风荷载
- 格式:ppt
- 大小:2.23 MB
- 文档页数:24
风荷载作用方向解释并说明、使用场景1. 引言1.1 概述风荷载是指由风对建筑物或结构物表面施加的压力,其大小和方向取决于气流的速度、密度以及建筑物形状、高度等因素。
在建筑设计与结构分析中,准确确定风荷载作用方向是非常重要的,它直接影响着建筑物的稳定性和安全性。
1.2 文章结构本文主要围绕风荷载作用方向展开论述,并将分为四个部分进行阐述。
首先,在第二部分中,我们将对风荷载作用方向进行解释和说明,包括其定义、含义以及其对建筑物产生的影响;接着,在第三部分中,我们将探讨风荷载作用方向在建筑设计与结构分析中的应用以及在工程施工过程中需要考虑的因素;最后,在第四部分中,我们将总结风荷载作用方向的重要性,并强调正确理解和应用该概念的必要性。
此外,我们还将展望未来关于风荷载作用方向领域的研究和实践。
1.3 目的本文旨在深入探讨风荷载作用方向的含义和影响,以提高建筑设计与分析领域的专业人员对该概念的认识。
同时,我们也希望通过介绍风荷载作用方向在建筑工程中的应用场景,为工程实践者提供参考,并促进未来相关研究的发展。
通过本文的阐述和讨论,读者将能够更好地理解和应用风荷载作用方向,从而为建筑物结构的安全性和稳定性提供坚实基础。
2. 风荷载作用方向的解释和说明2.1 什么是风荷载作用方向风荷载作用方向指的是风对建筑物或结构体产生的力在空间中的作用方向。
由于风是一种流体介质,其对建筑物产生的压力和力矩具有明确的方向性。
风荷载作用方向是建筑设计与结构分析中考虑的一个重要参数。
它决定了建筑物受到风载荷时的应力、变形等响应。
正确理解和确定风荷载作用方向对于确保建筑物结构稳定性和安全性至关重要。
2.2 风荷载作用方向对建筑物的影响风荷载作用方向直接影响建筑物结构系统的承受能力,包括抗倾覆、抗滑移、抗倾覆扭转以及整体稳定性等。
具体来说,风荷载从不同方向作用于建筑物表面会引起不同类型的应力和变形。
例如,在高层建筑中,顶层受到侧向(横向)风力可能会导致房屋侧倾或屋顶失稳;在长向风力作用下,会引起整体的变形和振动。
风荷载名词解释
风荷载名词解释
风荷载是指风的作用在建筑物表面上产生的一种外力类型。
风荷载的形式包括
压力、剪力、拉力等等。
它们不仅影响建筑物的结构设计,还会影响建筑物的美观外观。
当风把气体运动时,就会在建筑物上形成位力,从而产生风荷载。
风荷载主要
是由风速、风对流及风吹刮等影响。
风荷载不仅会影响建筑物的整体抗风性能,还可能对建筑物位及结构垂直变形造成负担。
建筑物的设计与建造时都必须考虑风荷载。
一般来说,建筑物在室外必须具有
很强的抗风能力,这就意味着在设计、施工等过程中必须把风荷载考虑在内,应使用抗风强度比较大的材料、利用风的影响方向和结构的特性实现最佳抗风设计,以减轻风荷载的压力。
此外,在进行建筑物结构设计时,还要考虑屋顶的结构,以及抗风设计的因素,如圆柱、桁架等,使其具有良好的抗风性能。
风荷载对建筑物的设计师和建造者都有着不可忽视的重要性。
现代建筑物的设
计要求抗风性能非常强大,这需要结构设计师和建造者正确的计算和估计风荷载,并合理的选择材料,使建筑物结构抗风性和耐久性都获得最佳状态,确保建筑物的安全运行。
如何计算风荷载风指的是从高压区向低压区流动的空气,它流动的方向大部分时候是水平的。
[1] 强风具有很大的破坏力,因为它们会对建筑物表面施加压力。
这种压力的强度就是风荷载。
风的影响取决于建筑物的大小和形状。
为了设计和建造更加安全、抗风能力更强的建筑物,以及在建筑物顶部安放天线等物体,计算风荷载很有必要。
方法1用通用公式计算风荷载1 了解通用公式。
风荷载的通用公式是 F = A x P x Cd,其中 F是力或风荷载, A是物体的受力面积, P是风压,而 Cd是阻力系数。
[2] 这个公式在估算特定物体的风荷载时非常有用,但无法满足规划新建筑的建筑规范要求。
2 得出受力面积 A。
它是承受风吹的二维面面积。
[3] 为了进行全面分析,你得对建筑物的每个面各做一次计算。
比如,如果建筑物西侧面的面积为20m2,那就把这个值代入公式中的 A,来计算西侧面的风荷载。
计算面积的公式取决于面的形状。
计算平坦壁面的面积时,可以使用公式面积 = 长 x 高。
公式面积 = 直径 x 高度可以算出圆柱面面积的近似值。
使用国际单位计算时,面积 A应该使用平方米(m2)作为单位。
使用英制单位计算时,面积 A应该使用平方英尺(ft2)作为单位。
3 计算风压。
使用英制单位(磅/平方英尺)时,风压P的简单公式为P =0.00256V^{2},其中 V是风速,单位为英里/小时(mph)。
[4] 而使用国际单位(牛/平方米)时,公式会变成P = 0.613V^{2},其中 V的单位是米/秒。
[5]这个公式是基于美国土木工程师协会的规范。
系数0.00256是根据空气密度和重力加速度的典型值计算得出的。
[6]工程师会考虑周围地形和建筑类型等因素,使用更精确的公式。
你可以在ASCE规范7-05中查找公式,或使用下文的UBC公式。
如果你不确定风速是多少,可以查询美国电子工业协会(EIA)标准或其他相关标准,找到你们当地的最高风速。
比如,美国大部分地区都是A级区,最大风速为86.6 mph,但沿海地区可能位于B级区或C级区,前者的最大风速为100 mph,后者为111.8 mph。
门窗、幕墙风荷载标准值门窗、幕墙是建筑物外观的重要组成部分,其设计需要考虑到各种荷载,包括风荷载。
在门窗、幕墙的设计和施工中,确保其能够承受风荷载的作用是非常重要的。
本文将介绍门窗、幕墙风荷载标准值的相关内容。
一、风荷载标准值的计算门窗、幕墙的风荷载标准值可以通过以下公式计算:Wo = μz · μs · W0其中,Wo为风荷载标准值(kN/m2);μz为高度Z处的风振系数;μs为体型系数;W0为基本风压值(kN/m2)。
二、不同情况下的风荷载标准值1.一般情况下,门窗、幕墙的风荷载标准值可以通过上述公式计算得出。
但是,在某些情况下,需要考虑风荷载体型系数和高度系数的影响。
例如,对于高层建筑,需要考虑高层风力的影响,因此体型系数和高度系数都会有所不同。
2.在不同风向和气候条件下,门窗、幕墙所受到的风荷载也会有所不同。
因此,需要根据当地的气候条件和建筑物的具体情况来确定风荷载标准值。
3.另外,不同种类的门窗、幕墙所受到的风荷载也会有所不同。
例如,推拉门窗和平开门窗的风荷载标准值就会有所不同。
因此,需要根据门窗、幕墙的具体类型来确定其风荷载标准值。
三、门窗、幕墙的风荷载设计要求为了保证门窗、幕墙能够承受风荷载的作用,需要采取以下措施:1.合理设计门窗、幕墙的开启方式和结构形式,使其具有足够的强度和刚度,能够承受风荷载的作用。
2.在门窗、幕墙的设计中,需要考虑风振系数和体型系数的影响,并对其进行合理的取值。
3.在施工和安装过程中,需要保证门窗、幕墙的安装质量和精度,确保其能够与建筑物主体结构牢固连接,以承受风荷载的作用。
4.对于高层建筑或气候条件较为恶劣地区的建筑物,需要对门窗、幕墙进行抗风性能设计和试验,以确保其能够满足抗风要求。
总之,门窗、幕墙的风荷载标准值需要根据具体情况来确定,并在设计和施工中采取相应的措施来保证其能够承受风荷载的作用。
这对于提高建筑物的安全性和使用寿命具有重要意义。
风荷载的单位通常是千牛顿(kN)或者其倍数,用于表示风对建筑物或其他结构物产生的压力。
在工程领域,风荷载的计算通常基于以下几个参数:
1. 基本风压:表示风荷载的基准压力,单位为千牛顿/平方米(kN/m²)。
基本风压是根据当地地面上离地10米高的统计数据计算得到的50年一遇10分钟平均最大风速。
2. 风荷载体型系数:这是一个用于调整风压的系数,以考虑建筑物的形状、尺寸和表面粗糙度等因素对风荷载的影响。
该系数的单位为无单位。
3. 高度变化系数:这是一个用于调整风压的系数,以考虑风速随高度变化的规律。
该系数的单位为无单位。
在计算风荷载时,需要将这些系数与建筑物的面积、高度等参数相结合,以得到实际的风荷载值。
然后,这些风荷载值可以用于结构设计、分析和安全评估。
3、1、3 风荷载建筑物受到得风荷载作用大小,与建筑物所处得地理位置、建筑物得形状与高度等多种因素有关,具体计算按照《荷载规范》第7章执行。
1、风荷载标准值计算垂直于建筑物主体结构表面上得风荷载标准值W K ,按照公式(3、1-2)计算:βz ——高度Z 处得风振系数,主要就是考虑风作用得不规则性,按照《荷载规范》7、4要求取值。
多层建筑,建筑物高度<30m,风振系数近似取1。
(1)风荷载体型系数µS风荷载体型系数,不但与建筑物得平面外形、高宽比、风向与受风墙面所成得角度有关,而且还与建筑物得立面处理、周围建筑物得密集程度与高低等因素有关,一般按照《荷载规表3、1、10 建筑物体型系数取值表注1:当计算重要且复杂得建筑物、及需要更细致地进行风荷载作用计算得建筑物,风荷载体型系数可按照《高层规程》中附录A 采用、或由风洞试验确定。
注4:当多栋或群集得建筑物相互间距离较近时,宜考虑风力相互干扰得群体作用效应。
一般可将单体建筑得体型系数乘以相互干扰增大系数,该系数可参考类似条件得试验资料确定,必要时宜通过风洞试验确定。
注3:檐口、雨蓬、遮阳板、阳台等水平构件,计算局部上浮风荷载作用时,体型系数不宜小于2、0。
注4:验算表面围护结构及其连接得强度时,应按照《荷载规范》7、3、3规定,采用局部W W z s z k μμβ=)21.3(-风压力体型系数。
(2)风压高度变化系数µz设置风压高度变化系数,主要就是考虑建筑物随着高度得增加风荷载得增大作用。
对于位于平坦或稍有起伏地形上得建筑物,其风压高度变化系数应根据场地粗糙程度按《荷载规范》7、2要求选用,表3、1、11中列出了常用风压高度变化系数得取值要求。
表3、1、11 风压高度变化系数A类:近海海面、海岛、海岸、湖岸及沙漠地区;B类:田野、乡村、丛林、丘陵以及房屋比较稀疏得乡镇与城市郊区;C类:有密集建筑群得城市市区;D类:有密集建筑群与且房屋较高得城市市区。
风荷载标准值计算公式
风荷载是指建筑物在风力作用下所受到的荷载,是建筑结构设计中非常重要的一个参数。
风荷载的计算需要根据当地的气象条件和建筑物的结构特点来确定,而风荷载标准值计算公式就是用来计算这一参数的重要工具。
本文将介绍风荷载标准值计算公式的相关知识,希望能对大家有所帮助。
风荷载标准值计算公式的基本原理是根据建筑物的高度、结构形式、气象条件等因素来确定建筑物所受到的风荷载大小。
一般来说,风荷载的计算可以分为静风荷载和动风荷载两种情况。
静风荷载是指建筑物在稳定风场中所受到的风荷载,而动风荷载则是指建筑物在非稳定风场中所受到的风荷载。
在实际工程中,需要根据具体情况来确定采用哪种计算方法。
静风荷载的计算公式一般采用国家相关标准或规范中给出的公式,这些公式通常是根据建筑物的高度、形状系数、风速等参数来确定风荷载的大小。
而动风荷载的计算则需要考虑建筑物在风场中的振动响应,通常需要进行风洞试验或数值模拟来确定。
在实际工程中,风荷载标准值计算公式的准确性对建筑物的结构安全性至关重要。
因此,在进行风荷载计算时,需要充分考虑建筑物的结构特点、周围环境的气象条件以及当地的风荷载标准等因素,确保计算结果的准确性和可靠性。
总之,风荷载标准值计算公式是确定建筑物在风力作用下所受到的荷载大小的重要工具,其准确性和可靠性对建筑物的结构安全性有着重要影响。
在进行风荷载计算时,需要根据实际情况选择合适的计算方法,并严格遵循相关的标准和规范,以确保建筑物的结构安全性和稳定性。
希望本文对大家对风荷载标准值计算公式有所帮助,谢谢阅读!。
结构设计知识:风荷载在结构设计中的应用随着建筑物不断增加的高度和流线型设计的尝试,风荷载已成为结构设计中非常重要的考虑对象之一。
风荷载是指建筑物、桥梁或其他结构体受到的风压力和风力的力量,是一种非常重要的外部荷载。
因此,在结构设计中,必须根据实际情况综合考虑风荷载的影响,进行合理的结构设计,以保证结构的安全性和稳定性。
1.风荷载的形成原因风荷载是由气体环境中流动的空气造成的。
它的大小与气流速度和空间布局等因素有关。
风荷载的影响主要来自以下几个方面:(1)风速风速是决定风荷载大小的关键因素。
随着风速的增加,风荷载也相应增大。
(2)风的气动特性建筑物的形状和固体本身的材料有很大的影响。
例如,如果风部分绕过了建筑物,在高层建筑的顶部和角部会形成强大的负压力,风荷载也相应较大。
(3)地面的地貌和建筑物周围的环境地面地形和建筑物周围的环境都会对风荷载造成影响。
例如,建筑物周围有其他高层建筑,会影响风的流向和速度。
2.风荷载的计算方法在结构设计中,风荷载的计算方法通常使用国家和国际标准的规定和方法。
例如,我国现行的规范:《建筑结构荷载规范》第二部分给出了关于建筑物风荷载的计算方法和标准。
(1)静力分析法利用静力分析法计算建筑物(或其他结构体)受到风荷载的作用力,主要是计算结构体的振动和位移,从而确定结构的稳定性。
这种方法比较适合于大型建筑和桥梁的设计。
(2)风洞实验法风洞实验方法通常适用于建筑物的设计,特别是高层建筑的设计。
风洞实验可以通过物理实验来模拟风的流动,从而更准确地估计结构体所受的风荷载。
(3)数值模拟法数值模拟法是一种比较新颖的计算方法,使用计算机模拟建筑物在风荷载下的响应,可以预测建筑物在不同风荷载下的响应和损伤,进而为结构设计工作提供更为准确的依据。
3.风荷载对结构设计的影响风荷载是结构设计中必须考虑的重要因素之一,影响结构的安全性、稳定性和经济性。
建筑物在风荷载下,会导致建筑物发生倾覆、倾斜、震动和损坏等问题。
3.1.3 风荷载建筑物受到的风荷载作用大小,与建筑物所处的地理位置、建筑物的形状和高度等多种因素有关,具体计算按照荷载规范第7章执行;1、风荷载标准值计算垂直于建筑物主体结构表面上的风荷载标准值W K ,按照公式3.1-2计算:βz ——高度Z 处的风振系数,主要是考虑风作用的不规则性,按照荷载规范7.4要求取值;多层建筑,建筑物高度<30m,风振系数近似取1; 1风荷载体型系数µS风荷载体型系数,不但与建筑物的平面外形、高宽比、风向与受风墙面所成的角度有关,而且还与建筑物的立面处理、周围建筑物的密集程度和高低等因素有关,一般按照荷载规表3.1.10 建筑物体型系数取值表注1:当计算重要且复杂的建筑物、及需要更细致地进行风荷载作用计算的建筑物,风荷载体型系数可按照高层规程中附录A 采用、或由风洞试验确定;注4:当多栋或群集的建筑物相互间距离较近时,宜考虑风力相互干扰的群体作用效应;一般可将单体建筑的体型系数乘以相互干扰增大系数,该系数可参考类似条件的试验资料确定,必要时宜通过风洞试验确定;W W z s z k μμβ=)21.3(-注3:檐口、雨蓬、遮阳板、阳台等水平构件,计算局部上浮风荷载作用时,体型系数不宜小于2.0;注4:验算表面围护结构及其连接的强度时,应按照荷载规范7.3.3规定,采用局部风压力体型系数;2风压高度变化系数µz设置风压高度变化系数,主要是考虑建筑物随着高度的增加风荷载的增大作用;对于位于平坦或稍有起伏地形上的建筑物,其风压高度变化系数应根据场地粗糙程度按荷载规范7.2要求选用,表3.1.11中列出了常用风压高度变化系数的取值要求;表3.1.11 风压高度变化系数关于地面粗糙程度的分类:A 类:近海海面、海岛、海岸、湖岸及沙漠地区;B 类:田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区;C 类:有密集建筑群的城市市区;D 类:有密集建筑群和且房屋较高的城市市区; 3基本风压值W 0基本风压值W 0,单位kN/m 2,以当地比较空旷平坦场地上离地10m 高、统计所得50年一遇10分钟平均最大风速为标准确定的风压值,各地的基本风压可按照荷载规范附录D 中的全国基本风压分布图查用,表3.1.12为浙江省主要城镇基本风压取值参考表;2、基本风压的取值年限荷载规范在附录D 中分别给出了n=10年、n=50年、n=100年一遇的基本风压标准值,工程设计中根据建筑物的使用性质与功能要求,一般按照下列方法选用风压标准值的取值年限:① 临时性建筑物:取n=10年一遇的基本风压标准值;② 一般的工业与民用建筑物:取n=50年一遇的基本风压标准值;③ 特别重要的建筑物、或对风压作用比较敏感的建筑物建筑物高度大于60m :取表3.1.12 浙江省主要城镇基本风压kN/m 2取值参考表n=100年一遇的基本风压标准值;在没有100年一遇基本风压标准值的地区,可近似将50年一遇的基本风压值标准值乘以1.1经验系数以后采用;3、关于风荷载作用的方向问题建筑物受到的风荷载作用来自各个方向,风荷载的主要作用方向与建筑物所在地的风玫瑰图方向一致全国主要城市风玫瑰图,可以查相应的建筑设计资料;工程设计中,一般按照风荷载作用的最大值,来计算建筑物受到的风荷载作用效应;对于抗侧力构件相互垂直布置的建筑物:一般按照两个相互垂直的主轴方向来考虑风荷载的作用效应,详图3.1.3a所示;图3.1.3a 抗侧力构件垂直布置示意图图3.1.3b 抗侧力构件多向布置示意图对于抗侧力构件多向布置的建筑物:一般按照抗侧力构件布置方向,沿着相互垂直的主轴方向次依考虑风荷载的作用效应,详图3.1.3b所示;注意:同一方向,左风荷载作用效应和右风荷载作用效应要分别进行计算;4、风洞试验高层规程3.2.8明确,对于特别重要的建筑物、特别不规则的建筑物,风荷载标准值计算公式3.1-2中的相关计算参数有必要通过风洞试验来确定,以便较精确地计算建筑物受到的风荷载作用效应,确保建筑结构的抗风能力;一般建筑物高度大于200m 、或建筑物高度大于150m 但存在下列情况之一时,宜采用风洞试验来确定建筑物的风荷载作用参数;① 平面形状不规则,立面形状复杂; ② 立面开洞或连体建筑;③ 规范或规程中没有给出体型系数的建筑物; ④ 周围地形或环境较复杂;风洞试验通常由有试验能力和试验资质的高等院校、科研院所完成,按照一定比例制作的建筑物模型置于人工模拟的风环境中,模型上不同部位埋设一定数量的电子测压孔,通过压力传感器输出电流信号、通过数据采集仪自动扫描记录并转为相关的数字信号,再经过一系列的计算机数据处理、模拟分析,可以得到建筑物受到的平均风压力和波动风压力值,供设计采用;多层建筑物,房屋高度小,风荷载作用影响较小,一般不做风洞试验; 5、梯度风基本风压与风速有关,一般风速由地面为零沿高度方向按照曲线逐渐增大,直至距离地面某一高度处达到最大值,上层风速度受地面影响较小,风速较为稳定;不同的地表面粗糙度使风速沿高度增加的梯度速率不同,详图3.1.4所示,风速变化的这种规律,称为梯度风;图3.1.4 风速随高度变化示意图6、特殊情况下基本风压的取值① 当重现期为任意年限R 时,相应风压值可按照公式3.1-2a 进行近似计算:式中:X R ——重现期为R 年的风压值kN /m 2;X 10——重现期为10年的风压值kN /m 2;X 100——重现期为100年的风压值kN /m 2; ② 当城市或建设地点的基本风压值在“全国基本风压分布图”上没有给出时,可根据附近地区规定的基本风压或长期观测资料,通过气象或地形条件的对比分析确定;在分析当地的年最大风速时,往往会遇到其实测风速的条件不符合基本风压规定的标准)21.3(a -)110ln ln )((1010010--+=RX X X X R条件,因而必须将实测的风速资料换算为标准条件的风速资料,然后再进行分析;情形一:当实测风速的位置不是l0m 高度时,标准条件风速的换算原则上应由气象台站根据不同高度风速的对比观测资料,并考虑风速大小的影响,给出非标准高度风速的换算系数,以确定标准条件高度的风速资料;当缺乏相应的观测资料时,可近似按照公式3.1-2b 进行换算:式中:ν——标准条件下l0m 高度处、时距为10分钟的平均风速值m /s ;νz ——非标准条件下z 高度m 处、时距为10分钟的平均风速值m /s ; α——实测风速高度换算系数,可根据设计手册,近似按表3.1.13取值;表3.1.13 实测风速高度换算系数参考表情形二:当最大风速资料不是时距10分钟的平均风速时,标准条件风速的换算虽然世界上不少国家采用基本风压标准值中的风速基本数据为10分钟时距的平均风速,但也有一些国家不是这样;因此对某些国外工程需要按照我国规范设计时,或国内工程需要与国外某些设计资料进行对比时,会遇到非标准时距最大风速的换算问题;实际上时距10分钟的平均风速与其它非标准时距的平均风速的比值是不确定的,表3.1.14给出了非标准时距平均风速与时距10分钟平均风速的换算系数,必要时可按照公式3.1-2c 做近似换算:式中:ν——时距为10分钟的平均风速值m /s ;νt ——时距为t 分钟的平均风速值m /s ;β——换算系数,可根据设计手册,近似按表3.1.14取用;表3.1.14 不同时距与10分钟时距风速换算系数参考表情形三:当已知风速重现期为T 年时,标准条件风压的换算当已知10分钟时距平均风速最大值的重现期为T 年时,其基本风压与重现期为50年的基本风压的关系,可按照公式3.1-2d 进行简单换算:式中:W 0——重现期为50年的基本风压值kN /m 2;W ——重现期为T 年的基本风压值kN /m 2;γ——换算系数,可根据设计手册,近似按表3.1.15取用;表3.1.15 不同重现期与重现期为50年的基本风压的换算系数参考表③ 山区的基本风压zv v α=β/t v v =γ/0W W =)21.3(b -)21.3(c -)21.3(d -山区的基本风压应通过调查后确定,如无实际资料,可按照当地邻近空旷平坦地面的基本风压值,乘以一放大系数后采用;任何情况下,山区的基本风压值不得小于0.3kN/m 2;7、围护结构的风荷载计算计算围护结构上作用的风荷载值,必须考虑阵风的影响,按照公式3.1-2e 进行:W K ——风荷载标准值,单位kN/m 2;W 0——基本风压值,单位kN/m 2,取值要求同前;βgz ——高度Z 处的阵风系数,按照荷载规范7.5要求取值;µS ——风荷载体型系数,按照荷载规范7.3.3要求取值;对于檐沟、雨蓬、遮阳板等突出构件,风力作用垂直向上,风荷载体型系数为2;µz ——风压高度变化系数,取值要求同前; 8、玻璃幕墙的风荷载计算玻璃幕墙作为围护结构的一种表现形式,在民用建筑中应用较多,其抗风设计必须满足围护结构风荷载标准值的计算要求;由于玻璃幕墙单块受荷面积较小,根据玻璃幕墙工程技术规范JGJ102-96规定,垂直于玻璃幕墙表面上的风荷载标准值,可近似按照公式3.1-2f 计算:公式中有关高度变化系数µz 、基本风压W 0的计算取值要求同前,对于体型系数µS 的取值要求如下:竖直幕墙外表面按照±1.5取用;斜玻璃幕墙可根据实际情况按照荷载规范要求取用;当建筑物进行了风洞试验时,直接根据风洞试验结果确定;任何情况下,设计玻璃幕墙用风荷载标准值W k 不得小于1.0kN/m 2;0W W z s gz K μμβ=025.2W W z s K μμ=)21.3(f -)21.3(e -。
风荷载计算公式及符号含义
风荷载计算的公式可以根据不同的情况而有所不同,以下是常见的两个公式及符号含义:
1. 低层建筑风荷载计算公式:
F = 0.613 × C_f × A × V_max^2
其中,
F为风荷载(单位为N/m^2或Pa);
C_f为风压系数;
A为被风作用面积(单位为m^2);
V_max为设计风速(单位为m/s)。
2. 高层建筑风荷载计算公式(按国家标准GB 50009-2012):
F = qz × Ce × Cg × A × V^2
其中,
F为风荷载(单位为N/m^2或Pa);
qz为高度变化系数;
Ce为暴风区基准风压系数;
Cg为结构高度系数;
A为结构投影面积(单位为m^2);
V为设计基本风速(单位为m/s)。
在这些公式中,符号的含义如下:
- C_f或Ce为风压系数,是根据建筑结构和环境条件来确定的参数,用于衡量建筑所受风力的大小;
- A为被风作用面积或结构投影面积,表示建筑物横截面在垂直方向上所受的风力面积;
- V_max或V为设计风速或设计基本风速,是参考当地的气象数据和规范要求确定的;
- qz为高度变化系数,它是表示建筑高度变化对风荷载的影响;- Cg为结构高度系数,是考虑建筑物高度和形状对风力的影响;- F表示风荷载的大小,单位为N/m^2或Pa,表示单位面积上
所受的力量。
第3章风荷载wind load1997年第11号台风近中心最大风速54m/s,远远超过12级风36.9m/s的风速,8级以上大风风圈半径5003.1 风的有关知识3.1.1风的形成由于地球表面各处的温度、气压变化,气流就会从压力高处向压力低处运动,把热量从热带向两极输送,因此形成不同方向的风,并伴随不同的气象变化。
台风Typhoon夏季,当东北风和西南风在热带海洋上交汇,就会形成一个小的漩涡,这个漩涡形成后,不断吸收热带地区海洋的大气热量,形成热带气旋。
它一边吸收水蒸气,一边飞速地旋转,强度也不断加强,形成热带风暴、强热带风暴乃至台风。
多个台风生成,台风一般生成在热带洋面上,它属于热带气旋的一个种类。
季风seasonal wind主要是因海陆间热力环流的季节变化。
夏季大陆增热比海洋剧烈,气压随高度变化慢于海洋上空,所以到一定高度,就产生从大陆指向海洋的水平气压梯度,空气由大陆指向海洋,海洋上形成高压,大陆形成低压,空气从海洋海向大陆,形成了与高空方向相反气流,构成了夏季的季风环流。
冬季大陆迅速冷却,海洋上温度比陆地要高,因此大陆为高压,海洋上为低压,低层气流由大陆流向海洋,高层气流由海洋流向大陆,形成冬季的风力等级风力等级名称海面大概的波高(米)海面和渔船征象陆上地物征象相当于平地十米高处的风速(米/秒)一般最高范围中数0无风--海面平静静、烟直上0.0-0.201软风0.10.1微波鱼磷状,没有浪花.一般渔船正好能使舵.烟能表示风向,树叶略有摇动。
0.3-1.512轻风0.20.3小波,波长尚短,但波形显著,波峰光亮但不破裂.人面感觉有风,树叶微响,旗子开始飘动。
1.6-3.323微风0.6 1.0小波加大,波峰开始破裂;浪沫光亮,有时有散见的白浪花树叶及小枝摇动不息,旗子展开,高的草摇动不息。
3.4-5.444和风 1.0 1.5小浪,波长变长;白浪成群出现.能吹起地面灰尘和纸张,树枝摇动,高的草呈波浪起伏5.5-7.975清劲风 2.0 2.5中浪,具有较显著的长波形状;许多白浪形成.有叶的小树摇摆,内陆的水面有小波,高的草波浪起伏明显8.0-10.796强风 3.0 4.0轻度大浪开始形成,到处都有更大的白沫峰.有时有飞沫.大树枝摇动,电线呼呼有声,高的草不时倾伏于地.10.8-13.8127疾风 4.0 5.5轻度大浪,碎浪而成白浪沫沿风向呈条状全树摇动,大树枝弯下来,迎风步行感觉不便.13.9-17.1168大风 5.57.5有中度的大浪,波长较长,波峰边缘开始破碎成飞沫片.可折毁小树枝,人迎风前行感觉阻力甚大.17.2-20.7199烈风7.010.0狂浪,沿风向白沫呈浓密的条带状,波峰开始翻滚.草房遭受破坏,屋瓦被掀起,大树枝可折断.20.8-24.42310狂风9.012.5狂涛,波峰长而翻卷;白沫成片出现,整个海面呈白色.树木可被吹倒,一般建造物遭破坏.24.5-28.42611暴风11.516.0异常狂涛,海面完全被白沫片所掩盖,波浪到处破成泡沫.大树可被吹倒,一般建造物遭严重破坏.28.5-32.63112飓风14.0-空中充满了白色的浪花和飞沫,海面完全变白.陆地少见,其摧毁力很大.>32.6333.2 风压(1)风压:气流遇到建筑物的阻碍产生压力气幕,即风压。
风荷载风荷载也称风的动压力,是空气流动对工程结构所产生的压力。
风荷载ш与基本风压、地形、地面粗糙度、距离地面高度,及建筑体型等诸因素有关。
中国的地理位置和气候条件造成的大风为:夏季东南沿海多台风,内陆多雷暴及雹线大风;冬季北部地区多寒潮大风,其中沿海地区的台风往往是设计工程结构的主要控制荷载。
台风造成的风灾事故较多,影响范围也较大。
雷暴大风可能引起小范围内的风灾事故。
基本风压中国规定的基本风压w0 以一般空旷平坦地面、离地面10米高、风速时距为10分钟平均的最大风速为标准,按结构类别考虑重现期(一般结构重现期为30年,高层建筑和高耸结构为50年,特别重要的结构为100年),统计得最大风速v(即年最大风速分布的96.67%分位值,并按w0=ρv2/2确定。
式中ρ为空气质量密度;v 为风速)。
根据统计,认为离地面10米高、时距为10分钟平均的年最大风压,统计分布可按极值I型考虑。
基本风压因地而异,在中国的分布情况是:台湾和海南岛等沿海岛屿、东南沿海是最大风压区,由台风造成。
东北、华北、西北的北部是风压次大区,主要与强冷气活动相联系。
青藏高原为风压较大区,主要由海拔高度较高所造成。
其他内陆地区风压都较小。
风速风速随时间不断变化(图1),在一定的时距Δt内将风速分解为两部分:一部分是平均风速的稳定部分;另一部分是指风速的脉动部分。
为了对变化的风速确定其代表值作为基本风压,一般用规定时距内风速的稳定部分作为取值标准。
平均时距按风速记录为确定最大平均风速而规定的时间间隔(图1)。
规定的时距愈短,所得的最大平均风速愈大,也即基本风压愈大。
当前世界各国所采用的平均时距标准并不一致,例如,中国时距取10分钟,苏联取2分钟,英国根据建筑物或构件的尺寸不同,分别取3秒、5秒和15秒,日本取瞬时。
美国以风程1609.3米(1英里)作为确定平均风速的标准,这相当于对不同风速取不同的平均时距。
因而各国基本风压值的标准也有差别。
关于高层建筑考虑风荷载的概念
高层建筑要考虑风荷载是因为在高层建筑中,风荷载对建筑结构和建筑物稳定性有重要影响。
风荷载是指风对建筑物施加的力量和压力,它主要来自于风的动力和风的压力。
风荷载的考虑主要包括以下几个方面:
1. 风荷载的确定:风荷载的大小取决于建筑物的高度、形状、外部表面积、地理位置、环境特点等因素。
一般使用规范中提供的风荷载计算公式来确定风荷载。
2. 风荷载的分布:风荷载在建筑物上是非均匀分布的,一般呈现较高的压力区域和较低的负压力区域。
在设计中需要考虑不同部位的风荷载分布情况,以确保结构的安全。
3. 风振问题:高层建筑由于受到风的动力作用,容易产生结构的振动现象。
必须对结构进行抗风振设计,以保证建筑物的稳定性和安全性。
4. 风荷载对结构的影响:风荷载对结构的影响主要包括弯矩、剪力和挠度等。
设计中需要考虑这些因素,确保结构的安全性和稳定性。
总之,考虑风荷载是高层建筑设计中必不可少的一部分,只有充分考虑风荷载的影响,才能保证高层建筑的结构安全和稳定性。