高等数学不定积分习题
- 格式:docx
- 大小:342.28 KB
- 文档页数:10
某某学院《高等数学》(上)题库 第四章 不定积分 参考答案一、选择题1. 在区间),(b a 内,如果)()(x x f ϕ'=',则一定有( B ). A.)()(x x f ϕ= B.)()(x x f ϕ=+ C C.[][]'='⎰⎰dx x dx x f )()(ϕ D.⎰⎰'=')()(x d x f d ϕ2. 设)(),(x G x F 都是)(x f 的原函数,则必有( B ).A. 0)()(=-x G x FB. C x G x F =-)()(C. 0)()(=+x G x FD. C x G x F =+)()(3. 若)(x f 为可导、可积函数,则( A ).A. [])(])(x f dx x f ='⎰B. []f(x)f(x)dx d =⎰C. ⎰=')()(x f dx x fD.)()(x f x df =⎰4. 如果()f x =cos x ,那么函数()f x 的不定积分可表示为( D ).A. cos x +1B. -cos x + CC. cos x + CD. sin x +C5. 如果()f x =2x ,那么函数()f x 的不定积分可表示为 (D ).A. 2xB. 2x +1C. 2x -1D. 2x +C6. 若⎰+=C x dx x f )(,则⎰=-dx x f )1(( C )A .C x +-1;B .C x +-;C .C x +;D .C x +-2)1(217. 幂函数的原函数一定是( D ).A.幂函数B.指数函数C.对数函数D.幂函数或对数函数8. 若⎰+=-C e dx x f x )(,则=')(x f ( D ).A.x xe --B.x e x -2C.x eD.x e -9.( D )是函数x x f 21)(=的原函数A .x x F 2ln )(=B .221)(x x F -= C .)2ln()(x x F += D .x x F ln 21)(= 10.若)(x f 满足⎰+=C x dx x f 2sin )(,则=')(x f ( C )A .x 2sin 4B .x 2cos 2C .x 2sin 4-D .x 2cos 2-11.下列等式中( D )是正确的A .⎰=')()(x f dx x f B .C e f dx e f x x +='⎰)()(C .Cx f dx x f +='⎰)()( D .⎰+--=-'C x f dx x f x )1(21)1(22 12.若⎰+=C x F dx x f )()(,则⎰=dx x xf )(cos sin ( A )A .C x F +-)(cosB .C x F +)(cosC .C x f +-)(sinD .C x F +)(sin13.下列函数中,( B )不是x 2sin 的原函数。
第四章 不 定 积 分§ 4 – 1 不定积分的概念与性质一.填空题1.若在区间上)()(x f x F =',则F(x)叫做)(x f 在该区间上的一个 , )(x f 的 所有原函数叫做)(x f 在该区间上的__________。
2.F(x)是)(x f 的一个原函数,则y=F(x)的图形为?(x)的一条_________. 3.因为dxxx d 211)(arcsin -=,所以arcsinx 是______的一个原函数。
4.若曲线y=?(x)上点(x,y)的切线斜率与3x 成正比例,并且通过点A(1,6)和B(2,-9),则该 曲线方程为__________?。
二.是非判断题1. 若f ()x 的某个原函数为常数,则f ()x ≡0. [ ] 2. 一切初等函数在其定义区间上都有原函数. [ ] 3. ()()()⎰⎰'='dx x f dx x f . [ ] 4. 若f ()x 在某一区间内不连续,则在这个区间内f ()x 必无原函数. [ ] 5.=y ()ax ln 与x y ln =是同一函数的原函数. [ ]三.单项选择题1.c 为任意常数,且)('x F =f(x),下式成立的有 。
(A )⎰=dx x F )('f(x)+c; (B )⎰dx x f )(=F(x)+c; (C )⎰=dx x F )()('x F +c; (D) ⎰dx x f )('=F(x)+c.2. F(x)和G(x)是函数f(x)的任意两个原函数,f(x)≠0,则下式成立的有 。
(A )F(x)=cG(x); (B )F(x)= G(x)+c; (C )F(x)+G(x)=c; (D) )()(x G x F ⋅=c. 3.下列各式中 是||sin )(x x f =的原函数。
(A) ||cos x y -= ; (B) y=-|cosx|;(c)y={;0,2cos ,0,cos <-≥-x x x x (D) y={.0,cos ,0,cos 21<+≥+-x c x x c x 1c 、2c 任意常数。
《高等数学》不定积分课后习题详解 篇一:高等数学第四章不定积分习题 第四章不 定 积 分 4 – 1 不定积分的概念与性质 一.填空题 1.若在区间上 F?(x)?f(x),则 F(x)叫做 f(x)在该区间上的一个 f(x)的 所有原函数叫做 f(x) 在该区间上的__________。
2.F(x)是 f(x)的一个原函数,则 y=F(x)的图形为?(x)的一条_________. 3.因为 d(arcsinx)? 1?x2 dx ,所以 arcsinx 是______的一个原函数。
4.若曲线 y=?(x)上点(x,y)的切线斜率与 x 成正比例,并且通过点 A(1,6)和 B(2,-9),则该曲线 方程为__________ 。
二.是非判断题 1. 若 f?x?的某个原函数为常数,则 f?x??0.[ ] 2. 一切初等函数在其定义区间上都有原 函数.[ ] 3. 3 ??f?x?dx???f??x?dx.[ ] ? 4. 若 f?x?在某一区间内不连续,则在这个区间内 f?x?必无原函数. [ ] 5.y?ln?ax?与 y?lnx 是同一函数的原函数.[ ] 三.单项选择题 1.c 为任意常数,且 F'(x)=f(x),下式成立的有 。
(A)?F'(x)dx?f(x)+c;(B)?f(x)dx=F(x)+c; (C)?F(x)dx?F'(x)+c;(D) ?f'(x)dx=F(x)+c. 2. F(x)和 G(x)是函数 f(x)的任意两个原函数,f(x)?0,则下式成立的有 。
(A)F(x)=cG(x); (B)F(x)= G(x)+c;(C)F(x)+G(x)=c;(D) F(x)?G(x)=c.3.下列各式中是 f(x)?sin|x|的原函数。
(A) y??cos|x| ;(B) y=-|cosx|;(c)y=? ?cosx,x?0,cosx?2,x?0; (D) y=? ?cosx?c1,x?0,cosx?c2,x?0. c1、c2 任意常数。
专升本高等数学(二)-不定积分(总分:100.00,做题时间:90分钟)一、{{B}}选择题{{/B}}(总题数:10,分数:10.00)1.在区间(a,b)内,如果f'(x)=g'(x),则下列各式中一定成立的是______∙ A.f(x)=g(x)∙ B.f(x)=g(x)+1∙ C.(∫f(x)dx)'=(∫f(x)dx)'∙ D.∫f'(x)dx=∫g'(x)dx(分数:1.00)A.B.C.D. √解析:[解析]由于f'(x)=g'(x),则f(x)与g(x)之间相差任意常数。
2.如果等式成立,则f(x)等于______ A. B. C. D(分数:1.00)A.B. √C.D.解析:[解析] 由不定积分的定义,有[*],即 [*],则[*]3.设cotx是f(x)的一个原函数,则f(x)等于______∙ A.csc2x∙ B.-csc2x∙ C.sec2x∙ D.-sec2x(分数:1.00)A.B. √C.D.解析:[解析] 由原数的定义,有f(x)=(cotx)'=-csc2x。
4.下列等式中,成立的是______ A.d∫f(x)dx=f(x) B. C.d∫f(x)dx=f(x)dx (分数:1.00)A.B.C.D. √解析:[解析] 由不定积分的基本性制质可知,d∫f(x)dx=f(x)dx成立。
5.设f'(cos2x)=sin2x,且f(0)=0,则f(x)=______A. B.C. D(分数:1.00)A.B.C.D. √解析:[解析] f'(cos2x)=sin2x=1-cos2x,f'(x)=1-x,[*]。
由f(0)=0,得C=0,则[*]。
6.设F(x)是f(x)的一个原函数,则∫e-x f(e-x)dx等于______∙ A.F(e-x)+C∙ B.-F(e-x)+C∙ C.F(e x)+C∙ D.-F(e x)+C(分数:1.00)A.B. √C.D.解析:[解析] 凑微分法,使用凑微分公式-e x dx=-d(e-x),∫e-x f(e-x)dx=-∫(e-x)dx-x=-F(e-x)+C。
第4章不定积分习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。
思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)思路:52x-=,由积分表中的公式(2)可解。
解:532223x dx x C --==-+⎰★(2)dx-⎰思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:1141113332223()24dx x x dx x dx x dx x x C ---=-=-=-+⎰⎰⎰⎰★(3)22xx dx +⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:2232122ln 23x xxx dx dx x dx x C +=+=++⎰⎰⎰()★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰★★(5)4223311x x dx x +++⎰思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。
解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰ ★★(6)221x dx x +⎰思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。
解:2221arctan .11x dx dx dx x x C x x=-=-+++⎰⎰⎰ 注:容易看出(5)(6)两题的解题思路是一致的。
一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。
★(7)x dx x x x ⎰34134(-+-)2 思路:分项积分。
解:3411342x dx xdx dx x dx x dx x xx x --=-+-⎰⎰⎰⎰⎰34134(-+-)2 ★(8)23(1dx x -+⎰思路:分项积分。
第四章 不 定 积 分§ 4 – 1 不定积分的概念与性质一.填空题1.若在区间上)()(x f x F =',则F(x)叫做)(x f 在该区间上的一个 , )(x f 的 所有原函数叫做)(x f 在该区间上的__________。
2.F(x)是)(x f 的一个原函数,则y=F(x)的图形为?(x)的一条_________. 3.因为dxxx d 211)(arcsin -=,所以arcsinx 是______的一个原函数。
4.若曲线y=?(x)上点(x,y)的切线斜率与3x 成正比例,并且通过点A(1,6)和B(2,-9),则该 曲线方程为__________?。
二.是非判断题1. 若f ()x 的某个原函数为常数,则f ()x ≡0. [ ] 2. 一切初等函数在其定义区间上都有原函数. [ ] 3.()()()⎰⎰'='dx x f dx x f . [ ]4. 若f ()x 在某一区间内不连续,则在这个区间内f ()x 必无原函数. [ ] 5.=y ()ax ln 与x y ln =是同一函数的原函数. [ ]三.单项选择题1.c 为任意常数,且)('x F =f(x),下式成立的有 。
(A )⎰=dx x F )('f(x)+c; (B )⎰dx x f )(=F(x)+c;(C )⎰=dx x F )()('x F +c; (D) ⎰dx x f )('=F(x)+c. 2. F(x)和G(x)是函数f(x)的任意两个原函数,f(x)≠0,则下式成立的有 。
(A )F(x)=cG(x); (B )F(x)= G(x)+c; (C )F(x)+G(x)=c; (D) )()(x G x F ⋅=c. 3.下列各式中 是||sin )(x x f =的原函数。
(A) ||cos x y -= ; (B) y=-|cosx|; (c)y={;0,2cos ,0,cos <-≥-x x x x (D) y={.0,cos ,0,cos 21<+≥+-x c x x c x 1c 、2c 任意常数。
4.)()(x f x F =',f(x) 为可导函数,且f(0)=1,又2)()(x x xf x F +=,则f(x)=______.(A) 12--x (B)12+-x (C)12+-x (D)12--x5.设x x f 22cos )(sin =',则f(x)=________.(A);sin 21sin 2c x x +-(B);212c x x +- (C);sin 21sin 42c x x +- (D);2142c x x +- 6.设a 是正数,函数则,log )(,)(e a x a x f a xx==ϕ______. (A)的导数;是)()(x x f ϕ (B)的导数;是)()(x f x ϕ (C)的原函数;是)()(x x f ϕ (D)的不定积分。
是)()(x f x ϕ 四.计算题 3.⎰-+dx x x )1)(13(4.dx xx ⎰-32)1(5.⎰--dx xe e x x)1( 6.⎰dx e x x 3237.dx x x x ⎰-+-22222 8.⎰-dx xx 23sin 1sin 4 9.dx x x 2)2sin 2(cos -⎰ 10.⎰++dx x x 2cos 1cos 12 11.⎰dx xx x22cos sin 2cos 12.⎰++-dx x x x 3322332 13.dx xx )1213(22⎰--+ 14.⎰-dx x x x )tan (sec sec 15.⎰-dx x x x )11(216.dx xx⎰-+11 五.应用题1.一曲线通过点(2e ,3),且在任一点处的切线的斜率等于该点横坐标的倒数,求该 曲线的方程.2.一物体由静止开始运动,经t 秒后的速度是32t (米/秒),问:(1) 在3秒后物体离开出发点的距离是多少? (2) 物体走完360米需要多少时间§4-2 换元积分法一、填空题1.)(______ax d dx = ()0(≠a )2.)37(______-=x d dx3.)(_______2x d xdx = 4.)5(______2x d xdx = 5.)1(______2x d xdx -= 6.)32(_______32x d dx x -= 7.)(______22x xe d dx e = 8.)1(______22x x e d dx e --+=9.(_______)22d dx xex =- 10.(______))13cos(d dx x=-11.)ln 5(______x d x dx = 12.)ln 53(______x d xdx -=13.(______))sin(d dt t =+ϕω 14.)arcsin 1(______12x d xdx -=-15.=-⎰dx x x 112=-⎰dx xx 22)1(11=-⎰2)1(11x x d_________ 16.若⎰⎰≠=++=)0________()(,)()(a dx b ax f c x F dx x f 则二.是非判断题1. ⎰⎰+⋅=⎪⎭⎫⎝⎛=c xx d x dx x x 212111ln . [ ] 2.()⎰+=+c x arctg dx xx 211. [ ]3.设()⎰+=c x dx x f sin ,则()⎰+=-c x dx xx f 21arcsin . [ ]4.已知()='x f ln {,10,1,1,≤<+∞<<x x x 且()00=f ,且()⎩⎨⎧=≤<-∞+∞<<-,0,0,1x x x ex f x . [ ]5.⎰+=c x xdx 32sin 31sin . [ ]6.若()()c x F dx x f +=⎰,则()[]()[]c x g F dx x g f +=⎰. [ ]三.单项选择题 1.⎰='dx x f )3(_____. (A);)(31c x f + (B);)3(31c x f + (C);)(3c x f + (D);)3(3c x f +2..________)]([1)(2=+'⎰dx x f x f(A) ;|)(1|ln c x f ++ (B) ;|)]([1|ln 212c x f ++ (C) ;)](arctan[c x f + (D) .)](arctan[21c x f +3.⎰=⎪⎭⎫ ⎝⎛-dx x x 21 . (A)C x x x++-||ln 21(B) C x x x ++--||ln 21(C) C x x+--||ln 21 (D) C x x ++||ln 4.⎰=⋅-⋅.23223dx xxx . (A);)23(23ln23c x x+⋅- (B) c x x x +--1)23(23 (C) c x+⎪⎭⎫ ⎝⎛--232ln 3ln 23 (D) c x+⎪⎭⎫ ⎝⎛--232ln 3ln 23 5.⎰=+-dx x x x )1(177______.(A) ;|)1(|ln 71277c x x ++ (B) ;|1|ln 7177c x x ++ (C ) ;|)1(|ln 61266c x x ++ (D) ;|1|ln 6166c x x ++ 6.⎰=._____||dx x (A);||212c x + (B) ;212c x + (c) ;||21c x x + (D) ;212c x +-7.⎰=++._____113dx e e x x(A) ;212c x e e x x +++ (B) ;212c e e x x ++ (C) ;212c x e e x x ++- (D) .212c e e x x +- 8.x ex2sin 2sin 1+的全体原函数是________.(A) e;sin 12x + (B) e;sin 12c x ++ (C) ecx ++2sin 1 (D) ec x+-2sin 1四.计算题1.⎰x dx x 302)32(- 2.dx x ⎰-3)21(13.dx e x 47⎰ 4.dx xx ⎰ln 5.⎰dx e e x x )cos( 6.⎰dx xe xsin cos 7.⎰xdx x tg210sec 8.⎰xdx 3sin9.⎰+-dx xx x x sin cos sin cos 10.⎰xx dx 2sin⎰-dx xa x 222.23 24.⎰+dx x 32)1(125.dx x x ⎰-92 26.⎰-+dx x211127.⎰+xdx 21 28.⎰+xedx 14-3 分部积分法一. 单项选择题 1.⎰=.___)(""dx x xf(A)x ;)()('c x f x f +-(B) x ;)()(''c x f x f +-(c) x ;)()('c x f x f ++ (D)⎰-.)()('dx x f x xf2.⎰=.___)ln(tan sin dx x x(A)-cosxln(tanx)+ln|tan ;|2c x+ (B)cosxln(tanx)+ln|cscx -cotx|+c; (c)ln(tanx)+ln|tan;|2c x+ (D)-cosxln(tanx)+ln|sinx|+c. 3..___sin 2=⎰dx x x(A);2sin 41412c x x x +- (B);2cos 81412c x x +-(C)xcosx -sinx+c; (D);2cos 81412c x x +-4.⎰=.__arcsin 2dx x x(A) ;|cot csc |ln arcsin 1c x x x x+-+-(B);|csc cot |ln arcsin 1c x x x x +---(C);|11|ln arcsin 12c x x x x +---- (D);|11|ln arcsin 12c xx x x +-++-5.⎰=.__arctan dx e e x x(A);)1ln(21arctan 2c e e ex x x++--- (B);arctan )1ln(212c x e e e x x x +--+--(C)arctan ;)1(c e e x x ++--- (D);)1ln(21arctan 2c e x e e xx x ++++-6..__)ln (2=⎰dx x x(A);)2ln 2(ln 12c x x x +++- (B);1ln 2ln 2c xx x +-+(C);1ln 2ln 12c xx x x x ++- (D).)1ln(21arctan 2c e x e e xx x ++++-7.⎰=.___)(arcsin 2dx x (A)arcsinx(xarcsinx ;2)122c x x ++-- (B)arcsinx(xarcsinx+2;2)12c x x +-- (C)arcsinx(xarcsinx+2;)12c x +- (D)arcsinx(xarcsinx+2;)212c x +--二. 计算题 1、⎰xdx x ln 2 2、⎰xdx x cos 23、⎰xdx xtg 24、⎰dx xxx 3sin cos 5、⎰dx e x 36、⎰-+-dx e x x x)52(2 7、⎰dx x 2)(ln 8、⎰dx x )cos(ln 9、⎰dx xx 23)(ln 10、⎰xdx xtgx 4sec 4-4 几种特殊类型的积分(一)一.单项选择题1.⎰=++.__45244dx x x x (A) x ;arctan 312arctan 38c x x ++-(B) x ;arctan 31c x+- (C) ln ;)14(22c x x +++ (D) x .arctan 38c x +- 2.⎰=--.__1224dx x x x(A);|)12()12(|ln 24122c x x ++--+ (B);|)12()12(|ln 24122c x x +-++-- (C);|)12()12|ln 24122c x x +-+++ (D).|2121|ln 2412c x x ++---3.⎰=+____383dx x x(A);3arctan 3412c x + (B)c x +3arctan 3414(C)c x +3arctan3214 (D)c x +3arctan32124..______)2(10=+⎰x x dx(A) ln)2(10+x dx +arctanx ;5c + (B);)2ln(211010c x x ++(C) ;)2ln(2011010c x x ++(D)61ln(c xx ++)2105 5.⎰=+--._______52232dx x x x(A);221arctan 21|52|ln 232+-++-x x x (B) ;21tan 232c x x +-+ (C) ;21arctan 21)52(232c x x x +-++- (D) ln|x c x x +-++-21tan |522二.计算题1、⎰--++dx x x x x x 12322、⎰-++dx x x x 103322 3、⎰--+dx x x x x 3458 4、⎰-++dx x x x )1()1(122 5、⎰+++dx x x x x )3)(2)(1( 6、⎰+dx x 133 7、⎰+)1(2x x dx 8、⎰++))(1(22x x x dx9、⎰+14x dx 10、⎰+++)1)(1(22x x x dx 4-5 几种特殊类型的积分(二)一.单项选择题1.的全体原函数xsin 11+是———。