盐害与植物的抗盐性
- 格式:pdf
- 大小:1.72 MB
- 文档页数:39
关于如何提高植物耐盐性措施的探讨摘要本文概述了盐胁迫下植物的生理生化反应机理,植物耐盐的生物学机理,以及提高植物耐盐性的途径。
关键词盐害耐盐性盐适应性综合治理盐渍土、提高植物的耐盐性、开发利用盐水资源已成为未来农业发展及环境治理所亟待解决的重要课题。
因此,了解盐害对植物的伤害,研究植物的盐适应生理是很有必要的。
1盐害对植物的伤害土壤中盐分过多对植物生长发育产生的危害称为盐害。
植物对盐分过多的适应性称为抗盐性。
植物发生盐害的机理是:生理干旱、离子比例失调、抑制植物细胞呼吸、光合作用降低、蛋白质合成受阻、有毒物质积累。
2 植物的盐适应及抗盐机理土壤中盐分过多对植物生长发育产生的危害称为盐害。
植物对盐分过多的适应性称为抗盐性。
植物的抗盐机制分为避盐和耐盐。
2.1 植物的避盐机理有些植物通过某种途径或方式避免体内的盐分含量升高,以避免伤害,这种抗盐方式称为避盐。
避盐又分为三种,拒盐、泌盐和稀盐。
①拒盐:一些植物的根对某些盐离子的透性很小,在一定浓度的盐分范围内,根本不吸收或很少吸收盐分,从而“拒绝”一部分离子进入细胞。
另外,植物根部能向土壤分泌根系分泌物,主要成分为有机酸和氨基酸类,它们能与土壤溶液中的某些离子起鳌合或络合作用,所以在一定范围内能减少对这些离子的吸收。
植物的拒盐是一个被动的过程。
②泌盐:指植物将吸收的盐分主动排泄到茎叶的表面,而后被雨水冲刷脱落,防止过多盐分在体内的积累。
泌盐也称为排盐。
盐生植物排盐主要通过盐腺(salt gland),如玉米和高粱等作物都有排盐作用。
有的植物可通过吐水将盐分排出体外。
③稀盐:指植物通过加快吸收水分或加快生长速率来稀释细胞内盐分的浓度。
如肉质化的植物靠细胞内大量贮水来冲淡盐的浓度。
植物吸收盐离子的同时,通过叶片或者茎部不断的肉质化,形成发达薄壁的组织,贮存大量的水分,使得进入植物体内的盐分被稀释,盐离子始终保持在较低浓度水平。
2.2 植物的耐盐机理植物通过生理过程或代谢反应的改变来适应细胞内的高盐环境称为耐盐,这对盐生植物与非盐生植物的抗盐能力都有特别重要的意义。
盐胁迫对植物的影响植物的抗盐性:我国长江以北以及沿海许多地区,土壤中盐碱含量往往过高,对植物造成危害。
这种由于土壤盐碱含量过高对植物造成的危害称为盐害,植物对盐害的适应能力叫抗盐性。
根据许多研究报道,土壤含盐量超过0.2%~0.25%时就会造成危害。
钠盐是形成盐分过多的主要盐类,习惯上把硫酸钠与碳酸钠含量较高的土壤叫盐土,但二者同时存在,不能绝对划分,实际上把盐分过多的土壤统称为碱土。
世界上盐碱土面积很大,估计占灌溉农田的1/3,约4×107ha,而且随着灌溉农业的发展,盐碱面积将继续扩大。
我国盐碱土主要分布于西北、华北、东北和海滨地区,盐碱土总面积约2~7×107ha,而且这些地区都属平原,盐地土层深厚,如能改良盐碱危害,发展农业的潜力很大,特别应值得重视。
土壤盐分过多对植物的危害:1.生理干旱:土壤中可溶性盐类过多,由于渗透势增高而使土壤水势降低,根据水从高水势向低水势流动的原理,根细胞的水势必须低于周围介质的水势才能吸水,所以土壤盐分愈多根吸水愈困难,甚至植株体内水分有外渗的危险。
因而盐害的通常表现实际上是旱害,尤其在大气相对湿度低的情况下,随蒸腾作用加强,盐害更为严重,一般作物在湿季耐盐性增强。
2.离子的毒害作用:在盐分过多的土壤中植物生长不良的原因,不完全是生理干旱或吸水困难,而是由于吸收某种盐类过多而排斥了对另一些营养元素的吸收,产生了类似单盐毒害的作用。
3.破坏正常代谢:盐分过多对光合作用、呼吸作用和蛋白质代谢影响很大。
盐分过多会抑制叶绿素生物合成和各种酶的产生,尤其是影响叶绿素-蛋白复合体的形成。
盐分过多还会使PEP羧化酶与RuBP 羧化酶活性降低,使光呼吸加强。
生长在盐分过多的土壤中的作物(棉花、蚕豆、番茄等),其净光合速率一般低于淡土的植物,不过盐分过多对光合作用的影响是初期明显降低,而后又逐渐恢复,这似乎是一种适应性变化。
盐分过多对呼吸的影响,多数情况下表现为呼吸作用降低,也有些植物增加盐分具有提高呼吸的效应,如小麦的根。
植物的盐害与抗盐性在自然条件下,生长在中干旱、半干旱地区的植物,由于土壤中含有较多的盐类,常受盐害而不能正常生长与存活。
盐的种类决定土壤的性质,钠盐就是形成盐分过多的主要盐类,NaCl与Na2SO4含量较多称为盐土,Na2CO3与NaHCO3含量较多称为碱土。
而在自然界,这两种情况常常同时出现,统称为盐碱土。
1 植物的盐害顾名思义,盐害指土壤中可溶性盐类过多对植物的不利影响。
这种影响就是多种多样的,但主要危害有三个方面:1、1 生理干旱土壤盐分过多使植物根际土壤溶液渗透势降低,根据水从高水势向低水势流动的原理,这就给植物造成一种水逆境,植物吸收水分困难,此时植物要吸收水分,必须形成一个比土壤溶液更低的水势,否则植物将受到与水分胁迫相类似的危害,处于生理干旱状态。
如一般植物在土壤盐分超过0、2%~0、5%时出现吸水困难,盐分高于0、4%时植物体内水分易外渗,生长速率显著下降,甚至导致植物死亡。
1、2 特殊离子的毒害盐分过多的土壤环境的一个特点就是某些离子浓度过高,而毒害植物,这就就是盐类离子对植物的特殊效应。
高浓度盐分首先影响原生质膜,改变其透性。
由于膜的透性变化致使植物吸收某种盐类过多而排斥了对另一些营养元素的吸收,从而,植物细胞内部的离子种类与浓度也就发生变化,这种不平衡吸收,不仅造成营养失调,抑制了生长,同时还产生单盐毒害作用,即当溶液中只有一种金属离子(对盐碱土而言主要为钠离子)时,对植物起较强的毒害作用。
如Na+浓度过高时,植物会受到Na+的毒害,减少对K+的吸收,同时也易发生PO43-与Ca2+的缺乏症。
1、3 破坏正常代谢由于盐胁迫影响了膜的正常透性与改变了一些膜结合酶类活性,引起一系列的代谢失调:(1)光合作用。
盐分过多使PEP羧化酶与RuBP羧化酶活性降低,叶绿体趋于分解,叶绿素被破坏。
叶绿素与类胡萝卜素的生物合成受阻,气孔关闭,使光合速率下降,影响作物产量。
(2)呼吸作用。
一般来说,低盐时植物吸收受到促进,而高盐时受到抑制。
盐胁迫对植物的影响及植物盐适应性研究进展一、本文概述盐胁迫,作为一种常见的非生物胁迫,对植物的生长和发育具有显著影响。
在盐碱地等极端环境中,植物常常面临高盐浓度的挑战,这对其生理代谢和生存策略提出了严峻的要求。
为了适应这种环境压力,植物发展出了一系列的盐适应性机制。
本文旨在综述盐胁迫对植物的影响,包括生长抑制、光合作用降低、离子平衡失调等方面,并深入探讨植物在盐胁迫下的适应性研究进展,包括离子转运、渗透调节、抗氧化防御等多个方面。
通过对这些适应性机制的研究,我们不仅可以更好地理解植物如何应对盐胁迫,而且可以为植物耐盐性的遗传改良和盐碱地的生态恢复提供理论支持和技术指导。
二、盐胁迫对植物生理生态的影响盐胁迫是指土壤中含盐量过高,对植物的生长和发育造成不良影响的环境压力。
盐胁迫对植物的影响表现在多个层面,涉及生理、生态、形态和分子等多个方面。
在生理层面,盐胁迫首先影响植物的水分平衡。
由于土壤中的高盐浓度,植物吸水变得困难,导致细胞内外的渗透压失衡,进而引发细胞脱水和生理功能紊乱。
盐胁迫还会破坏植物的光合作用系统,降低叶绿素的含量和光合效率,从而影响植物的光能利用和有机物的合成。
在生态层面,盐胁迫导致植物群落的结构和组成发生变化。
盐胁迫下,一些耐盐性强的植物种类或品种可能获得竞争优势,而一些对盐敏感的植物则可能因无法适应而死亡或生长受阻。
这种植物群落的演替过程可能导致生物多样性的降低,影响生态系统的稳定性和功能。
在形态层面,盐胁迫会导致植物出现一系列适应性的形态变化。
例如,耐盐植物往往具有较厚的叶片和茎秆,以减少水分蒸发和盐分积累;根系也更加发达,以增加对水分和养分的吸收面积。
一些植物还会通过减少地上部分的生物量分配,增加地下部分的生物量分配来适应盐胁迫环境。
在分子层面,盐胁迫会引发植物体内一系列的生理生化反应和基因表达变化。
例如,植物会通过调节渗透调节物质的合成和积累来维持细胞内外渗透压的平衡;一些与盐胁迫相关的基因也会被诱导表达,编码耐盐相关的蛋白质或酶类,以增强植物的耐盐能力。
盐钳制对植物的影响植物的抗盐性:我国长江以北以及沿海很多地区,泥土中盐碱含量往往过高,对植物造成伤害.这种因为泥土盐碱含量过高对植物造成的伤害称为盐害,植物对盐害的顺应才能叫抗盐性.根据很多研讨报导,泥土含盐量超出0.2%~0.25%时就会造成伤害.钠盐是形成盐分过多的重要盐类,习惯上把硫酸钠与碳酸钠含量较高的泥土叫盐土,但二者同时消失,不克不及绝对划分,现实上把盐分过多的泥土统称为碱土.世界上盐碱土面积很大,估量占浇灌农田的1/3,约4×107ha,并且跟着浇灌农业的成长,盐碱面积将持续扩展.我国盐碱土重要散布于西北.华北.东北和海滨地区,盐碱土总面积约2~7×107ha,并且这些地区都属平原,盐地土层深挚,如能改进盐碱伤害,成长农业的潜力很大,特殊应值得看重.泥土盐分过多对植物的伤害:1.心理干旱:泥土中可溶性盐类过多,因为渗入渗出势增高而使泥土水势下降,根据水从高水势向低水势流淌的道理,根细胞的水势必须低于四周介质的水势才干吸水,所以泥土盐分愈多根吸水愈艰苦,甚至植株体内水分有外渗的安全.因而盐害的平日表示现实上是旱害,尤其在大气相对湿度低的情形下,随蒸腾感化加强,盐害更为轻微,一般作物在湿季耐盐性加强.2.离子的迫害感化:在盐分过多的泥土中植物发展不良的原因,不完满是心理干旱或吸水艰苦,而是因为接收某种盐类过多而排挤了对另一些养分元素的接收,产生了相似单盐迫害的感化.3.损坏正常代谢:盐分过多对光合感化.呼吸感化和蛋白质代谢影响很大.盐分过多会克制叶绿素生物合成和各类酶的产生,尤其是影响叶绿素-蛋白复合体的形成.盐分过多还会使PEP羧化酶与RuBP羧化酶活性下降,使光呼吸加强.发展在盐分过多的泥土中的作物(棉花.蚕豆.番茄等),其净光合速度一般低于淡土的植物,不过盐分过多对光合感化的影响是初期显著下降,尔后又逐渐恢复,这似乎是一种顺应性变更.盐分过多对呼吸的影响,多半情形下表示为呼吸感化下降,也有些植物增长盐分具有进步呼吸的效应,如小麦的根.呼吸增高是因为Na+活化了离子转移体系,尤其是对证膜上的Na+.K+与ATP活化,刺激了呼吸感化.盐分过多对植物的光合与呼吸的影响尽管不一致,但总的趋向是呼吸消费增多,净光合速度下降,晦气于发展.一.实验目标盐钳制对植物发展发育的各个阶段都有不合程度的影响,如种子萌发.幼苗发展.成株发展等.不合种类的植物受盐钳制影响的程度也各不雷同.本实验重要不雅察Na2CO3对小麦种子萌发进程的影响,商量小麦种子在盐钳制下的萌发特征,对小麦的耐盐才能做出了初步评价.经由过程实验懂得盐钳制对植物(种子萌发)的影响;控制种子萌发进程中抽芽率.抽芽势.抽芽指数.芽长.总长.芽重.总重等各项指标的不雅察和盘算办法;各项指标在盐钳制前提下的变更趋向,绘制盐浓度与发展指标相干曲线,并剖析盐钳制对种子萌发的影响.二.仪器装备和材料电子天平;造就皿(直径120mm),滤纸(直径125mm定量滤纸若干),500ml.200ml烧杯,250ml容量瓶,10ml移液管,玻璃棒,镊子,毫米刻度尺,铰剪;次氯酸钠.碳酸钠;小麦种子等.三.实验办法和步调(1)种子的预处理:用10%的次氯酸钠消毒10min,蒸馏水冲洗数次后,于造就皿中做抽芽实验.(2)器皿预备:取造就皿15套,分离用以下不合浓度值(3)作为编号贴好标签.(3)配制不合浓度梯度的Na2CO3溶液设置对比(CK);1.2.3.4g/L 4个浓度梯度的Na2CO3溶液,用去离子水各配制250ml.(4)在每个造就皿底部平铺两张滤纸.每个浓度梯度处理反复3 次,分离标识表记标帜1.2.3,作为平行样.取5种处理溶液各10ml分离注入垫有两张滤纸,直径为120 mm 的造就皿中.遴选健康.饱满的小麦种子,每个造就皿中摆放100粒,盖上盖置实验室闺阁温下造就.从种子置于造就皿内起开端不雅察.天世界午15:00阁下恰当填补雷同处理溶液,以保持盐分浓度的稳固.以胚根长达到种子长度的一半时视为抽芽,以具显著胚芽鞘及胚根作为抽芽尺度.(临盆上常把小麦的胚根长度与小麦种子长度相等.胚芽长度达到种子长度一半时,定为小麦种子抽芽的尺度).(冬季,小麦种子一般须要7天才干抽芽,即从第7天查询拜访抽芽率).持续3 d 抽芽数不再增长时终止抽芽实验.假如造就皿中有5%以上的种子发霉,则应进行消毒或改换造就皿和滤纸.从种子萌发开端,每日不雅察记载正常萌发种子数.不萌发种子数及糜烂种子数.种子萌发3d后,取正常抽芽种子测其心理指标,之后每次不雅察后将正常抽芽种子和糜烂种子掏出弃失落.不雅测时光为抽芽后1-2周.将不雅察成果填入预先设计好的表1中.表1 小麦抽芽情形记载表Na2CO3-1) 平行样时光/d1 2 3 4 5 6 7 8 9 10 11 12 13 140 1 2 31 12 32 1 2 33 1 2 34 1 2 3(1)抽芽率.抽芽势和抽芽指数的盘算:在小麦种子抽芽实验停止后,根据检讨和记载成果盘算种子的抽芽势和抽芽率.抽芽率=最终抽芽的种子数/供试种子数×100%.抽芽率是决议种子品德和现实用价的根据.抽芽势=3d抽芽种子数/供试种子数×100%.种子抽芽势是判别种子质量好坏.出苗整洁与否的重要标记,也与幼苗强弱和产量有亲密的关系.抽芽势高的种子,出苗敏捷,整洁硬朗.抽芽指数G i=Σ(G t/ D t).式中(G t为t 日的抽芽种子数,D t为对应种子抽芽的天数).抽芽指数高就解释该种子抽芽所用的时光短,抽芽速度快.根据“小麦抽芽情形记载表”中的数据,分离盘算抽芽率.抽芽势和抽芽指数,将盘算成果记入表2.表2 小麦种子萌发中的抽芽率.抽芽势和抽芽指数-1) 指标Na2CO30 1 2 3 4抽芽率/% 抽芽势/%抽芽指数/-1)(2)心理指标的测定:测定的重要心理指标包含:芽长.总长.芽重和总重.抽芽3d后,用镊子轻轻将其掏出(掏出已抽芽的种子,盘算平均值),用滤纸吸干,再用刻度尺分离测量芽长和总长度;之后,经剖析天平测其全重和芽重(先测全重,然后用铰剪剪下芽,测芽重).以上各量均取平均值,将成果记入表3.表3 小麦种子萌发中的心理指标-1) 指标Na2CO30 1 2 3 4芽长/cm总长/cm芽重/mg总重/mg根据不雅察和测定盘算的成果,剖析小麦种子萌发进程中各指标在不合盐钳制前提下的变更,懂得盐钳制对种子萌发的影响.四.功课绘制盐浓度与发展指标相干曲线;并剖析盐钳制对种子萌发的影响.。
Journal of Agricultural Catastrophology 2023, Vol.13 No.7植物耐盐生理机制及耐盐性研究进展蒋宇杰山东师范大学,山东济南 250000摘要 盐胁迫会对作物的生长造成一定的影响,从而造成产量下降。
阐述了盐胁迫对植物的影响,并综述了植物耐盐机理的研究、植物的耐盐性等。
通过对国内外有关文献的分析,提出了一些可以改善作物耐盐性的方法,进一步研究植物的抗盐性,给选育和生产奠定了基础。
关键词 盐胁迫;植物生长机理;抗盐性中图分类号:Q945.78 文献标识码:B 文章编号:2095–3305(2023)07–0020-031 盐胁迫对植物的影响 盐胁迫对植物生长和发育等方面都有明显的影响。
究其原因,主要有以下2点:第一,盐胁迫会使植株的水分吸收能力下降,从而使植株的生长受到抑制,这就是所谓的渗透胁迫[1]。
如果过量的盐分进入植株,就会对植株的细胞产生损伤,进而对植株的生长产生更大的影响。
第二,离子毒性在盐的浓度到达临界点后会出现,导致植物无法保持离子平衡,从而导致二次伤害。
结果表明,盐胁迫对植物的萌发、生长、光合色素、光合作用、离子平衡、养分平衡等都有影响。
1.1 盐分对植物生长发育的影响种子发芽是植物生命活动的基础和关键环节,是影响植物生长发育和繁殖的重要因素。
研究观察到,光果甘草和胀果甘草在400 mmol/L NaCl条件下的萌发率、根长、根鲜重等均显著降低。
有研究表明,盐害对松果菊种子发芽有显著的抑制作用,对发芽、发芽指数等都有明显的抑制作用,会延迟种子萌发时间,使其萌发周期拉长[2]。
总之,盐分胁迫对种子萌发有一定的抑制作用。
盐害对植株的表现效应主要有:新枝生长缓慢,植株高度下降,叶片枯黄、枯萎等,而与生理变化相比,植株生长速度较慢。
植物受到盐害的第一个征兆是老叶,然后是新叶。
植物老叶的盐害表现为:叶片边缘和叶片尖端先枯萎,接着变为黄绿色,再到凋谢,最终叶片发黑,叶片枯死。
盐胁迫对植物生理生化特性的影响根据联合国粮农组织(FAO)统计,全世界存在盐渍土面积8亿hm2,占陆地面积的6%。
据统计,我国盐渍土面积为3 470 万 hm2,土壤盐渍化是世界上许多干旱和半干旱地区农作物产量下降的主要原因。
土壤中过量的盐分能够引起土壤物理和化学性质的改变,从而导致大部分农作物生长环境的恶化。
盐渍土作为一种土地资源,在全国乃至全世界都有着广泛的分布和较大的面积迄今为止,我国有80%左右的盐渍土尚未得到开发利用,有着巨大的开发利用潜力。
1盐胁迫对植物耐受性的影响近年来,盐胁迫对各种植物各个性状方面的影响已成为很多科学家研究的重点。
包括对拟南芥、玉米、马铃薯、水稻、香蕉、黄瓜、花生和韭菜等植物都有过相关的研究。
童仕波等证明转基因拟南芥对盐胁迫的耐受性明显增强。
其脯氨酸(Pro)含量明显提高。
赵昕等研究发现(NaCl)降低拟南芥叶绿。
体对光能的吸收能力,而且降低叶绿体的光化学活性。
使电子传递速率和光能转化效率大幅度下降,造成光能转化为化学能的过程受阻,进一步加剧了光合放氧和碳同化能力的降低。
盐胁迫下拟南芥中的(Na+)与(K+)含量变化呈极显著正相关。
因此推断它们的吸收通道或载体为单一竞争性。
发现盐浓度达到一定程度时,超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性均达到最高。
随后随着(NaCl)浓度的增加,SOD、POD、CAT活性逐渐降低。
表明SOD、POD、CAT活性不能维持较高水平。
反之会导致膜脂过氧化作用加强,细胞膜受到损害。
研究发现盐浓度对马铃薯脱毒苗叶片SOD和POD活性影响极显著。
盐比例及盐浓度与盐比例的交互作用对马铃薯脱毒苗叶片SOD和POD活性影响均不显著。
随着混合盐浓度的增加(Na+)含量显著增加K+含量平缓下降。
(Na+)与(K+)的比值显著上升。
发现,水稻在(NaCl)浓度为30 mmol/L 时生长状况良好,但随着NaCl浓度的增加,水稻的生长速度减慢。
盐害对植物的影响植物的盐害和抗盐性在自然条件下,生长在中干旱、半干旱地区的植物,由于土壤中含有较多的盐类,常受盐害而不能正常生长和存活。
盐的种类决定土壤的性质,钠盐是形成盐分过多的主要盐类,NaCl和Na2SO4含量较多称为盐土,Na2CO3与NaHCO3含量较多称为碱土。
而在自然界,这两种情况常常同时出现,统称为盐碱土。
1植物的盐害顾名思义,盐害指土壤中可溶性盐类过多对植物的不利影响。
这种影响是多种多样的,但主要危害有三个方面:1.1生理干旱土壤盐分过多使植物根际土壤溶液渗透势降低,根据水从高水势向低水势流动的原理,这就给植物造成一种水逆境,植物吸收水分困难,此时植物要吸收水分,必须形成一个比土壤溶液更低的水势,否则植物将受到与水分胁迫相类似的危害,处于生理干旱状态。
如一般植物在土壤盐分超过0.2%~0.5%时出现吸水困难,盐分高于0.4%时植物体内水分易外渗,生长速率显著下降,甚至导致植物死亡。
1.2特殊离子的毒害盐分过多的土壤环境的一个特点是某些离子浓度过高,而毒害植物,这就是盐类离子对植物的特殊效应。
高浓度盐分首先影响原生质膜,改变其透性。
由于膜的透性变化致使植物吸收某种盐类过多而排斥了对另一些营养元素的吸收,从而,植物细胞内部的离子种类和浓度也就发生变化,这种不平衡吸收,不仅造成营养失调,抑制了生长,同时还产生单盐毒害作用,即当溶液中只有一种金属离子(对盐碱土而言主要为钠离子)时,对植物起较强的毒害作用。
如Na+浓度过高时,植物会受到Na+的毒害,减少对K+的吸收,同时也易发生PO43-和Ca2+的缺乏症。
1.3破坏正常代谢由于盐胁迫影响了膜的正常透性和改变了一些膜结合酶类活性,引起一系列的代谢失调:(1)光合作用。
盐分过多使PEP羧化酶和RuBP羧化酶活性降低,叶绿体趋于分解,叶绿素被破坏。
叶绿素和类胡萝卜素的生物合成受阻,气孔关闭,使光合速率下降,影响作物产量。
(2)呼吸作用。
一般来说,低盐时植物吸收受到促进,而高盐时受到抑制。
盐胁迫对植物的影响及植物耐盐机理研究进展孟繁昊;王聪;徐寿军【摘要】盐分是影响植物生长发育的一个重要环境因素,盐胁迫对植物的整个生命进程产生影响,盐分通过渗透胁迫、离子毒害,使植物细胞膜透性改变,造成氧化胁迫、代谢紊乱及蛋白质合成受阻等现象,植物的耐盐性主要体现在离子的选择性吸收和区域化作用、渗透调节、光合作用途径的改变以及活性氧清除机制。
%Salinity is one of the most important environmental factors affecting plant growth and development. Salt stress affects plant the whole life process. Salt makes the plant cell membrane permeability changes by osmotic stress, ion toxicity, cause oxidative stress, metabolism, protein synthesis of hindered and other phenomena. The mechanisms of salt resistance in plants were described from the ion selective absorption and regional effects, osmotic adjustment, changes of photosynthesis pathway and active oxygen scavenging mechanism.【期刊名称】《内蒙古民族大学学报(自然科学版)》【年(卷),期】2014(000)003【总页数】4页(P315-318)【关键词】盐胁迫;活性氧清除;耐盐性【作者】孟繁昊;王聪;徐寿军【作者单位】内蒙古民族大学农学院,内蒙古通辽 028043;内蒙古民族大学农学院,内蒙古通辽 028043;内蒙古民族大学农学院,内蒙古通辽 028043【正文语种】中文【中图分类】Q945土壤盐碱化是指土壤含盐量过高(超过0.3%)导致农作物低产或不能生长的现象,随着工业的高速发展,耕地面积急剧下降,不合理的灌溉、耕作又造成了土壤的次生盐渍化.当前,全球盐碱地面积已达 9.5 亿 hm2〔1〕,我国约有盐碱地 0.27 亿hm2,其中耕地0.06 亿hm2,盐碱荒地0.21 亿hm2,主要分布在东北、华北、西北内陆地区以及长江以北沿海地带,盐碱化程度普遍较高,严重的盐碱土壤地区植物几乎不能生存〔2〕.盐分过多给植物带来包括生理干旱、离子毒害、生理代谢紊乱等多种危害,给农业生产造成了重大损失,综合治理盐渍土已刻不容缓.人们通过物理改良、化学改良和生物改良等技术措施对盐碱地进行改良和利用〔3〕,其中生物改良是开发、利用盐碱地的最佳方法.引种具有一定经济价值的抗盐碱植物,增加地面覆盖以减少地表蒸发,既可改良土壤,扼制土地的盐渍化,又可实现盐荒地的利用.了解盐害对植物的影响,研究植物对盐分的适应性,提高植物的耐盐性,已成为未来农业发展及环境治理亟待解决的重要课题.1.1 盐胁迫对植物生长发育的影响植物在受到盐分胁迫时,最普遍的原初现象即是生长受到抑制〔4〕.叶梅荣等通过不同浓度的 NaCl处理 4 个小麦品种的种子,研究了盐胁迫对不同小麦品种生长的影响,结果显示,在一定浓度范围内,4个品种的发芽率均明显降低,但品种间的耐盐能力有所不同,低盐浓度胁迫下,根系比地上部分的盐害症状更为明显,高盐浓度下则相反〔5〕.申玉香等以苏啤 3 号等大麦品种为试验材料,测定了NaCl 胁迫下不同大麦品种的发芽势、盐害指数、发芽指数、产量及构成因素等指标,结果表明,低盐浓度胁迫对各大麦品种的影响不大,高盐浓度胁迫下,上述指标均显著下降〔6〕.樊秀彩等对国家葡萄资源圃的 30 份砧木进行耐盐性的研究,认为不同种质的耐盐能力不等,研究表明,山葡萄组培苗在盐胁迫下,多数品种(品系)随盐胁迫时间的延长,首先出现叶尖、叶缘干枯、失绿等现象,随后叶片中间出现红色或褐色斑点,有的叶片失水起皱、卷曲,严重者叶片整个枯焦或腐烂,叶柄变黄褐化,但不同种质间盐害指数不同,这一差别在一定程度上反映了植物抗盐性的不同〔7〕.1.2 盐胁迫对植物代谢的影响1.2.1 盐胁迫对植物光合作用的影响光合作用是植物在可见光的照射下,将二氧化碳转化为氧气并合成有机物的过程,是植物基础而重要的生理活动.盐胁迫条件下,植物组织缺水,为减少蒸腾作用而关闭气孔,从而导致叶绿体受损,与光合作用相关的酶类失活或变性,这直接影响了光合速率,其速率的下降造成了同化产物合成的减少〔8〕.目前导致净光合速率下降的原因众说纷纭,但主要包括两方面:第一,由于植物受到某种胁迫时,为保持细胞内的水分,减少蒸腾作用,部分气孔关闭导致气孔导度下降,从而引起 CO2供应不足;第二,由于叶肉细胞光合能力下降,从而引起胞间 CO2含量升高〔9,10〕.金雅琴等通过盆栽试验的结果发现,盐胁迫导致某一种源的净光合速率(Pn)呈先升后降的趋势,其余种源Pn则呈递减趋势,且减小程度与胁迫强度密切相关;在低盐胁迫下,与对照相比两个种源气孔导度(Gs)增大,其余种源Gs呈不同程度降低;在中高盐浓度胁迫下,各种源 Gs普遍低于对照;不同盐胁迫下各种源胞间二氧化碳浓度(Ci)变化趋势不同;三个种源的叶绿素含量随盐胁迫的增加而下降,另外三个种源呈无规律变化;相关分析表明,在盐胁迫条件下,Pn与Gs和Ci呈正相关,与叶绿素含量相关性不明显〔11〕.陈松河等通过盆栽试验探究NaCl胁迫对花叶唐竹、小琴丝竹和刺黑竹3种竹子叶片光合作用的影响,结果表明,低盐胁迫(0.1%NaCl处理)下,小琴丝竹和刺黑竹叶片的净光合速率、气孔导度和蒸腾速率有所提高,而对花叶唐竹并无太大影响;但随着 NaCl胁迫的加剧,3 种竹子叶片的 Pn、Gs和蒸腾速率(Tr)均开始下降,而 Ci则变化规律不明显〔12〕.1.2.2 盐胁迫对植物呼吸作用的影响盐胁迫下,植物呼吸过程的总趋势为呼吸消耗增加,净光合生产率降低,最终导致植物的盐害〔13〕.盐胁迫主要从两个方面影响植物呼吸作用:植物生命活动所需的能量大部分由呼吸作用提供,细胞受到盐害时,抵抗盐胁迫就需要消耗大量由呼吸作用产生的能量;植物在积累盐离子的过程中,会合成一些有机渗透调节物质,而呼吸过程的中间产物是合成很多有机物质的原料.在盐胁迫下,植物呼吸强度因能量的需求量加大而增强,随着盐胁迫的强度和时间的增加,逐渐减弱.植物的呼吸作用和光合作用是对立统一的,盐害对植物的呼吸代谢和光合代谢均有不同程度的影响,造成一系列不良的连锁反应〔14〕.植物受到盐害时,呼吸作用的变化是植物对盐害适应能力的评价指标之一.1.2.3 盐胁迫对植物蛋白质代谢的影响植物体内的可溶性蛋白质包含一些代谢酶,是植物体内重要的渗透调节物质,因此可溶性蛋白质含量与植株体内的代谢强度有关〔15〕.植物受到逆境胁迫时,叶片中的相对含水量会有所减少,提高可溶性蛋白含量有利于维持细胞的渗透调节能力,减少水分蒸发,从而缓解逆境对植物的伤害〔16〕.杨颖丽等通过研究盐胁迫对不同品种的小麦叶片蛋白质质量分数及结构的影响,发现盐胁迫下,耐盐性好的小麦品种的可溶性蛋白质有所增加,说明耐盐性好的小麦能够通过调节自身代谢,从而适应一定程度的盐分胁迫〔17〕.2.1 渗透胁迫盐胁迫条件下,土壤水势降低,植物根部细胞不能利用水势差吸取水分,甚至当盐分浓度过高时,还会使植物体内水分外渗,造成植物的生理干旱,形成渗透胁迫.土壤盐分过高还会导致植物细胞渗透势增加,气孔导度下降,叶绿体受损,最终影响光合速率和蒸腾速率,使植物生长发育受到抑制,甚至死亡〔18〕.2.2 离子毒害离子毒害过程中,有毒离子会导致细胞膜透性增加,电解质外渗,从而引起细胞代谢紊乱和失调,Na+含量的增加严重阻碍了植物体内必须离子 K+的运输和吸收,同时导致 HPO缺乏.钾是维持细胞膜静息电位的物质基础,参与多种新陈代谢过程,能够调节植物细胞的渗透压及酸碱平衡,同时参与同化物的运输、气孔的开闭等生理过程,K+亏缺将严重影响到植株的正常生长发育,植物对离子的吸收失衡,使植株营养失调,生长受抑制,甚至死亡.2.3 细胞膜透性改变外界盐浓度的增加使细胞膜的结构受到破坏,膜的功能改变,细胞内电解质外渗率加大.吕庆等通过研究发现,外界的干旱、洪涝、盐害等逆境因素会导致细胞的膜质通透性增大,从而引起膜脂过氧化,破坏细胞膜的结构,最终影响细胞的正常生理机能〔19〕.细胞膜在植物的代谢过程中起着重要的生理作用,它既能使细胞维持相对稳定的胞内环境,又可以接受和传递信息,从而调节和选择物质进出细胞.作为植物在受到胁迫时的原初反应部位,在植物受到盐害时,体内蛋白受到盐分影响,细胞膜质通透性增加,膜质过氧化速度加快,从而损伤了膜的正常生理功能,影响了植物的生理代谢.植物正常生长时,其细胞内活性氧的产生和消除处于稳定的动态平衡状态,当植物受到干旱、洪涝、盐碱胁迫等逆境条件时,植物细胞内原本稳定的代谢平衡被打破,产生了超氧阴离子(O)、H2O2和HO-,它们启动和加速了膜脂过氧化,从而引起生理失调、代谢紊乱.王聪等对耐盐性不同的两个菜用大豆品种进行100mmol·L-1的盐处理,研究其抗氧化系统和渗透调节物质的变化,结果表明耐盐品种具有较强的 O和H2O2清除能力,能够有效减少活性氧(ROS)过量积累〔20〕.丙二醛(MDA)是植物受到胁迫时产生膜脂过氧化的主要产物,其含量的高低在一定程度上可以反映细胞膜脂过氧化的程度,进而间接的反映膜的受损伤程度,膜透性能够直接反映膜受伤害的程度,而 MDA 能够间接表示膜受损伤状况.李倩等通过研究不同盐浓度处理对燕麦生理特性的影响,发现盐处理后,随着胁迫时间及胁迫浓度的增加,MDA逐渐积累,这表明时间及盐浓度的加大导致膜系统受害程度随之增加〔21〕.2.4 氧化胁迫和代谢紊乱土壤盐分过高会引起植物产生初级的渗透胁迫和离子胁迫,使植物体内积累大量的活性氧分子和 H2O2,这些活性氧自由基直接或间接的启动膜脂过氧化进程,产生氧化胁迫,破坏膜质完整性,细胞内电解质外渗,从而影响植物的光合作用、呼吸作用和蒸腾作用,导致一系列的生理代谢紊乱.很多试验结果均能够证明,盐浓度越高,作用时间越长,对植物体内各种代谢的抑制程度就越大〔22〕.2.5 蛋白质合成受阻盐胁迫条件下,植物体内累积了大量的活性氧,造成膜质过氧化,产生氧化胁迫,导致植物体内各种代谢紊乱,代谢酶失活或变性,最终引起植物体内蛋白质的大量降解〔23〕.耐盐性(salt tolerance)是植物在盐分胁迫下,通过生理代谢来适应或抵抗进入细胞的盐分危害.植物通过吸收外界离子,提高内部的离子浓度,使细胞内部水势低于外界,维持高的膨胀压.但细胞质中高浓度的离子会导致各种障碍,例如前文提到过的离子毒害等.3.1 渗透调节盐分胁迫条件下,植物根部细胞不能利用水势差吸取水分从而形成的胁迫,即是渗透胁迫.在盐胁迫下,植物具有自主调节渗透势的能力,这是其耐盐性的最基本特征.主要的渗透调节有两种:一是将大量有害离子累积于液泡内的离子调节;二是在细胞中合成一定数量的氨基酸、脯氨酸、蔗糖等可溶性有机物的有机调节〔24〕.3.2 离子的选择性吸收和离子的区域化作用在高盐环境中,高等植物主要是通过调节细胞内外无机离子的种类和数量,维持一个相对稳定的内环境〔25〕.由于K+能够调节植物体内的渗透压和酸碱平衡,而 Na+会影响体内必须离子的运输,并且维持植物体内较高 K+/Na+值,能够缓解细胞受到盐害时 K+亏缺而引发的生长抑制现象〔25〕,因此大多数植物吸收 K+而排斥 Na+.离子的区域化作用是指在盐分胁迫下,植物自身将大部分离子蓄于细胞液泡中来避免离子大量累积对细胞造成损伤,并且,为了调节液泡的渗透压平衡,开始合成蔗糖等有机物,贮藏在液泡中的现象.3.3 改变光合作用途径盐胁迫条件下,植物体内多项代谢会发生紊乱和失调,水势下降抑制了植物体内的光合、呼吸、蒸腾等作用.植物耐盐的光合途径主要包括两个方面:一是改变碳同化途径,由C3途径变为CAM途径,减少失水,增加水分利用率;二是改变代谢途径,由C3途径改变为C4途径,增强光合作用.3.4 活性氧清除机制盐胁迫等逆境环境会诱导产生活性氧,它们引起膜质过氧化,最终造成膜质损伤.植物在受到盐分胁迫时,自身将产生一系列的抗氧化保护物质,它们组成复杂的活性氧清除系统,活性氧清除系统主要分为酶促防御系统和非酶促防御系统〔26,27〕.超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)均属于酶促防御系统中的保护酶,这些保护酶活性的增强能够有效地提高植物的耐盐能力〔28〕.SOD 是生物体内超氧阴离子自由基的清除剂,能够对各种逆境的生理生化反应做出响应,是酶促防御系统中的重要组成部分.杨艳兵等在多个时间段内利用不同浓度NaCl处理中熟棉品种 N181,研究 NaCl胁迫下棉花幼苗保护酶活性的变化,试验结果表明,处理一定天数后,在高浓度NaCl(0.3%)胁迫下,棉苗体内SOD、POD大量积累,可以看出,棉花幼苗受到一定程度的胁迫时,会诱导保护酶活性升高,进而增强了棉花幼苗对盐胁迫的抵抗能力〔29〕.张勇等研究了盐碱胁迫下红芪的生理特性变化,结果表明,盐碱胁迫下红芪的SOD、POD活性均呈先上升后下降的变化,而从保护酶的活性变化可以看出,在低盐浓度胁迫下,红芪可通过提高保护酶活性来加强自身的耐盐性,但这种能力是很有限的,当盐浓度超出一定范围时,保护酶活性便开始降低.这说明,虽然植物在受到胁迫时能够通过提高其自身保护酶活性来清除有害离子,但也仅是在一定胁迫范围内,超出范围便会导致保护酶活性下降,保护作用大大降低〔30〕.非酶促防御系统主要由抗坏血酸(AsA)、谷胱甘肽(GSH)等小分子抗氧化物组成,大多数植物叶绿体中的 H2O2主要依赖于 AsA-GSH 循环系统来清除.AsA 和GSH是非酶促防御系统中的重要成员,在清除活性氧方面起着重要作用〔31〕.何文亮等用100mmol·L-1的 NaCl处理拟南芥抗坏血酸突变体(vtc-1)和野生型(wt)两个品种,研究盐分胁迫下2个品种的膜质过氧化变化以及抗坏血酸对植物保护的机理,结果显示,两个品种 MDA、H2O2含量均有显著上升,但 vtc-1 的增幅显著大于wt,wt的 SOD、CAT、APX 活性均有所升高,而vtc-1 的 SOD、CAT 活性降低,APX 在24h 后也开始降低,wt的 AsA 含量和GSH/ GSSG比值上升,vtc-1则有所下降,表明植物叶片过氧化作用的减弱有可能是因为抗坏血酸的增加对细胞的抗氧化酶起到了调节作用,从而增强了植物的抗逆能力〔32〕.刘正鲁等测定了100mmol·L-1的 NaCl胁迫下茄子的嫁接苗和自根苗的MDA、H2O2含量以及 APX、GR 活性、AsA、DHA、GSH、GSSG 含量等 AsA-GSH循环的相关指标,结果显示,NaCl胁迫下,嫁接苗和自根苗叶片的 MDA 和H2O2含量均显著增加,但嫁接苗叶片的含量显著低于自根苗,嫁接苗叶片中的APX、GR 活性在NaCl胁迫下有所升高,而自根苗呈下降趋势,胁迫前期,嫁接苗的 AsA、GSH含量以及GSH/GSSG、AsA/DHA 比值上升,GSSG含量下降,自根苗的表现则相反,说明了NaCl胁迫下,嫁接苗较自根苗更耐盐的原因之一是:嫁接苗叶片维持了高效的AsA-GSH 循环,从而有效的抑制了膜质过氧化进程,减轻了盐分对叶片损伤程度〔33〕.〔1〕Malcolm E,SumnerRN.Sodic soils-distribution,properties.Managementand environmentalconsequences 〔M〕.New York:Oxford University Press,1998.〔2〕徐恒刚主编.中国盐生植被及盐渍化生态治理〔M〕.北京:中国农业科学技术出版社,2004.〔3〕朱伟,刘晓静.中国盐碱地改良专利技术发展概述〔J〕.中国知识产权报,2013,007.〔4〕Chanan Helen.Synthesisofplantgrowth regulatorsby roots〔J〕.Plant root,1999,163:42-46.〔5〕叶梅荣,刘玉霞.NaCl对吸胀后小麦种子发芽和幼苗生长的影响〔J〕.安徽农业技术师范学院学报,2000,14(2):35-36.〔6〕申玉香,乔海龙,等.几个大麦品种(系)的耐盐性评价〔J〕.核农学报,2009,23(5):752-757.〔7〕樊秀彩,刘崇怀,潘兴,等.水培条件下葡萄砧木对氯化钠的耐性鉴定〔J〕.果树学报,2004,21(2):128-131.〔8〕郭文忠,刘声锋,李丁仁,等.硝酸钙和氯化钠不同浓度对番茄苗期光合生理特性的影响〔J〕.农艺科学,2003,5(19):29-31.〔9〕FarquharGD.Sharkey TD.Stomatalconductanceand photosynthesis 〔J〕.Annu Rev PlantPhysiol,1982,33:317-345.〔10〕汪贵斌,曹福亮.盐分和水分胁迫对落羽杉幼苗的生长量及营养元素含量的影响〔J〕.林业科学,2004,40(6):56-62.〔11〕金雅琴,李冬林,丁雨龙,等.盐胁迫对乌桕幼苗光合特性及叶绿素含量的影响〔J〕.南京林业大学学报(自然科学版), 2011,35(1),29-33.〔12〕陈松河,黄全能,郑逢中,等.NaCl胁迫对 3 种竹类植物叶片光合作用的影响〔J〕.热带作物学报,2013,34(5),910-914.〔13〕孙庆艳,沈浩.植物的盐害和抗盐性〔J〕.生物学教学,2002,27(11):12-13. 〔14〕杨晓慧,蒋卫杰,魏氓,等.植物对盐胁迫的反应及其抗盐机理研究进展〔J〕.山东农业大学学报(自然科学版),2006,37(2):302-305.〔15〕韩巧霞,郭天财,阎凌云,等.土壤质地对小麦旗叶部分生理活性的影响〔J〕.麦类作物学报,2009,29(4):639-642.〔16〕于毅,沈雪峰,张明才,等.冠菌素诱导小麦幼苗抗高温胁迫的生理机制〔J〕.麦类作物学报,2011,30(1),139-142.〔17〕杨颖丽,杨宁,王菜,等.盐胁迫对小麦幼苗生理指标的影响〔J〕.兰州大学学报(自然科学版),2007,43(2),29-34.〔18〕刘玉芝,刘佳莹.大棚土壤理化性状综合分析及改良方法〔J〕.北方园艺,1996,(4):35-36.〔19〕吕庆,郑荣梁.干旱及活性氧引起的膜脂过氧化与脱脂化〔J〕.中国科学,1996,26(1):26-30.〔20〕王聪,朱月林,杨立飞,等.NaCl胁迫对菜用大豆种子膨大过程中抗氧化系统及渗透调节物质的影响〔J〕.西北植物学报,2012,32(2):0297-0305.〔21〕李倩,刘景辉,武俊英,等.盐胁迫对燕麦质膜透性及 Na+、K+吸收的影响〔J〕.华北农学报,2009,24(6):88-92.〔22〕朱新广,张其德.NaCl对光合作用影响的研究进展〔J〕.植物学通报,1999,16(4):332-338.〔23〕王忠主编.植物生理学(第二版)〔M〕.北京:中国农业出版社,2008. 〔24〕赵可夫主编.植物抗盐生理〔M〕.北京:中国科学技术出版社,1993,9-10. 〔25〕王宝山,赵可夫.NaCl胁迫下玉米黄化苗质外体和共质体 Na+与 Ca+浓度的变化〔J〕.作物学报,1997,23(l):27-33.〔26〕McKersie BD,Leshem Y Y.Stressand stresscoping in cultivated plants 〔J〕.Kluwer Academic,Publishes,Dordreeht,1994.〔27〕NoetorG,FoyerCH.Ascorbateand glutathione:keepingactiveoxygenunder control〔J〕.AnnualReview ofPlantMolecular Biology,1998,49:24-279. 〔28〕赵可夫.植物对盐胁迫的适应〔J〕.生物学通报,2002,37(6):7-10. 〔29〕杨艳兵,姜艳丽,尹晓斐,等.NaCl胁迫对棉花幼苗生理特性的影响〔J〕.山西农业大学学报(自然科学版),2013,33(4): 290-294.〔30〕张勇,韩多红,晋玲,等.不同盐碱胁迫对红芪种子萌发和幼苗生理特性的影响〔J〕.中国中药杂志,2012,37(20),3036-3040.〔31〕CHENKM,GONGH J,WANGSM.Glutathionemetabolism and environmentalstresses in plant〔J〕.Acta BotBorealOccident Sin,2004,24(6):1119-1130(in Chinese).〔32〕文亮,黄承红,杨颖丽,等.盐胁迫过程中抗坏血酸对植物的保护功能〔J〕.西北植物学报,2004,24(12):2196-2201.〔33〕刘正鲁,朱月林,魏国平,等.NaCl胁迫对茄子嫁接幼苗叶片抗坏血酸和谷胱甘肽代谢的影响〔J〕.西北植物学报, 2007,27(9):1795-1800.。
植物对盐胁迫的反应及其抗盐机理研究进展一、本文概述盐胁迫是限制植物生长和农业生产力的主要非生物胁迫之一。
盐胁迫对植物产生的负面影响包括渗透胁迫、离子毒害以及营养失衡等。
为了应对这些压力,植物已经发展出了复杂的适应机制,这些机制涉及到生理、生化以及分子层面的变化。
本文综述了近年来植物对盐胁迫的反应及其抗盐机理的研究进展,旨在深入了解植物如何在盐胁迫环境中生存并维持正常生理功能,从而为提高植物耐盐性、优化农业生产和生态环境修复提供理论支持和策略建议。
二、盐胁迫对植物生长和生理特性的影响盐胁迫是植物在生长过程中常常面临的一种环境压力。
当土壤中的盐浓度超过植物所能承受的范围时,便会对植物的生长和生理特性产生负面影响。
盐胁迫对植物的影响主要表现在以下几个方面。
盐胁迫会导致植物的生长受到抑制。
在高盐环境下,植物细胞的渗透压增大,使得植物吸水变得困难,从而影响了细胞的正常膨压和生长。
盐胁迫还会引起植物叶片的气孔关闭,导致光合作用受阻,进一步影响植物的生长。
盐胁迫对植物的生理特性也有显著影响。
在盐胁迫下,植物会积累大量的钠离子和氯离子,这些离子会干扰植物细胞内的离子平衡,影响细胞的正常代谢活动。
盐胁迫还会导致植物体内的活性氧增加,引发氧化应激反应,对植物细胞造成损伤。
为了应对盐胁迫,植物发展出了一系列抗盐机制。
这些机制包括通过调节离子转运蛋白,减少钠离子和氯离子的积累;增加抗氧化酶的活性,清除活性氧,减轻氧化应激反应;以及调整光合作用和代谢途径,提高植物对盐胁迫的耐受性。
这些抗盐机制的研究不仅有助于我们理解植物如何在盐胁迫下生存,也为提高作物的耐盐性,改善盐碱地的农业生产提供了理论支持和实践指导。
盐胁迫对植物的生长和生理特性产生了深远的影响。
为了更好地应对盐胁迫,我们需要深入研究植物的抗盐机制,并通过基因工程等手段提高作物的耐盐性,为农业生产的可持续发展做出贡献。
三、植物对盐胁迫的适应机制植物在长期的进化过程中,发展出了多种适应盐胁迫的机制。