC=30°,∴OD=OB=OA;②∵BC长度为定值,∴△ABC⾯积的最⼤值,要求BC边上的⾼最⼤,当AD过点O时,AD最⼤,即:AD=AO+OD=,△ABC⾯积的最⼤值=×BC×AD=×2OB sin60°×=;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°-∠ABC-∠ACB=180°-mx-nx=∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°-mx-nx+2mx=180°+mx-nx,∵OE=OD,∴∠AOD=180°-2x,即:180°+mx-nx=180°-2x,化简得:m-n+2=0.【解析】(1)①连接OB、OC,则∠BOD=BOC=∠BAC=60°,即可求解;②BC长度为定值,△ABC⾯积的最⼤值,要求BC边上的⾼最⼤,即可求解;(2)∠BAC=180°-∠ABC-∠ACB=180°-mx-nx=∠BOC=∠DOC,⽽∠AOD=∠COD+∠AOC=180°-mx-nx+2mx=180°+mx-nx,即可求解.本题为圆的综合运⽤题,涉及到解直⾓三⾓形、三⾓形内⾓和公式,其中(2),∠AOD=∠COD+∠AOC是本题容易忽视的地⽅,本题难度适中.。
2016年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选,多选,错选,均不给分)1.(2016·浙江绍兴)﹣8的绝对值等于()A.8 B.﹣8 C.D.【考点】绝对值.【分析】根据绝对值的定义即可得出结果.【解答】解:﹣8的绝对值为8,故选A.2.(2016·浙江绍兴)据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A.3.386×108B.0.3386×109C.33.86×107D.3.386×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数字338 600 000用科学记数法可简洁表示为3.386×108.故选:A.3.(2016·浙江绍兴)我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有()A.1条B.2条C.3条D.4条【考点】轴对称图形.【分析】直接利用轴对称图形的定义分析得出答案.【解答】解:如图所示:其对称轴有2条.故选:B.4.(2016·浙江绍兴)如图是一个正方体,则它的表面展开图可以是()A.B.C.D.【考点】几何体的展开图.【分析】根据含有田字形和凹字形的图形不能折成正方体可判断A、C,D,故此可得到答案.【解答】解:A、含有田字形,不能折成正方体,故A错误;B、能折成正方体,故B正确;C、凹字形,不能折成正方体,故C错误;D、含有田字形,不能折成正方体,故D错误.故选:B.5.(2016·浙江绍兴)一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A.B.C.D.【考点】概率公式.【分析】直接得出偶数的个数,再利用概率公式求出答案.【解答】解:∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴朝上一面的数字是偶数的概率为:=.故选:C.6.(2016·浙江绍兴)如图,BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,则∠BDC的度数是()A.60° B.45° C.35° D.30°【考点】圆周角定理.【分析】直接根据圆周角定理求解.【解答】解:连结OC,如图,∵=,∴∠BDC=∠AOB=×60°=30°.故选D.7.(2016·浙江绍兴)小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A.①,② B.①,④ C.③,④ D.②,③【考点】平行四边形的判定.【分析】确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.【解答】解:∵只有②③两块角的两边互相平行,角的两边的延长线的交点就是平行四边形的顶点,∴带②③两块碎玻璃,就可以确定平行四边形的大小.故选D.8.(2016·浙江绍兴)如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A.B.C.D.【考点】解直角三角形.【分析】设BC=x,由含30°角的直角三角形的性质得出AC=2BC=2x,求出AB=BC=x,根据题意得出AD=BC=x,AE=DE=AB=x,作EM⊥AD于M,由等腰三角形的性质得出AM=AD=x,在Rt△AEM中,由三角函数的定义即可得出结果.【解答】解:如图所示:设BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=BC=x,根据题意得:AD=BC=x,AE=DE=AB=x,作EM⊥AD于M,则AM=AD=x,在Rt△AEM中,cos∠EAD===;故选:B.9.(2016·浙江绍兴)抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是()A.4 B.6 C.8 D.10【考点】二次函数的性质.【分析】根据抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,可以得到c的取值范围,从而可以解答本题.【解答】解:∵抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,∴解得6≤c≤14,故选A.10.(2016·浙江绍兴)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.84 B.336 C.510 D.1326【考点】用数字表示事件.【分析】类比于现在我们的十进制“满十进一”,可以表示满七进一的数为:千位上的数×73+百位上的数×72+十位上的数×7+个位上的数.【解答】解:1×73+3×72+2×7+6=510,故选C.二、填空题(本大题有6小题,每小题5分,共30分)11.(2016·浙江绍兴)分解因式:a3﹣9a=a(a+3)(a﹣3).【考点】提公因式法与公式法的综合运用.【分析】本题应先提出公因式a,再运用平方差公式分解.【解答】解:a3﹣9a=a(a2﹣32)=a(a+3)(a﹣3).12.(2016·浙江绍兴)不等式>+2的解是x>﹣3.【考点】解一元一次不等式.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:去分母,得:3(3x+13)>4x+24,去括号,得:9x+39>4x+24,移项,得:9x﹣4x>24﹣39,合并同类项,得:5x>﹣15,系数化为1,得:x>﹣3,故答案为:x>﹣3.13.(2016·浙江绍兴)如图1,小敏利用课余时间制作了一个脸盆架,图2是它的截面图,垂直放置的脸盆与架子的交点为A,B,AB=40cm,脸盆的最低点C到AB的距离为10cm,则该脸盆的半径为25cm.【考点】垂径定理的应用.【分析】设圆的圆心为O,连接OA,OC,OC与AB交于点D,设⊙O半径为R,在RT△AOD 中利用勾股定理即可解决问题.【解答】解;如图,设圆的圆心为O,连接OA,OC,OC与AB交于点D,设⊙O半径为R,∵OC⊥AB,∵AD=DB=AB=20,在RT△AOD中,∵∠ADO=90°,∴OA2=OD2+AD2,∴R2=202+(R﹣10)2,∴R=25.故答案为25.14.(2016·浙江绍兴)书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是248或296元.【考点】一元一次方程的应用.【分析】设第一次购书的原价为x元,则第二次购书的原价为3x元.根据x的取值范围分段考虑,根据“付款金额=第一次付款金额+第二次付款金额”即可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设第一次购书的原价为x元,则第二次购书的原价为3x元,依题意得:①当0<x≤时,x+3x=229.4,解得:x=57.35(舍去);②当<x≤时,x+×3x=229.4,解得:x=62,此时两次购书原价总和为:4x=4×62=248;③当<x≤100时,x+×3x=229.4,解得:x=74,此时两次购书原价总和为:4x=4×74=296.综上可知:小丽这两次购书原价的总和是248或296元.故答案为:248或296.15.(2016·浙江绍兴)如图,已知直线l:y=﹣x,双曲线y=,在l上取一点A(a,﹣a)(a>0),过A作x轴的垂线交双曲线于点B,过B作y轴的垂线交l于点C,过C作x轴的垂线交双曲线于点D,过D作y轴的垂线交l于点E,此时E与A重合,并得到一个正方形ABCD,若原点O在正方形ABCD的对角线上且分这条对角线为1:2的两条线段,则a的值为或.【考点】反比例函数与一次函数的交点问题;正方形的性质.【分析】根据点的选取方法找出点B、C、D的坐标,由两点间的距离公式表示出线段OA、OC的长,再根据两线段的关系可得出关于a的一元二次方程,解方程即可得出结论.【解答】解:依照题意画出图形,如图所示.∵点A的坐标为(a,﹣a)(a>0),∴点B(a,)、点C(﹣,)、点D(﹣,﹣a),∴OA==a,OC==.又∵原点O分对角线AC为1:2的两条线段,∴OA=2OC或OC=2OA,即a=2×或=2a,解得:a1=,a2=﹣(舍去),a3=,a4=﹣(舍去).故答案为:或.16.(2016·浙江绍兴)如图,矩形ABCD中,AB=4,BC=2,E是AB的中点,直线l平行于直线EC,且直线l与直线EC之间的距离为2,点F在矩形ABCD边上,将矩形ABCD沿直线EF折叠,使点A恰好落在直线l上,则DF的长为2或4﹣2.【考点】矩形的性质;翻折变换(折叠问题).【分析】当直线l在直线CE上方时,连接DE交直线l于M,只要证明△DFM是等腰直角三角形即可利用DF=DM解决问题,当直线l在直线EC下方时,由∠DEF1=∠BEF1=∠DF1E,得到DF1=DE,由此即可解决问题.【解答】解:如图,当直线l在直线CE上方时,连接DE交直线l于M,∵四边形ABCD是矩形,∴∠A=∠B=90°,AD=BC,∵AB=4,AD=BC=2,∴AD=AE=EB=BC=2,∴△ADE、△ECB是等腰直角三角形,∴∠AED=∠BEC=45°,∴∠DEC=90°,∵l∥EC,∴ED⊥l,∴EM=2=AE,∴点A、点M关于直线EF对称,∵∠MDF=∠MFD=45°,∴DM=MF=DE﹣EM=2﹣2,∴DF=DM=4﹣2.当直线l在直线EC下方时,∵∠DEF1=∠BEF1=∠DF1E,∴DF1=DE=2,综上所述DF的长为2或4﹣2.故答案为2或4﹣2.三、解答题(本大题有8小题,第17-20小题每小题8分,第21小题10分,第22、23小题每小题8分,第24小题14分,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(2016·浙江绍兴)(1)计算:﹣(2﹣)0+()﹣2.(2)解分式方程:+=4.【考点】实数的运算;解分式方程.【分析】(1)本题涉及二次根式化简、零指数幂、负整数指数幂3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)观察可得方程最简公分母为(x﹣1),将方程去分母转化为整式方程即可求解.【解答】解:(1)﹣(2﹣)0+()﹣2=﹣1+4=+3;(2)方程两边同乘(x﹣1),得:x﹣2=4(x﹣1),整理得:﹣3x=﹣2,解得:x=,经检验x=是原方程的解,故原方程的解为x=.18.(2016·浙江绍兴)为了解七年级学生上学期参加社会实践活动的情况,随机抽查A市七年级部分学生参加社会实践活动天数,并根据抽查结果制作了如下不完整的频数分布表和条形统计图.市七年级部分学生参加社会实践活动天数的条形统计图根据以上信息,解答下列问题;(1)求出频数分布表中a的值,并补全条形统计图.(2)A市有七年级学生20000人,请你估计该市七年级学生参加社会实践活动不少于5天的人数.【考点】条形统计图;用样本估计总体;频数(率)分布表.【分析】(1)利用表格中数据求出总人数,进而利用其频率求出频数即可,再补全条形图;(2)利用样本中不少于5天的人数所占频率,进而估计该市七年级学生参加社会实践活动不少于5天的人数.【解答】解:(1)由题意可得:a=20÷01×0.25=50(人),如图所示:;(2)由题意可得:20000×(0.30+0.25+0.20)=15000(人),答:该市七年级学生参加社会实践活动不少于5天的人数约为15000人.19.(2016·浙江绍兴)根据卫生防疫部门要求,游泳池必须定期换水,清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m2)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.【考点】一次函数的应用.【分析】(1)暂停排水时,游泳池内的水量Q保持不变,图象为平行于横轴的一条线段,由此得出暂停排水需要的时间;由图象可知,该游泳池3个小时排水900(m3),根据速度公式求出排水速度即可;(2)当2≤t≤3.5时,设Q关于t的函数表达式为Q=kt+b,易知图象过点(3.5,0),再求出(2,450)在直线y=kt+b上,然后利用待定系数法求出表达式即可.【解答】解:(1)暂停排水需要的时间为:2﹣1.5=0.5(小时).∵排水数据为:3.5﹣0.5=3(小时),一共排水900m3,∴排水孔排水速度是:900÷3=300m3/h;(2)当2≤t≤3.5时,设Q关于t的函数表达式为Q=kt+b,易知图象过点(3.5,0).∵t=1.5时,排水300×1.5=450,此时Q=900﹣450=450,∴(2,450)在直线Q=kt+b上;把(2,450),(3.5,0)代入Q=kt+b,得,解得,∴Q关于t的函数表达式为Q=﹣300t+1050.20.(2016·浙江绍兴)如图1,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走60m到达C 点,测得点B在点C的北偏东60°方向,如图2.(1)求∠CBA的度数.(2)求出这段河的宽(结果精确到1m,备用数据≈1.41,≈1.73).【考点】解直角三角形的应用-方向角问题.【分析】(1)根据三角形的外角的性质、结合题意计算即可;(2)作BD⊥CA交CA的延长线于D,设BD=xm,根据正切的定义用x表示出CD、AD,根据题意列出方程,解方程即可.【解答】解:(1)由题意得,∠BAD=45°,∠BCA=30°,∴∠CBA=∠BAD﹣∠BCA=15°;(2)作BD⊥CA交CA的延长线于D,设BD=xm,∵∠BCA=30°,∴CD==x,∵∠BAD=45°,∴AD=BD=x,则x﹣x=60,解得x=≈82,答:这段河的宽约为82m.21.(2016·浙江绍兴)课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.【考点】二次函数的应用.【分析】(1)根据矩形和正方形的周长进行解答即可;(2)设AB为xcm,利用二次函数的最值解答即可.【解答】解:(1)由已知可得:AD=,则S=1×m2,(2)设AB=xm,则AD=3﹣m,∵,∴,设窗户面积为S,由已知得:,当x=m时,且x=m在的范围内,,∴与课本中的例题比较,现在窗户透光面积的最大值变大.22.(2016·浙江绍兴)如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB,BC,AD不动,AB=AD=2cm,BC=5cm,如图,量得第四根木条CD=5cm,判断此时∠B与∠D是否相等,并说明理由.(2)若固定一根木条AB不动,AB=2cm,量得木条CD=5cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A、C、D能构成周长为30cm的三角形,求出木条AD,BC的长度.【考点】全等三角形的应用;二元一次方程组的应用;三角形三边关系.【分析】(1)相等.连接AC,根据SSS证明两个三角形全等即可.(2)分两种情形①当点C在点D右侧时,②当点C在点D左侧时,分别列出方程组即可解决问题,注意最后理由三角形三边关系定理,检验是否符合题意.【解答】解:(1)相等.理由:连接AC,在△ACD和△ACB中,,∴△ACD≌△ACB,∴∠B=∠D.(2)设AD=x,BC=y,当点C在点D右侧时,,解得,当点C在点D左侧时,解得,此时AC=17,CD=5,AD=8,5+8<17,∴不合题意,∴AD=13cm,BC=10cm.23.(2016·浙江绍兴)对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2的单位,这种点的运动称为点A的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5),已知点A的坐标为(1,0).(1)分别写出点A经1次,2次斜平移后得到的点的坐标.(2)如图,点M是直线l上的一点,点A惯有点M的对称点的点B,点B关于直线l的对称轴为点C.①若A、B、C三点不在同一条直线上,判断△ABC是否是直角三角形?请说明理由.②若点B由点A经n次斜平移后得到,且点C的坐标为(7,6),求出点B的坐标及n的值.【考点】几何变换综合题.【分析】(1)根据平移的性质得出点A平移的坐标即可;(2)①连接CM,根据中心和轴对称的性质和直角三角形的判定解答即可;②延长BC交x轴于点E,过C点作CF⊥AE于点F,根据待定系数法得出直线的解析式进而解答即可.【解答】解:(1)∵点P(2,3)经1次斜平移后的点的坐标为(3,5),点A的坐标为(1,0),∴点A经1次平移后得到的点的坐标为(2,2),点A经2次平移后得到的点的坐标(3,4);(2)①连接CM,如图1:由中心对称可知,AM=BM,由轴对称可知:BM=CM,∴AM=CM=BM,∴∠MAC=∠ACM,∠MBC=∠MCB,∵∠MAC+∠ACM+∠MBC+∠MCB=180°,∴∠ACM+∠MCB=90°,∴∠ACB=90°,∴△ABC是直角三角形;②延长BC交x轴于点E,过C点作CF⊥AE于点F,如图2:∵A(1,0),C(7,6),∴AF=CF=6,∴△ACF是等腰直角三角形,由①得∠ACE=90°,∴∠AEC=45°,∴E点坐标为(13,0),设直线BE的解析式为y=kx+b,∵C,E点在直线上,可得:,解得:,∴y=﹣x+13,∵点B由点A经n次斜平移得到,∴点B(n+1,2n),由2n=﹣n﹣1+13,解得:n=4,∴B(5,8).24.(2016·浙江绍兴)如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.(1)分别求直线l1与x轴,直线l2与AB的交点坐标;(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).【考点】四边形综合题.【分析】(1)根据坐标轴上点的坐标特征可求直线l1与x轴,直线l2与AB的交点坐标;(2)分三种情况:①若点A为直角顶点时,点M在第一象限;若点P为直角顶点时,点M在第一象限;③若点M为直角顶点时,点M在第一象限;进行讨论可求点M的坐标;(3)根据矩形的性质可求N点的横坐标x的取值范围.【解答】解:(1)直线l1:当y=0时,2x+3=0,x=﹣则直线l1与x轴坐标为(﹣,0)直线l2:当y=3时,2x﹣3=3,x=3则直线l2与AB的交点坐标为(3,3);(2)①若点A为直角顶点时,点M在第一象限,连结AC,如图1,∠APB>∠ACB>45°,∴△APM不可能是等腰直角三角形,∴点M不存在;②若点P为直角顶点时,点M在第一象限,如图2,过点M作MN⊥CB,交CB的延长线于点N,则Rt△ABP≌Rt△PNM,∴AB=PN=4,MN=BP,设M(x,2x﹣3),则MN=x﹣4,∴2x﹣3=4+3﹣(x﹣4),x=,∴M(,);③若点M为直角顶点时,点M在第一象限,如图3,设M1(x,2x﹣3),过点M1作M1G1⊥OA,交BC于点H1,则Rt△AM1G1≌Rt△PM1H1,∴AG1=M1H1=3﹣(2x﹣3),∴x+3﹣(2x﹣3)=4,x=2∴M1(2,1);设M2(x,2x﹣3),同理可得x+2x﹣3﹣3=4,∴x=,∴M2(,);综上所述,点M的坐标为(,),(2,1),(,);(3)x的取值范围为﹣≤x<0或0<x≤或≤x≤或≤x≤2.2016年广西南宁市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(2016·广西南宁)﹣2的相反数是()A.﹣2 B.0 C.2 D.4【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣2的相反数是2.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(2016·广西南宁)把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.【考点】平行投影.【分析】根据平行投影特点以及图中正六棱柱的摆放位置即可求解.【解答】解:把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.故选A.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.3.(2016·广西南宁)据《南国早报》报道:2016年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为()A.0.332×106B.3.32×105C.3.32×104D.33.2×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将332000用科学记数法表示为:3.32×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(2016·广西南宁)已知正比例函数y=3x的图象经过点(1,m),则m的值为()A.B.3 C.﹣D.﹣3【考点】一次函数图象上点的坐标特征.【分析】本题较为简单,把坐标代入解析式即可求出m的值.【解答】解:把点(1,m)代入y=3x,可得:m=3,故选B【点评】此题考查一次函数的问题,利用待定系数法直接代入求出未知系数m,比较简单.5.(2016·广西南宁)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分【考点】加权平均数.【分析】利用加权平均数的公式直接计算即可得出答案.【解答】解:由加权平均数的公式可知===86,故选D.【点评】本题主要考查加权平均数的计算,掌握加权平均数的公式=是解题的关键.6.(2016·广西南宁)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米【考点】解直角三角形的应用.【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD的长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.7.(2016·广西南宁)下列运算正确的是()A.a2﹣a=a B.ax+ay=axy C.m2•m4=m6D.(y3)2=y5【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案.【解答】解:A、a2和a不是同类项,不能合并,故本选项错误;B、ax和ay不是同类项,不能合并,故本选项错误;C、m2•m4=m6,计算正确,故本选项正确;D、(y3)2=y6≠y5,故本选项错误.故选C.【点评】本题考查了幂的乘方与积的乘方、合并同类项、同底数幂的乘法的知识,解答本题的关键在于掌握各知识点的运算法则.8.(2016·广西南宁)下列各曲线中表示y是x的函数的是()A.B.C.D.【考点】函数的概念.【分析】根据函数的意义求解即可求出答案.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.【点评】主要考查了函数的定义.注意函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.9.(2016·广西南宁)如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140° B.70° C.60° D.40°【考点】圆周角定理.【分析】先根据四边形内角和定理求出∠DOE的度数,再由圆周角定理即可得出结论.【解答】解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.10.(2016·广西南宁)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90【考点】由实际问题抽象出一元一次方程.【分析】设某种书包原价每个x元,根据题意列出方程解答即可.【解答】解:设某种书包原价每个x元,可得:0.8x﹣10=90,故选A【点评】本题考查一元一次方程,解题的关键是明确题意,能列出每次降价后的售价.11.(2016·广西南宁)有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9【考点】正方形的性质.【分析】设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.【解答】解:设小正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S,正方形ABCD∴S1=x2,∵=,∴=,∴S2=S,正方形ABCD∴S2=x2,∴S1:S2=x2:x2=4:9;故选D.【点评】此题考查了正方形的性质,用到的知识点是正方形的性质、相似三角形的性质、正方形的面积公式,关键是根据题意求出S1、S2与正方形面积的关系.12.(2016·广西南宁)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定【考点】抛物线与x轴的交点.【分析】设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b再根据根与系数的关系即可得出结论.【解答】解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b,则a+b=﹣=﹣+,∵a>0,∴>0,∴a+b>0.故选C.【点评】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(2016·广西南宁)若二次根式有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.14.(2016·广西南宁)如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=50°.【考点】平行线的性质.【分析】根据两直线平行,同位角相等可得∠1=∠A.【解答】解:∵AB∥CD,∴∠A=∠1,∵∠1=50°,∴∠A=50°,故答案为50°.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.15.(2016·广西南宁)分解因式:a2﹣9=(a+3)(a﹣3).【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.16.(2016·广西南宁)如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC 的对角线AC的中点D.若矩形OABC的面积为8,则k的值为2.【考点】反比例函数系数k的几何意义.【分析】过D作DE⊥OA于E,设D(m,),于是得到OA=2m,OC=,根据矩形的面积列方程即可得到结论.【解答】解:过D作DE⊥OA于E,设D(m,),∴OE=m.DE=,∵点D是矩形OABC的对角线AC的中点,∴OA=2m,OC=,∵矩形OABC的面积为8,∴OA•OC=2m•=8,∴k=2,故答案为:2.【点评】本题考查了反比例函数系数k的几何意义,矩形的性质,根据矩形的面积列出方程是解题的关键.18.(2016·广西南宁)观察下列等式:在上述数字宝塔中,从上往下数,2016在第44层.【考点】规律型:数字的变化类.【分析】先按图示规律计算出每一层的第一个数和最后一个数;发现第一个数分别是每一层层数的平方,那么只要知道2016介于哪两个数的平方即可,通过计算可知:442<2016<452,则2016在第44层.【解答】解:第一层:第一个数为12=1,最后一个数为22﹣1=3,第二层:第一个数为22=4,最后一个数为23﹣1=8,第三层:第一个数为32=9,最后一个数为24﹣1=15,∵442=1936,452=2025,又∵1936<2016<2025,∴在上述数字宝塔中,从上往下数,2016在第44层,故答案为:44【点评】本题考查了数学变化类的规律题,这类题的解题思路是:①从第一个数起,认真观察、仔细思考,能不能用平方或奇偶或加、减、乘、除等规律来表示;②利用方程来解决问题,先设一个未知数,找到符合条件的方程即可;本题以每一行的第一个数为突破口,找出其规律,得出结论.三、解答题(本大题共8小题,共66分)19.(2016·广西南宁)计算:|﹣2|+4cos30°﹣()﹣3+.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质、二次根式的性质化简,进而求出答案.【解答】解:原式=2+4×﹣8+2=4﹣6.【点评】此题主要考查了实数运算,正确利用负整数指数幂的性质化简是解题关键.。
2022年中考往年真题练习: 浙江省杭州市中考数学试卷解析版一、认真选一选(本题有10个小题, 每小题3分, 共30分) 下面每小题给出四个选项中, 只有一个是正确的.注意可以用多种不同的方法来选取正确的答案.1.(2021•杭州) 计算(2﹣3) +(﹣1) 的结果是()A.﹣2B.0C.1D.2有理数的加减混合运算。
考点分析:计算题。
专题分析:分析: 根据有理数的加减混合运算的法则进行计算即可得解.解答: 解: (2﹣3) +(﹣1) ,=﹣1+(﹣1) ,=﹣2.故选A.点评: 本题主要考查了有理数的加减混合运算, 是基础题比较简单.2.(2021•杭州) 若两圆的半径分别为2cm和6cm, 圆心距为4cm, 则这两圆的位置关系是()A.内含B.内切C.外切D.外离考点圆与圆的位置关系。
分析:分析: 两圆的位置关系有5种: ①外离;②外切;③相交;④内切;⑤内含.若d>R+r则两圆相离, 若d=R+r则两圆外切, 若d=R﹣r则两圆内切, 若R﹣r<d <R+r则两圆相交.本题可把半径的值代入, 看符合哪一种情况.解答: 解: ∵两圆的半径分别为2cm和6cm, 圆心距为4cm.则d=6﹣2=4,∴两圆内切.故选B.点评: 本题主要考查两圆的位置关系.两圆的位置关系有: 外离(d>R+r) 、内含(d <R﹣r) 、相切(外切: d=R+r或内切: d=R﹣r) 、相交(R﹣r<d<R+r) .3.(2021•杭州) 一个不透明的盒子中装有2个红球和1个白球, 它们除颜色外都一样.若从中任意摸出一个球, 则下列叙述正确的是()A.摸到红球是必定事件B.摸到白球是不可能事件C.摸到红球比摸到白球的可能性相等D.摸到红球比摸到白球的可能性大可能性的大小;随机事件。
考点分析:分析: 利用随机事件的概念, 以及个数最多的就得到可能性最大分别分析即可.解答: 解: A.摸到红球是随机事件, 故此选项错误;B.摸到白球是随机事件, 故此选项错误;C.摸到红球比摸到白球的可能性相等,根据不透明的盒子中装有2个红球和1个白球, 得到摸到红球比摸到白球的可能性大, 故此选项错误;D.根据不透明的盒子中装有2个红球和1个白球, 得到摸到红球比摸到白球的可能性大, 故此选项正确;故选: D.点评: 此题主要考查了随机事件以及可能性大小, 利用可能性大小的比较: 只要总情况数目一样, 谁包含的情况数目多, 谁的可能性就大;反之也成立;若包含的情况相当, 那么它们的可能性就相等得到是解题关键.4.(2021•杭州) 已知平行四边形ABCD中, ∠B=4∠A, 则∠C=() A.18°B.36°C.72°D.144°考点平行四边形的性质;平行线的性质。
2016年浙江省杭州市中考数学试卷一、填空题(每题3分)1.=()A.2 B.3 C.4 D.5【解析】=3.故选:B.2.如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若=,则=()A.B.C.D.1【解析】∵a∥b∥c,∴==.故选B.3.下列选项中,如图所示的圆柱的三视图画法正确的是()A.B.C.D.【解析】该圆柱体的主视图、俯视图均为矩形,左视图为圆,故选:A.4.如图是某市2016年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A.14℃,14℃B.15℃,15℃C.14℃,15℃D.15℃,14℃【解析】由条形统计图中出现频数最大条形最高的数据是在第三组,14℃,故众数是14℃;因图中是按从小到大的顺序排列的,最中间的环数是14℃、14℃,故中位数是14℃.故选:A.5.下列各式变形中,正确的是()A.x2•x3=x6B.=|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+【解析】A、x2•x3=x5,故此选项错误;B、=|x|,正确;C、(x2﹣)÷x=x﹣,故此选项错误;D、x2﹣x+1=(x﹣)2+,故此选项错误;故选:B.6.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A.518=2 B.518﹣x=2×106 C.518﹣x=2 D.518+x=2【解析】设从甲煤场运煤x吨到乙煤场,可得:518﹣x=2,故选C.7.设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x的函数图象可能为()A.B.C.D.【解析】∵y=(k≠0,x>0),∴z===(k≠0,x>0).∵反比例函数y=(k≠0,x>0)的图象在第一象限,∴k>0,∴>0.∴z关于x的函数图象为第一象限内,且不包括原点的正比例的函数图象.故选D.8.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD 交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.DE=EB C.DE=DO D.DE=OB【解析】连接EO.∵OB=OE,∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故选D.9.已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0【解析】如图,m2+m2=(n﹣m)2,2m2=n2﹣2mn+m2,m2+2mn﹣n2=0.故选:C.10.设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④ B.①③④ C.①②④ D.①②③【解析】①根据题意得:a@b=(a+b)2﹣(a﹣b)2∴(a+b)2﹣(a﹣b)2=0,整理得:(a+b+a﹣b)(a+b﹣a+b)=0,即4ab=0,解得:a=0或b=0,正确;②∵a@(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4aca@b+a@c=(a+b)2﹣(a﹣b)2+(a+c)2﹣(a﹣c)2=4ab+4ac,∴a@(b+c)=a@b+a@c正确;③a@b=a2+5b2,a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∵a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∴a2+b2+2ab≥4ab,∴4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∴a@b最大时,a=b,故④正确,故选C.二、填空题(每题4分)11.tan60°=.【解析】tan60°的值为.故答案为:.12.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是.【解析】棕色所占的百分比为:1﹣20%﹣15%﹣30%﹣15%=1﹣80%=20%,所以,P(绿色或棕色)=30%+20%=50%=.故答案为:.13.若整式x2+ky2(k为不等于零的常数)能在有理数范围内因式分解,则k的值可以是﹣1(写出一个即可).【解析】令k=﹣1,整式为x2﹣y2=(x+y)(x﹣y),故答案为:﹣1.14.在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为45°或105°.【解析】如图,∵四边形ABCD是菱形,∴AB=AD=BC=CD,∠A=∠C=30°,∠ABC=∠ADC=150°,∴∠DBA=∠DBC=75°,∵ED=EB,∠DEB=120°,∴∠EBD=∠EDB=30°,∴∠EBC=∠EBD+∠DBC=105°,当点E′在BD左侧时,∵∠DBE′=30°,∴∠E′BC=∠DBC﹣∠DBE′=45°,∴∠EBC=105°或45°,故答案为105°或45°.15.在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D 关于坐标原点的对称点的坐标为(﹣5,﹣3).【解析】如图所示:∵A(2,3),B(0,1),C(3,1),线段AC与BD互相平分,∴D点坐标为:(5,3),∴点D关于坐标原点的对称点的坐标为:(﹣5,﹣3).故答案为:(﹣5,﹣3).16.已知关于x的方程=m的解满足(0<n<3),若y>1,则m的取值范围是<m<.【解析】解方程组,得∵y>1∴2n﹣1>1,即n>1又∵0<n<3∴1<n<3∵n=x﹣2∴1<x﹣2<3,即3<x<5∴<<∴<<又∵=m∴<m<故答案为:<m<三、解答题17.计算6÷(﹣),方方同学的计算过程如下,原式=6+6=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.【解】方方的计算过程不正确,正确的计算过程是:原式=6÷(﹣+)=6÷(﹣)=6×(﹣6)=﹣36.18.某汽车厂去年每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图如图所示.根据统计图回答下列问题:(1)若第一季度的汽车销售量为2100辆,求该季的汽车产量;(2)圆圆同学说:“因为第二,第三这两个季度汽车销售数量占当季汽车产量是从75%降到50%,所以第二季度的汽车产量一定高于第三季度的汽车产量”,你觉得圆圆说的对吗?为什么?【解】(1)由题意可得,2100÷70%=3000(辆),即该季的汽车产量是3000辆;(2)圆圆的说法不对,因为百分比仅能够表示所要考查的数据在总量中所占的比例,并不能反映总量的大小.19.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵=,∴△ADF∽△ACG.(2)解:∵△ADF∽△ACG,∴=,又∵=,∴=,∴=1.20.把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米)适用公式h=20t﹣5t2(0≤t≤4).(1)当t=3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t;(3)若存在实数t1,t2(t1≠t2)当t=t1或t2时,足球距离地面的高度都为m(米),求m的取值范围.【解】(1)当t=3时,h=20t﹣5t2=20×3﹣5×9=15(米),∴当t=3时,足球距离地面的高度为15米;(2)∵h=10,∴20t﹣5t2=10,即t2﹣4t+2=0,解得:t=2+或t=2﹣,故经过2+或2﹣时,足球距离地面的高度为10米;(3)∵m≥0,由题意得t1,t2是方程20t﹣5t2=m 的两个不相等的实数根,∴b2﹣4ac=202﹣20m>0,∴m<20,故m的取值范围是0≤m<20.21.如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DE上,点A,D,G在同一直线上,且AD=3,DE=1,连接AC,CG,AE,并延长AE交CG于点H.(1)求sin∠EAC的值.(2)求线段AH的长.【解】(1)作EM⊥AC于M.∵四边形ABCD是正方形,∴∠ADC=90°,AD=DC=3,∠DCA=45°,∴在RT△ADE中,∵∠ADE=90°,AD=3,DE=1,∴AE==,在RT△EMC中,∵∠EMC=90°,∠ECM=45°,EC=2,∴EM=CM=,∴在RT△AEM中,sin∠EAM===.(2)在△GDC和△EDA中,,∴△GDC≌△EDA,∴∠GCD=∠EAD,GC=AE=,∵∠EHC=∠EDA=90°,∴AH⊥GC,∵S△AGC=•AG•DC=•GC•AH,∴×4×3=××AH,∴AH=.22.已知函数y1=ax2+bx,y2=ax+b(ab≠0).在同一平面直角坐标系中.(1)若函数y1的图象过点(﹣1,0),函数y2的图象过点(1,2),求a,b的值.(2)若函数y2的图象经过y1的顶点.①求证:2a+b=0;②当1<x<时,比较y1,y2的大小.【解】(1)由题意得:,解得:,故a=1,b=1.(2)①证明:∵y1=ax2+bx=a,∴函数y1的顶点为(﹣,﹣),∵函数y2的图象经过y1的顶点,∴﹣=a(﹣)+b,即b=﹣,∵ab≠0,∴﹣b=2a,∴2a+b=0.②∵b=﹣2a,∴y1=ax2﹣2ax=ax(x﹣2),y2=ax﹣2a,∴y1﹣y2=a(x﹣2)(x﹣1).∵1<x<,∴x﹣2<0,x﹣1>0,(x﹣2)(x﹣1)<0.当a>0时,a(x﹣2)(x﹣1)<0,y1<y2;当a<0时,a(x﹣1)(x﹣1)>0,y1>y2.23.在线段AB的同侧作射线AM和BN,若∠MAB与∠NBA的平分线分别交射线BN,AM于点E,F,AE和BF交于点P.如图,点点同学发现当射线AM,BN交于点C;且∠ACB=60°时,有以下两个结论:①∠APB=120°;②AF+BE=AB.那么,当AM∥BN时:(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出∠APB的度数,写出AF,BE,AB长度之间的等量关系,并给予证明;(2)设点Q为线段AE上一点,QB=5,若AF+BE=16,四边形ABEF的面积为32,求AQ的长.【解】(1)原命题不成立,新结论为:∠APB=90°,AF+BE=2AB(或AF=BE=AB),理由:∵AM∥BN,∴∠MAB+∠NBA=180°,∵AE,BF分别平分∠MAB,NBA,∴∠EAB=∠MAB,∠FBA=∠NBA,∴∠EAB+∠FBA=(∠MAB+∠NBA)=90°,∴∠APB=90°,∵AE平分∠MAB,∴∠MAE=∠BAE,∵AM∥BN,∴∠MAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE,同理:AF=AB,∴AF=+BE=2AB(或AF=BE=AB);(2)如图1,过点F作FG⊥AB于G,∵AF=BE,AF∥BE,∴四边形ABEF是平行四边形,∵AF+BE=16,∴AB=AF=BE=8,∵32=8×FG,∴FG=4,在Rt△FAG中,AF=8,∴∠FAG=60°,当点G在线段AB上时,∠FAB=60°,当点G在线段BA延长线时,∠FAB=120°,①如图2,当∠FAB=60°时,∠PAB=30°,∴PB=4,PA=4,∵BQ=5,∠BPA=90°,∴PQ=3,∴AQ=4﹣3或AQ=4+3.②如图3,当∠FAB=120°时,∠PAB=60°,∠FBG=30°,∴PB=4,∵PB=4>5,∴线段AE上不存在符合条件的点Q,∴当∠FAB=60°时,AQ=4﹣3或4+3.。