电磁感应典型例题
- 格式:doc
- 大小:1.59 MB
- 文档页数:16
【物理】高中物理电磁感应经典习题(含答案)题一题目:一个导线截面积为$2.5\times10^{-4}m^2$,长度为$0.3m$,放在磁感应强度为$0.5T$的均匀磁场中,将导线两端连接到一个电阻为$2\Omega$的电阻器上,求电阻器中的电流。
解析:根据电磁感应定律,导线中的感应电动势与导线长度、磁感应强度以及导线的运动速度有关。
在此题中,导线不运动,所以感应电动势为零。
因此,电路中的电流完全由电源提供,根据欧姆定律,可以使用$U=IR$求解电流。
答案:电路中的电流为0A。
题二题目:一个充满磁感应强度为$1T$的磁场的金属环,直径为$0.2m$,环的厚度可以忽略不计。
当磁场方向垂直于环的平面并向上时,将环从磁场中抽出后,环中的磁场强度变为多少?解析:根据法拉第电磁感应定律,当闭合回路中的磁通量发生变化时,环中会产生感应电动势导致感应电流的产生。
在此题中,环被抽出磁场后,磁通量减小,从而产生感应电动势。
根据安培环路定理和比奥-萨伐尔定律,感应电动势的方向与磁场的变化方向相反,因此感应电流会生成一磁场。
根据安培定律和环形线圈的磁场公式,可以计算出环中的新的磁场强度。
答案:环中的新磁场强度需要通过计算得出。
具体计算过程请参考相关物理教材或参考书籍。
题三题目:一根长度为$0.5m$的直导线与一个磁场相垂直,导线两端的电动势为$2V$,导线的电阻为$4\Omega$,求导线在磁场中运动的速度。
解析:根据电磁感应定律,导线中的感应电动势与导线长度、磁场强度以及导线的运动速度有关。
在此题中,导线的电动势和电阻已知,可以使用欧姆定律$U=IR$解出电流,并使用感应电动势的公式$E=Bvl$解出运动速度。
答案:导线在磁场中的运动速度需要通过计算得出。
具体计算过程请参考相关物理教材或参考书籍。
电磁感应练习50题(含答案)1、如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L=0.2m,长为2d,d=0.5m,上半段d导轨光滑,下半段d导轨的动摩擦因素为μ=,导轨平面与水平面的夹角为θ=30°.匀强磁场的磁感应强度大小为B=5T,方向与导轨平面垂直.质量为m=0.2kg的导体棒从导轨的顶端由静止释放,在粗糙的下半段一直做匀速运动,导体棒始终与导轨垂直,接在两导轨间的电阻为R=3Ω,导体棒的电阻为r=1Ω,其他部分的电阻均不计,重力加速度取g=10m/s2,求:(1)导体棒到达轨道底端时的速度大小;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q;(3)整个运动过程中,电阻R产生的焦耳热Q.答案分析:(1)研究导体棒在粗糙轨道上匀速运动过程,受力平衡,根据平衡条件即可求解速度大小.(2)进入粗糙导轨前,由法拉第电磁感应定律、欧姆定律和电量公式结合求解电量.(3)导体棒在滑动时摩擦生热为Q f=2μmgdcosθ,再根据能量守恒定律求解电阻产生的焦耳热Q.解答:解:(1)导体棒在粗糙轨道上受力平衡:由 mgsin θ=μmgcos θ+BIL得:I=0.5A由BLv=I(R+r)代入数据得:v=2m/s(2)进入粗糙导轨前,导体棒中的平均电动势为: ==导体棒中的平均电流为: ==所以,通过导体棒的电量为:q=△t==0.125C(3)由能量守恒定律得:2mgdsin θ=Q电+μmgdcos θ+mv2得回路中产生的焦耳热为:Q电=0.35J所以,电阻R上产生的焦耳热为:Q=Q电=0.2625J答:(1)导体棒到达轨道底端时的速度大小是2m/s;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q是0.35C;(3)整个运动过程中,电阻R产生的焦耳热Q是0.2625J.点评:本题实质是力学的共点力平衡与电磁感应的综合,都要求正确分析受力情况,运用平衡条件列方程,关键要正确推导出安培力与速度的关系式,分析出能量是怎样转化的.2、如图所示,两平行金属导轨间的距离L=0.40m,金属导轨所在的平面与水平面夹角θ=37º,在导轨所在平面内,分布着磁感应强度B=0.50T、方向垂直于导轨所在平面的匀强磁场。
法拉第电磁感应定律的例题【例1】如图所示,磁感强度B=1.2T的匀强磁场中有一折成30°角的金属导轨aob,导轨平面垂直磁场方向。
一条直线MN垂直ob方向放置在轨道上并接触良好。
当MN以v=4m/s从导轨O点开始向右平动时,若所有导线单位长度的电阻r=0.1Ω/m。
求:(1)经过时间t后,闭合回路的感应电动势的瞬时值和平均值;(2)闭合回路中的电流大小和方向。
【分析】磁场B与平动速度v保持不变,但MN切割磁感线有效【解答】 (1)设运动时间为t后,在ob上移动S=vt=4t,MN的回路总电阻R=Lr=10.9t×0.1=1.09t【说明】 (1)本题切割的有效长度是时间的函数,所以电动势的平均值、即时值与有效长度的平均值、即时值有关(2)解这一类有效长度随时间变化的问题,关键是找到有效长度与时间的函数关系。
【例2】如图所示,匀强磁场的磁感应强度为B,方向垂直纸面向里,长L电阻R0的裸电阻丝cd在宽L的平行金属轨道上向右滑行,速度为v。
已知R1=R2=R0,其余电阻忽略不计,求电键K闭合与断开时,M、N两点的电势差U MN。
【分析】 cd在磁场中做切割磁感线的运动,这部分电路是电源,你知道电键K 断开和闭合,U cd有什么不同吗?电键K断开时,电路abcd不闭合,只产生感应电动势,而没有感应电流,N、c、b等势,M、a、d等势,U MN=U dc=E;电键K闭合时,电路中有感应电流,此时U MN=U dc为路端电压。
【解答】ε=BLvK断开时,U MN=U dc=ε=BLv【说明】 1、不要以为切割磁感线导体两端电压都等于感应电动势,通过此题想想在什么情况下,两端电压不等于电动势的值。
2、cd部分是电源,在电源内部,电流方向是从低电势流向高电势(规定为电动势的方向),所以U MN=U dc为正值。
【例3】如图所示,小灯泡的规格为“2V、4W”,接在光滑水平导轨上,轨距0.1m,电阻不计。
法拉第电磁感应定律典例与练习【典型例题】类型一、法拉第电磁感应定律的应用例1、(2015 安徽) 如图所示,abcd为水平放置的平行“匚”形光滑金属导轨,间距为l。
导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B,导轨电阻不计。
已知金属杆MN倾斜放置,与导轨成θ角,单位长度的电阻为r,保持金属杆以速度v沿平行于cd的方向滑动(金属杆滑动过程中与导轨接触良好)。
则A.电路中感应电动势的大小为sinBlvθB.电路中感应电流的大小为sinBvrθC.金属杆所受安培力的大小为2sinlvrBθD.金属杆的热功率为22sinlrvBθ【答案】B【解析】导体棒切割磁力线产生感应电动势E=Blv,故A错误;感应电流的大小sinsinE BvIl rrθθ==,故B正确;所受的安培力为2sinl B lvF BIrθ==,故C错误;金属杆的热功率222sinsinl B vQ I rrθθ==,故D错误。
【考点】考查电磁感应知识。
举一反三【变式】如图所示,水平放置的平行金属导轨,相距L=0.50 m,左端接一电阻R =0. 20n,磁感应强度B=0.40 T,方向垂直于导轨平面的匀强磁场,导体棒a b垂直放在导轨上,并能无摩擦地沿导轨滑动,导轨和导体棒的电阻均可忽略不计,当a b以v=4.0 m/s的速度水平向右匀速滑动时,求:(1)a b棒中感应电动势的大小,并指出a、b哪端电势高?(2)回路中感应电流的大小;(3)维持a b 棒做匀速运动的水平外力F 的大小。
【答案】(1)0.8V ;a 端电势高;(2)4.0A ;(3)0. 8 N 。
【解析】(1)根据法拉第电磁感应定律,a b 棒中的感应电动势为0.40.5 4.00.8E BLv V V ==⨯⨯= 根据右手定则可判定感应电动势的方向由b a →,所以a 端电势高。
(2)导轨和导体棒的电阻均可忽略不计,感应电流大小为 0.8 4.00.2E I A A R === (3)由于a b 棒受安培力,棒做匀速运动,故外力等于安培力 4.00.50.40.8F BIL N N ==⨯⨯=, 故外力的大小为0. 8 N 。
典型例题电磁感应与电路、电场相结合1 .如图所示,螺线管的导线的两端与两平行金属板相接,一个带负电的通草球用丝线悬挂在两金属板间,并处于静止状态,若条形磁铁突然插入线圈时,通草球的运动情况是()A、向左摆动B、向右摆动_C、保持静止D、无法确定N解:当磁铁插入时,穿过线圈的磁通量向左且增加,线圈产S—^生感应电动势,因此线圈是一个产生感应电动势的电路,相当于一个电源,其等效电路图如图,因此A板带正电,B板带负电,故小球受电场力向左答案:A3.如图所示,匀强磁场B=0.1T,金属棒AB长0.4m,与框架宽度相同,计,电阻Ri=2 Q, R2=1 ◎当金属棒以5m/s的速度匀速向左运动时,求:(1)流过金属棒的感应电流多大?(2)若图中电容器C为0.3则充电量多少?(1)0.2A, (2)4 10-8C解:(1)金属棒AB以5m/s的速度匀速向左运动时,切割磁感线,产生的感应电动势为 E Blv ,得E 0.1 0.4 5V 0.2V ,2由串并联知识可得R外一,R总1 ,所以电流I 0.2A304(2)电容器C并联在外电路上,U外—V由公式Q CU 0.334.(2003上海)粗细均习的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行。
现使线框以同样大小的速度沿四个不同方向平移出磁场,如图100-1所示,则在移出过程中线框的一边a、b两点间电势差绝对值最大的是()解:沿四个不同方向移出线框的感应电动势都是E效电路如图100-2所示,显然图B'的Uab最大,选B。
电阻为R=1/3 ◎框架电阻不106 034 c 4108cBlv ,而a、b两点在电路中的位置不同,其等AB5.( 2004年东北三校联合考试)粗细均匀的电阻丝围成如图12 —8所示的线框abcde (ab=bc)置于正方形有界匀强磁场中,磁场方向垂直于线框平面.现使线框以同样大小的速度匀速地沿四个不同方向平动进入磁场,并且速度方向始终与线框先进入磁场的那条边垂直,则在通过图示位置时,线框ab边两端点间的电势差绝对值最大的是6. 竖直平面内有一金属环,半径为 a,总电阻为 R.磁感应强度为 B 的匀强磁场垂直穿过环平面,与环的最高点 A 较链连接的长度为 2a 、电阻为R/2的导体棒AB 由水平位置紧-----贴环面摆下(如图).当摆到竖直位置时, B 点的线速度为 v,则这时 AB 两端 巾 的电压大小为( )|,\A.2BavB.BavC.2Bav/3D.Bav/3 X工/解析:导体棒转至竖直位置时,感应电动势 E=1B2av=Bav E2R R电路中总电阻R 总=Y2-2— + — = — R 总电流I = -- = 4EavAB 两端的电压U=E - I — =— Bav.R R 2 4 R 总 3R2 32 2答案:D8. (04江苏35)如图100-3所示,U 形导线框 MNQP 水平放置在磁感应强度 B = 0.2T 的匀强磁场中, 磁感线方向与导线框所在平面垂直,导线 MN 和PQ 足够长,间距为0. 5m,横跨在导线框上的导体棒 ab的电阻r= 1.0 0,接在NQ 间的电阻R = 4.OQ,电压表为理想电表,其余电阻不计.若导体棒在水平外力 作用下以速度 尸2.0m/s 向左做匀速直线运动,不计导体棒与导线框间的摩擦.(1)通过电阻R 的电流方向如何?(2)电压表的示数为多少?M 咛 (3)若某一时刻撤去水平外力,则从该时刻起,在导体棒运动1.0m•的过程中,通过导体棒的电荷量为多少 ?解:(1)由右手定则可判断,导体棒中的电流方向为 阻R 的电流方向为NRQ(2)由感应电动势的公式,得 E=Blv设电路中的电流为I,由闭合电路欧姆定律,得又电压表的示数等于电阻 R 两端的电压值,则有综合①②③式,得R +产 ④(3)撤去水平外力后,导体棒将在安培力的作用下, 做减速运动.设在导体棒运动x=1.0m 的过程中,2U=IR ③代入数值,得 U=0.16V ⑤导体棒中产生的感应电动势的平均值为由法拉第电磁感应定律,得设通过导体棒的电荷量为E E f =—A/E r综合⑥、⑦、⑧式,得Q,则有 Q = I At由闭合电路欧姆定律,得⑧⑨代入数值,得Q=2.0 M0-2C ⑩解析:线框通过图示各位置时,电动势均为E=Blv,图A 中ab 相当于电源,U ab 最大.答案:A答案:通过电阻R的电流万向为NRQ 0.16V 2.0 102c得:Ft mgt I LBt mv ⑤ 解得:q I t 0.36C⑥拓展1. (2003年北京海淀区模拟题) 如图所示,MN 和PQ 是固定在水平面内间距 L=0.20 m 的平 行金属轨道,轨道的电阻忽略不计.金属杆ab 垂直放置在轨道上.两轨道间连接有阻值为 R O =1.5翦勺电阻, ab 杆的电阻R= 0.50 @b 杆与轨道接触良好并不计摩擦, 整个装置放置在磁感应强度为 B= 0.50 T 的匀强 磁场中,磁场方向垂直轨道平面向下 .对ab 杆施加一水平向右的拉力,使之以v= 5.0 m/s 的速度在金属轨道上向右匀速运动 .求: (1)通过电阻R 0的电流; (2)对ab 杆施加的水平向右的拉力的大小 ;(3) ab 杆两端的电势差. 解析:(1) a 、b 杆上产生的感应电动势为 E=BLv=0.50 V. 根据闭合电路欧姆定律,通过 R 0的电流1 = 一E一=0.25 A. R 0 R 口 (2)由于ab 杆做匀速运动,拉力和磁场对电流的安培力 F 大小相等,即F 拉=F=BIL=0.025 N..................................... ER BlvR … (3)根据欧姆定律,ab 杆两端的电势差 Uab=——0—= -------- 0- =0.375 V.R R 0 R R 0 答案:(1) 0.50 V (2) 0.025 N (3) 0.375 V 拓展2.如图所示,水平面上有两根相距 0.5m 的足够长的平行 金属导轨 MN 和PQ,它们的电阻可忽略不计,在 M 和P 之间接有 阻值为R 的定值电阻,导体棒 ab 长l = 0.5m,其电阻为r,与导轨 接触良好.整个装置处于方向竖直向上的匀强磁场中,磁感应强度 B = 0.4T.现使ab 以v= 10m/s 的速度向右做匀速运动. (1) ab 中的感应电动势多大 ? (2)ab 中电流的方向如何 ? ⑶若定值电阻R = 3.O ◎导体棒的电阻r=1.O ◎,则电路电流大? 解:(1) ab 中的感应电动势为: E Blv ① 代入数据得:E=2.0V ② (2) ab 中电流方向为b-a (3)由闭合电路欧姆定律,回路中的电流 I —E — ③ 代入数据得:I = 0.5A R r答案:(1) 2.0V (2) ab 中电流方向为 b-a (3) 0.5A 拓展3.如图所示,MN 、PQ 是两条水平放置彼此平行的金属导轨, 匀强磁场的磁感线垂直导轨平面. 导 轨左端接阻值 R=1.5 ◎的电阻,电阻两端并联一电压表,垂直导轨跨接一金属杆 ab, ab 的质量m=0.1kg, 电阻r=0.5 Q.ab 与导轨间动摩擦因数 户0.5,导轨电阻不计,现用F=0.7N 的恒力水平向右拉 ab,使之从静止开始运动,经时间 t=2s 后,ab 开始 做匀速运动,此时电压表示数 U=0.3V .重力加速度g=10m/s 2.求: (1) ab 匀速运动时,外力 F 的功率. (2) ab 杆加速过程中,通过 R 的电量. (3) ab 杆加速运动的距离. 解:(1)设导轨间距为 L,磁感应强度为 B, ab 杆匀速运动的速 度为v,电流为I,此时ab 杆受力如图所示:由平衡条件得:F=(i mg+ILB ① 由欧姆定律得:1_B" U ② R r R由①②解得:BL=1T m v=0.4m/s③ F 的功率:P=Fv=0.7 0.4W=0.28W④(2)设ab 加速时间为t,加速过程的平均感应电流为I ,由动量定理典型例题一一导体在磁场中切割磁感线(一)单导体运动切割磁感线1.动——电——动2.电——动——电(3)设加速运动距离为s,由法拉第电磁感应定律得 EBLs又E 「(R r) ⑧由⑥⑦⑧解得 c q(R r)s -------BL 0.36 2 ------ m 072m9. (05天津23)图中MN和PQ为竖直方向的两平行长直金属导轨,间距导轨所在平面与磁感应强度B为0. 50T的匀强磁场垂直。
电磁感应综合典型例题【例1】电阻为R的矩形线框abcd,边长ab=L,ad=h,质量为m,自某一高度自由落下,通过一匀强磁场,磁场方向垂直纸面向里,磁场区域的宽度为h,如图所示,若线框恰好以恒定速度通过磁场,线框中产生的焦耳热是_______.(不考虑空气阻力)【分析】线框通过磁场的过程中,动能不变。
根据能的转化和守恒,重力对线框所做的功全部转化为线框中感应电流的电能,最后又全部转化为焦耳热.所以,线框通过磁场过程中产生的焦耳热为Q=W G=mg—2h=2mgh.【解答】2mgh。
【说明】本题也可以直接从焦耳热公式Q=I2Rt进行推算:设线框以恒定速度v通过磁场,运动时间从线框的cd边进入磁场到ab边离开磁场的过程中,因切割磁感线产生的感应电流的大小为cd边进入磁场时的电流从d到c,cd边离开磁场后的电流方向从a到b.整个下落过程中磁场对感应电流产生的安培力方向始终向上,大小恒为据匀速下落的条件,有因线框通过磁场的时间,也就是线框中产生电流的时间,所以据焦耳定律,联立(l)、(2)、(3)三式,即得线框中产生的焦耳热为Q=2mgh.两种解法相比较,由于用能的转化和守恒的观点,只需从全过程考虑,不需涉及电流的产生等过程,计算更为简捷.【例2】一个质量m=0.016kg、长L=0.5m,宽d=0.1m、电阻R=0.1Ω的矩形线圈,从离匀强磁场上边缘高h1=5m处由静止自由下落.进入磁场后,由于受到磁场力的作用,线圈恰能做匀速运动(设整个运动过程中线框保持平动),测得线圈下边通过磁场的时间△t=0.15s,取g=10m/s2,求:(1)匀强磁场的磁感强度B;(2)磁场区域的高度h2;(3)通过磁场过程中线框中产生的热量,并说明其转化过程.【分析】线圈进入磁场后受到向上的磁场力,恰作匀速运动时必满足条件:磁场力=重力.由此可算出B并由运动学公式可算出h2。
由于通过磁场时动能不变,线圈重力势能的减少完全转化为电能,最后以焦耳热形式放出.【解答】线圈自由下落将进入磁场时的速度(l)线圈的下边进入磁场后切割磁感线产生感应电流,其方向从左至右,使线圈受到向上的磁场力.匀速运动时应满足条件(2)从线圈的下边进入磁场起至整个线圈进入磁场做匀速运动的时间以后线圈改做a=g的匀加速运动,历时所对应的位移所以磁场区域的高度(3)因为仅当线圈的下边在磁场中、线圈做匀速运动过程时线圈内才有感应电流,此时线圈的动能不变,由线圈下落过程中重力势能的减少转化为电能,最后以焦耳热的形式释放出来,所以线圈中产生的热量【说明】这是力、热、电磁综合题,解题过程要分析清楚每个物理过程及该过程遵守的物理规律,列方程求解。
高一物理电磁感应现象练习题及答案练习题一:1. 一根导线以速度v穿过磁感应强度为B的均匀磁场,导线长度为L,角度θ为导线与磁场方向的夹角。
求导线在时间Δt内所受到的感应电动势。
答案:感应电动势E = B * v * L * sinθ2. 一根导线以速度v进入磁感应强度为B的均匀磁场,导线的长度为L。
当导线完全进入磁场后,突然停止不动。
求此过程中导线两端之间的电势差。
答案:电势差V = B * v * L3. 一个长度为L的导线以速度v匀速通过磁感应强度为B的均匀磁场,当导线通过时间Δt后,磁场方向突然发生改变。
求导线两端之间产生的感应电动势。
答案:感应电动势E = 2 * B * v * L4. 一根长度为L的导线以速度v与磁感应强度为B的均匀磁场垂直相交,导线所受到的感应电动势大小为E,如果将导线切成长度为L/2的两段导线,两段导线所受感应电动势的大小分别是多少?答案:每段导线所受感应电动势的大小都是E练习题二:1. 一台电动机的转子有60个磁极,额定转速为3000转/分钟。
求转子在额定转速下的转子导线所受的感应电动势大小。
答案:转子导线所受感应电动势的大小为ω * Magnetic Flux,其中ω为角速度,Magnetic Flux为磁通量。
转速为3000转/分钟,转速ω =2π * 3000 / 60。
由于转子有60个磁极,每转所经过的磁通量为60 * Magnetic Flux。
因此,转子导线所受感应电动势的大小为60 * 2π * 3000 / 60 * Magnetic Flux。
2. 一根长度为L的导线以角速度ω绕通过导线轴线的磁感应强度为B的磁场旋转。
求导线两端之间的电势差大小。
答案:电势差V = B * ω * L3. 一根输电线路的电阻为R,长度为L,电流为I。
如果在电力系统中,磁感应强度为B的磁场垂直于导线方向,求输电线路两端之间的感应电动势。
答案:感应电动势E = B * L * I4. 一块矩形线圈有N匝,每匝的边长为a和b,磁通量为Φ,求矩形线圈所受到的感应电动势。
轻松搞定电磁感应,还有谁今年山东改用全国卷,较之前更倾向于考察分析解决问题的能力,方向性更加灵活,而电磁感应历来是高考的重点内容,其考察综合性强,涉猎范围广,很好的迎合了全国卷的“胃口”。
(特别是全国卷大题好几年没考了奥,你懂得)因此,童鞋们要善于总结这部分题的解题方法和思路,跟老师一起来学习吧因此,童鞋们要善于总结这部分题的解题方法和思路,跟老师一起来学习吧~ ~ 我们把所学知识当做武器,把问题当做敌人,苦练杀敌本领,用武器消灭敌人。
1关于电磁感应的图像问题:常见的有 Φ-t 图像 、B-t 图像、I-t 图像、E-t 图像。
这里说前两种,出现这两种图像,就是间接地告诉了你感应电动势的大小。
由法拉第电磁感应定律可知E=n ΔΦ/Δt ,如果是Φ-t 图像,则图像的斜率即为ΔΦ/Δt 的大小。
更常见的是B-t 图像,法拉第电磁感应定律变形一下即为E=nS ΔB/Δt,所以图像的斜率即为ΔB/Δt ,所以立马可以算出E 的大小。
(多总结,做题又快又准)光说不练假把式:在如图甲所示的电路中,螺线管匝数n=1500匝,横截面积S=20cm 2.螺线管导线电阻r=1.0Ω,R 1=4.0Ω,R 2=5.0Ω,C=30μF .在一段时间内,穿过螺线管的磁场的磁感应强度B 按如图乙所示的规律变化.求:按如图乙所示的规律变化.求:(1)求螺线管中产生的感应电动势?)求螺线管中产生的感应电动势?(2)闭合S ,电路中的电流稳定后,求此时全电路电流的方向(顺时针还是逆时针)?,电路中的电流稳定后,求此时全电路电流的方向(顺时针还是逆时针)?(3)闭合S ,电路中的电流稳定后,电阻R 1的电功率?的电功率?(4)闭合S ,电路中的电流稳定后,求电容器的电量?,电路中的电流稳定后,求电容器的电量?2 电磁感应中的电学问题碰到这样的问题,小朋友们应该是很幸运了(前提是电流学的还可以),这类问题,不外乎导体切割磁感线产生感应电动势充当电源(动生电动势)或者是磁通量发生变化的回路产生感应电动势(感生电动势)。
高考物理:带你攻克电磁感应中的典型例题(附解析)例1、如图所示,有一个弹性的轻质金属圆环,放在光滑的水平桌面上,环中央插着一根条形磁铁.突然将条形磁铁迅速向上拔出,则此时金属圆环将()A. 圆环高度不变,但圆环缩小B. 圆环高度不变,但圆环扩张C. 圆环向上跳起,同时圆环缩小D. 圆环向上跳起,同时圆环扩张解析:在金属环中磁通量有变化,所以金属环中有感应电流产生,按照楞次定律解决问题的步骤一步一步进行分析,分析出感应电流的情况后再根据受力情况考虑其运动与形变的问题.也可以根据感应电流的磁场总阻碍线圈和磁体间的相对运动来解答。
当磁铁远离线圈时,线圈和磁体间的作用力为引力,由于金属圆环很轻,受的重力较小,因此所受合力方向向上,产生向上的加速度.同时由于线圈所在处磁场减弱,穿过线圈的磁通量减少,感应电流的磁场阻碍磁通量减少,故线圈有扩张的趋势。
所以D选项正确。
一、电磁感应中的力学问题导体切割磁感线产生感应电动势的过程中,导体的运动与导体的受力情况紧密相连,所以,电磁感应现象往往跟力学问题联系在一起。
解决这类电磁感应中的力学问题,一方面要考虑电磁学中的有关规律,如安培力的计算公式、左右手定则、法拉第电磁感应定律、楞次定律等;另一方面还要考虑力学中的有关规律,如牛顿运动定律、动量定理、动能定理、动量守恒定律等。
例2、如图1所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻。
一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。
整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。
让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。
(1)由b向a方向看到的装置如图2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab杆可以达到的速度最大值。
例1:如图,两根相距L =0.8m 、电阻不计的平行光滑金属导轨水平放置,一端与阻值R =0.3Ω的电阻相连。
导轨x >0一侧存在沿x 方向均匀增大的稳恒磁场,其方向与导轨平面垂直,变化率k =0.5T/m ,x =0处磁场的磁感应强度B 0=0.5T 。
一根质量m =0.2kg 、电阻r =0.1Ω的金属棒置于导轨上,并与导轨垂直。
棒在外力作用下从x =0处以初速度v 0=4m/s 沿导轨向右运动,运动过程中电阻上消耗的功率不变。
则( )A .金属棒在x=3m 处的速度为1m/sB .金属棒从x=0运动到x=3m 过程中安培力做功的大小为5.12JC .金属棒从x=0运动到x=3m 过程中所用的时间为0.8sD .金属棒从x=0运动到x=3m 过程中外力的平均功率为5.6W答案:AD解析:在x =3m 处,磁感应强度B = B 0+kx 2=0.5T+0.5T/m ×3m=2T 。
E=BLv =B 0Lv 0解得:金属棒在x =3m 处的速度v =1m/s ,A 对;由于功率恒定,电流恒定,安培力大小随距离均匀增大,x=0处:N rR v L B F 6.10220=+=安 x=3m 处,N r R v L B F 4.622=+=安过程中安培力做功的大小W 安=21( F 0 + F)x=12J ,B 错; W=Pt ,P=EI =W rR v L B 4.6222=+,解得:t=1.875s ,C 错; (提示:C 答案中,求时间还可以采用:=P r R v L B r R v L B +=+22220220,即:v kx B v B )(000+=,即:00011v x v B k v +=,作出x v -1图象,图像下面积即为时间。
)由动能定理:W+W 安=k E ∆,即:P 外t=J mv mv 5.10122121202=+-,解得:P 外=5.6W ,D 对。
变式训练:(2013高考上海物理第33题)如图,两根相距L =0.4m 、电阻不计的平行光滑金属导轨水平放置,一端与阻值R =0.15Ω的电阻相连。
电磁感应练习题电磁感应是物理学中重要的概念,涉及到许多与电流、磁场以及运动相互关联的问题。
下面将为大家提供一些电磁感应的练习题,希望能够帮助大家更好地理解和掌握这一概念。
1. 一个面积为0.5平方米的导线,当其以速度为5m/s通过一个磁感应强度为0.2特斯拉的磁场时,导线产生的感应电动势为多少?2. 轨道上的一辆火车以速度30m/s通过一个长度为100米、磁感应强度为0.1特斯拉的磁场区域。
如果火车的两端都与轨道相连,火车的长度为50米,两端之间的电阻为10欧姆,求火车上的感应电流大小。
3. 一个圆形线圈,半径为0.2米,绕轴心旋转,角速度为200弧度/秒。
当磁感应强度为0.5特斯拉时,求线圈两端的感应电压大小。
4. 一个长直导线上有一个电阻为5欧姆的电阻器,导线与地面呈30度角。
当导线上的电流为10安培时,求电阻器两端的感应电压大小。
5. 一个飞机以速度1000km/h飞行,如果它的翅膀展长为30米,展宽为10米,求翅膀两端的感应电压大小,假设地面磁场的磁感应强度为0.01特斯拉。
6. 一个长直导线的一端接有一个电动势为12伏特的电池,导线的长度为2米。
如果导线的另一端与一根具有电阻R的导线相接,导线与地面呈60度角。
当导线中的电流为5安培时,求电阻R的大小。
这些题目涉及到了电磁感应的各个方面,包括导线通过磁场产生感应电动势、运动物体通过磁场产生感应电流等等。
通过解决这些问题,可以加深对电磁感应相关概念的理解,提高解决实际问题的能力。
希望大家在解答问题时注意到电磁感应原理的应用,特别是利用右手定则确定导线上感应电流的方向,以及利用法拉第电磁感应定律计算感应电动势大小等。
通过这些练习题的实践,相信大家对电磁感应的理解会更加深入。
典型例例1: 关于感应电动势,下列说法正确的是( ) A .穿过回路的磁通量越大,回路中的感应电动势就越大 B .穿过回路的磁通量变化量越大,回路中的感应电动势就越大 C .穿过回路的磁通量变化率越大,回路中的感应电动势就越大D .单位时间内穿过回路的磁通量变化量越大,回路中的感应电动势就越大 【解析】感应电动势E 的大小与磁通量变化率t∆∆φ成正比,与磁通量φ、磁通量变化量φ∆无直接联系。
A 选项中磁通量φ很大时,磁通量变化率t∆∆φ可能很小,这样感应电动势E 就会很小,故A 错。
B 选项中φ∆很大时,若经历时间很长,磁通量变化率t∆∆φ仍然会很小,感应电动势E 就很小,故B 错。
D 选项中单位时间内穿过回路的磁通量变化量即磁通量变化率t∆∆φ,它越大感应电动势E 就越大,故D 对。
答案:CD【总结】感应电动势的有无由磁通量变化量φ∆决定,φ∆≠0是回路中存在感应电动势的前提,感应电动势的大小由磁通量变化率t ∆∆φ决定,t∆∆φ越大,回路中的感应电动势越大,与φ、φ∆无关。
例2:一个面积S=4×10-2m 2,匝数N=100的线圈,放在匀强磁场中,磁场方向垂直线圈平面,磁场的磁感应强度B 随时间变化规律为△B /△t=2T/s ,则穿过线圈的磁通量变化率t∆∆φ为 Wb/s ,线圈中产生的感应电动势E= V 。
【解析】根据磁通量变化率的定义得t∆∆φ= S △B /△t=4×10-2×2 Wb/s=8×10-2Wb/s 由E=N △φ/△t 得E=100×8×10-2V=8V 答案:8×10-2;8【总结】计算磁通量φ=BScos θ、磁通量变化量△φ=φ2-φ1、磁通量变化率△φ/△t 时不用考虑匝数N ,但在求感应电动势时必须考虑匝数N ,即E=N △φ/△t 。
同样,求安培力时也要考虑匝数N ,即F=NBIL ,因为通电导线越多,它们在磁场中所受安培力就越大,所以安培力也与匝数N 有关。
电磁感应典型例题集锦【例题1】图为地磁场磁感线的示意图,在北半球的地磁场的竖直分量向下,飞机在我国的上空匀速航行,机翼保持水平,飞行高度不变。
由于地磁场的作用,金属机翼上有电势差,设飞行员左方机翼末端处的电势为U1,右方机翼末端的电势为U2。
A.若飞机从西向东飞,U1比U2高B.若飞机从东向西飞,U2比U1高C.若飞机从南往北飞,U1比U2高D.若飞机从北往南飞,U2比U1高【例题2】如图所示,通电直导线右边有一个矩形线框,线框平面与直导线共面,若使线框逐渐远离(平动)通电导线,则穿过线框的磁通量将:A.逐渐增大B.逐渐减小C.保持不变D.不能确定【例题3】如边长为0.2m的正方形导线框abcd斜靠在墙上,线框平面与地面成30°角,该区域有一水平向右的匀强磁场,磁感应强度为0.5T,如图所示。
因受振动线框在0.1s内滑跌至地面,这过程中线框里产生的感应电动势的平均值为_____。
【例题4】关于自感现象,下列说法中正确的是:A.对于同一线圈,当电流变化越大时,线圈中产生的自感电动势也越大B.对于同一线圈,当电流变化越快时,其自感系数也越大C.线圈中产生的自感电动势越大,则其自感系数一定较大D.感应电流有可能和原电流的方向相同【例题5】用力拉导线框使导线框匀速离开磁场这一过程如图所示,下列说法正确的是:A.线框电阻越大,所用拉力越小B.拉力做的功减去磁场力所做的功等于线框产生的热量C.拉力做的功等于线框的动能D.对同一线框,快拉与慢拉所做的功相同,线框产生的热量也相同【例题6】如右图所示,线圈由A位置开始下落,在磁场中受到的磁场力如果总小于它的重力,则它在A、B、C、D四个位置(B、D位置恰好线圈有一半在磁场中)时,加速度关系为:A. a A>a B>a C>a DB. a A=a C>a B>a DC. a A=a C>a D>a BD. a A=a C>a B=a D【例题7】如图所示,槽中有两铜棒,左侧液面下有5.6×10-3g Fe,溶液为足量的CuSO4。
电磁感应的典型计算1 如图所示,一与水平面夹角为θ=37°的倾斜平行金属导轨,两导轨足够长且相距L=0.2m,另外两根水平金属杆MN和PQ的质量均为m=0.01kg,可沿导轨无摩擦地滑动,MN杆和PQ杆的电阻均为R=0.2Ω(倾斜金属导轨电阻不计),MN杆被两个垂直于导轨的绝缘立柱挡住,整个装置处于匀强磁场内,磁场方向垂直于导轨平面向上,磁感应强度B=1.0T.PQ杆在恒定拉力F作用下由静止开始向上加速运动,拉力F垂直PQ杆沿导轨平面向上,当运动位移x=0.1 m时PQ杆达到最大速度,此时MN杆对绝缘立柱的压力恰好为零(g取10m/s2,sin 37°=0.6 ,cos 37°=0.8).求:(1) PQ杆的最大速度v m, (2)当PQ杆加速度时,MN杆对立柱的压力;(3)PQ杆由静止到最大速度过程中回路产生的焦耳热Q.解:(1)PQ达到最大速度时,关于电动势为:E m=BLv m,感应电流为:I m=REm2,根据MN杆受力分析可得:mg sinθ=BI m L,联立解得:v m=22sin2LBRmg=0.6m/s;(2)当PQ的加速度a=2 m/s2 时,对PQ根据牛顿第二定律可得:F-mg sinθ-BIL=ma,对MN根据共点力的平衡可得:BIL+F N-mg sinθ=0,PQ达到最大速度时,有:F-mg sinθ-BI m L=0,联立解得:F N=0.02N,根据牛顿第三定律可得对立柱的压力F N=0.02N;(3)PQ由静止到最大速度的过程中,根据功能关系可得:F x =221mmv+mgx sinθ+Q,解得:Q=4.2×10-3 J.答:(1)PQ杆的最大速度为0.6m/s;(2)当PQ杆加速度a=2m/s2时,MN杆对立柱的压力为0.02N (3)PQ杆由静止到最大速度回路产生的焦耳热为4.2×10-3 J.2 如图所示,平行金属导轨与水平面间夹角均为θ=37°,导轨间距为lm,电阻不计,导轨足够长.两根金属棒 ab 和a′b′的质量都是0.2kg,电阻都是1Ω,与导轨垂直放置且接触良好,金属棒a′b′和导轨之间的动摩擦因数为0.5,设金属棒a′b′受到的最大静摩擦力等于滑动摩擦力.金属棒ab和导轨无摩擦,导轨平面PMKO处存在着垂直轨道平面向上的匀强磁场,导轨平面PMNQ处存在着沿轨道平面向上的匀强磁场,磁感应强度B的大小相同.用外力让a′b′固定不动,将金属棒ab由静止释放,当ab下滑速度达到稳定时,整个回路消耗的电功率为18W.求:(1)ab 棒达到的最大速度;(2)ab棒下落了 30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足什么条件?( g=10m/s2,sin37°=0.6,cos37°=0.8 )解:(1)ab 棒达到最大速度时做匀速运动,其重力功率等于整个回路消耗的电功率,则有:mg sinθ•v m=P电,则得:ab棒的最大速度为:v m==m/s=15m/s;由P电==,得:B==T=0.4T(2)根据能量守恒得:mgh=Q+则得:Q=mgh-=0.2×10×30J-×0.2×152 =37.5 J(3)将a′b′固定解除,为确保a′b′始终保持静止,则对于a′b′垂直于斜面方向有:N=mg cos37°+BIL,平行于斜面方向有:mg sin37°≤f m=μN解得:I ≥2A对于ab棒:E=I•2R,E=BLv,则得:v=≥m/s=10m/s故ab的速度应满足的条件是:10m/s≤v≤15m/s答:(1)ab 棒达到的最大速度是15m/s;(2)ab棒下落了30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q是37.5J;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足的条件是10m/s≤v≤15m/s3 如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为L,所在平面的正方形区域abcd内存在有界匀强磁场,磁感应强度为B,方向垂直斜面向上.将甲乙两电阻阻值相同、质量均为m的相同金属杆如图放置在导轨上,甲金属杆处在磁场的上边界,甲乙相距L.静止释放两金属杆的同时,在甲金属杆上施加一个沿着导轨向下的外力F,使甲金属杆在运动过程中始终做沿导轨向下的匀加速直线运动,加速度大小g sinθ,乙金属杆刚进入磁场时,发现乙金属杆作匀速运动.(1)求乙刚进入磁场时的速度(2)甲乙的电阻R为多少;(3)乙刚释放时t=0,写出从开始释放到乙金属杆离开磁场,外力F随时间t的变化关系;(4 )若从开始释放到乙金属杆离开磁场,乙金属杆中共产生热量Q,试求此过程中外力F对甲做的功.解:⑴在乙尚未进入磁场中的过程中,甲、乙的加速度相同,设乙刚进入磁场时的速度v乙刚进入磁场时,对乙由根据平衡条件得(2)设乙从释放到刚进入磁场过程中做匀加速直线运动所需要的时间为设乙从进入磁场过程至刚离开磁场的过程中做匀速直线运动所需要的时间为设乙离开磁场时,甲的速度设甲从开始释放至乙离开磁场的过程中的位移为x根据能量转化和守恒定律得:4 如图所示,倾斜角θ=30°的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接。
高中物理电磁感应专题分类题型一、【电磁感应现象楞次定律】典型题1.如图所示,两个单匝线圈a、b的半径分别为r和2r.圆形匀强磁场B的边缘恰好与a线圈重合,则穿过a、b 两线圈的磁通量之比为()A.1∶1B.1∶2C.1∶4 D.4∶1解析:选A.磁通量Φ=B·S,其中B为磁感应强度,S为与B垂直的有效面积.因为是同一磁场,B相同,且有效面积相同,S a=S b,故Φa=Φb.选项A正确.2.如图所示,两个相同的轻质铝环套在一根水平光滑绝缘杆上,当一条形磁铁向左运动靠近两环时,两环的运动情况是()A.同时向左运动,间距增大B.同时向左运动,间距减小C.同时向右运动,间距减小D.同时向右运动,间距增大解析:选B.根据“来拒去留”可知,两环同时向左运动,又因两环中产生同向的感应电流,相互吸引,且右环受磁铁的排斥作用较大,故两环间距又减小,B正确.3.如图,一圆形金属环与两固定的平行长直导线在同一竖直平面内,环的圆心与两导线距离相等,环的直径小于两导线间距.两导线中通有大小相等、方向向下的恒定电流.若()A.金属环向上运动,则环上的感应电流方向为顺时针方向B.金属环向下运动,则环上的感应电流方向为顺时针方向C.金属环向左侧直导线靠近,则环上的感应电流方向为逆时针方向D.金属环向右侧直导线靠近,则环上的感应电流方向为逆时针方向解析:选D.当金属环上下移动时,穿过环的磁通量不发生变化,根据楞次定律,没有感应电流产生,选项A、B错误;当金属环向左移动时,穿过环的磁通量垂直纸面向外且增加,根据楞次定律可知,环上产生顺时针方向的感应电流,故选项C错误;当金属环向右移动时,穿过环的磁通量垂直纸面向里且增加,根据楞次定律可知,环上产生逆时针方向的感应电流,故选项D正确.4.如图,在一根竖直放置的铜管的正上方某处从静止开始释放一个强磁体,在强磁体沿着铜管中心轴线穿过铜管的整个过程中,不计空气阻力,那么()A.由于铜是非磁性材料,故强磁体运动的加速度始终等于重力加速度B.由于铜是金属材料,能够被磁化,使得强磁体进入铜管时加速度大于重力加速度,离开铜管时加速度小于重力加速度C.由于铜是金属材料,在强磁体穿过铜管的整个过程中,铜管中都有感应电流,加速度始终小于重力加速度D.由于铜是金属材料,铜管可视为闭合回路,强磁体进入和离开铜管时产生感应电流,在进入和离开铜管时加速度都小于重力加速度,但在铜管内部时加速度等于重力加速度解析:选C.铜是非磁性材料,不能够被磁化,B错误;铜是金属材料,在强磁体穿过铜管的整个过程中,铜管始终切割磁感线,铜管中都有感应电流,强磁体受到向上的磁场力,加速度始终小于重力加速度,C正确,A、D错误.5.(多选)如图所示,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路.将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态.下列说法正确的是()A.开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动B.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向C.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向D.开关闭合并保持一段时间再断开后的瞬间,小磁针的N极朝垂直纸面向外的方向转动解析:选AD.由电路可知,开关闭合瞬间,右侧线圈环绕部分的电流向下,由安培定则可知,铁芯中产生水平向右的磁场,由楞次定律可知,左侧线圈环绕部分产生向上的电流,则直导线中的电流方向由南向北,由安培定则可知,直导线在小磁针所在位置产生垂直纸面向里的磁场,则小磁针的N极朝垂直纸面向里的方向转动,A正确;开关闭合并保持一段时间后,穿过左侧线圈的磁通量不变,则左侧线圈中的感应电流为零,直导线不产生磁场,则小磁针静止不动,B、C错误;开关闭合并保持一段时间再断开后的瞬间,穿过左侧线圈向右的磁通量减少,则由楞次定律可知,左侧线圈环绕部分产生向下的感应电流,则流过直导线的电流方向由北向南,直导线在小磁针所在处产生垂直纸面向外的磁场,则小磁针的N极朝垂直纸面向外的方向转动,D正确.6.(多选)如图a,螺线管内有平行于轴线的外加匀强磁场,以图中箭头所示方向为其正方向.螺线管与导线框abcd相连,导线框内有一小金属圆环L,圆环与导线框在同一平面内.当螺线管内的磁感应强度B随时间按图b 所示规律变化时()A.在t1~t2时间内,L有收缩趋势B.在t2~t3时间内,L有扩张趋势C.在t2~t3时间内,L内有逆时针方向的感应电流D.在t3~t4时间内,L内有顺时针方向的感应电流解析:选AD.L收缩还是扩张取决于螺线管中产生感应电流的变化情况,t1~t2磁通量的变化率增大,感应电流变大,abcd线框内磁通量变大,L有收缩的趋势,A选项正确;t2~t3时间内磁通量的变化率为常数,产生的感应电流恒定不变,abcd线框内磁感应强度不变,L没有电流,也就没有扩张趋势,B、C选项错误;根据楞次定律,t3~t4时间内由于螺线管内磁通量变化引起的感应电流在线框中为dcba方向并减小,L线圈中原磁场的方向垂直于纸面向里且磁感应强度大小减小,根据楞次定律得L中的感应电流方向为顺时针方向,D选项正确.7.如图为一种早期发电机原理示意图,该发电机由固定的圆形线圈和一对用铁芯连接的圆柱形磁铁构成,两磁极相对于线圈平面对称,在磁极绕转轴匀速转动过程中,磁极中心在线圈平面上的投影沿圆弧XOY运动,(O是线圈中心).则()A.从X到O,电流由E经G流向F,线圈的面积有收缩的趋势B.从X到O,电流由F经G流向E,线圈的面积有扩张的趋势C.从O到Y,电流由F经G流向E,线圈的面积有收缩的趋势D.从O到Y,电流由E经G流向F,线圈的面积有扩张的趋势解析:选D.在磁极绕转轴从X到O匀速转动中,穿过线圈平面的磁通量向上增大,根据楞次定律可知线圈中产生顺时针方向的感应电流,电流由F经G流向E;线圈的每部分受到指向圆心的安培力,线圈的面积有收缩的趋势,故A、B项错误;在磁极绕转轴从O到Y匀速转动中,穿过线圈平面的磁通量向上减小,根据楞次定律可知线圈中产生逆时针方向的感应电流,电流由E经G流向F;线圈的每部分受到背离圆心的安培力,所以线圈的面积有扩张的趋势,故C项错误,D项正确.8.如图甲所示,水平面上的平行导轨MN、PQ上放着两根导体棒ab、cd,两棒中间用绝缘丝线系住.开始时匀强磁场垂直于纸面向里,磁感应强度B随时间t的变化如图乙所示,I和F T分别表示流过导体棒中的电流和丝线的拉力(不计电流之间的相互作用力),则在t0时刻()A.I=0,F T=0 B.I=0,F T≠0C.I≠0,F T=0 D.I≠0,F T≠0解析:选C.t0时刻,磁场变化,磁通量变化,故I≠0;由于B=0,故ab、cd所受安培力均为零,丝线的拉力为零,C项正确.9.如图所示,AOC是光滑的金属导轨,电阻不计,AO沿竖直方向,OC沿水平方向;PQ是金属直杆,电阻为R,几乎竖直斜靠在导轨AO上,由静止开始在重力作用下运动,运动过程中P、Q端始终在金属导轨AOC上;空间存在着垂直纸面向外的匀强磁场,则在PQ杆从开始滑动到P端滑到OC的过程中,PQ中感应电流的方向()A.始终是由P→QB.始终是由Q→PC.先是由P→Q,后是由Q→PD.先是由Q→P,后是由P→Q解析:选C.在PQ杆滑动的过程中,△POQ的面积先增大后减小,穿过△POQ的磁通量先增加后减少,根据楞次定律可知,感应电流的方向先是由P→Q,后是由Q→P,C正确.10.如图所示,质量为m的铜质小闭合线圈静置于粗糙水平桌面上.当一个竖直放置的条形磁铁贴近线圈,沿线圈中线由左至右从线圈正上方等高、匀速经过时,线圈始终保持不动.则关于线圈在此过程中受到的支持力F N 和摩擦力F f的情况,以下判断正确的是()A.F N先大于mg,后小于mgB.F N一直大于mgC.F f先向左,后向右D.线圈中的电流方向始终不变解析:选A.当磁铁靠近线圈时,穿过线圈的磁通量增加,线圈中产生感应电流,线圈受到磁铁的安培力作用,根据楞次定律可知,线圈受到的安培力斜向右下方,则线圈对桌面的压力增大,即F N大于mg,线圈相对桌面有向右运动趋势,受到桌面向左的静摩擦力.当磁铁远离线圈时,穿过线圈的磁通量减小,同理,根据楞次定律可知,线圈受到的安培力斜向右上方,则线圈对桌面的压力减小,即F N小于mg,线圈相对桌面有向右运动趋势,受到桌面向左的静摩擦力.综上可知,F N先大于mg,后小于mg,F f始终向左,故选项B、C错误,A正确;当磁铁靠近线圈时,穿过线圈向下的磁通量增加,线圈中产生感应电流从上向下看是逆时针方向;当磁铁远离线圈时,穿过线圈向下的磁通量减小,线圈中产生感应电流从上向下看是顺时针方向,故选项D错误.11.自1932年磁单极子概念被狄拉克提出以来,不管是理论物理学家还是实验物理学家都一直在努力寻找,但迄今仍然没能找到它们存在的确凿证据.近年来,一些凝聚态物理学家找到了磁单极子存在的有力证据,并通过磁单极子的集体激发行为解释了一些新颖的物理现象,这使得磁单极子艰难的探索之路出现了一丝曙光.如果一个只有N极的磁单极子从上向下穿过如图所示的闭合超导线圈,则从上向下看,这个线圈中将出现()A.先是逆时针方向,然后是顺时针方向的感应电流B.先是顺时针方向,然后是逆时针方向的感应电流C.逆时针方向的持续流动的感应电流D.顺时针方向的持续流动的感应电流解析:选C.N极磁单极子穿过超导线圈的过程中,当磁单极子靠近线圈时,穿过线圈的磁通量增加,且磁场方向从上向下,所以由楞次定律可知感应电流方向为逆时针;当磁单极子远离线圈时,穿过线圈的磁通量减小,且磁场方向从下向上,所以由楞次定律可知感应电流方向为逆时针.因此线圈中产生的感应电流方向不变.由于超导线圈中没有电阻,因此感应电流将长期维持下去,故A、B、D错误,C正确.12. (多选)如图是生产中常用的一种延时继电器的示意图,铁芯上有两个线圈A和B(构成电磁铁),线圈A跟电源连接,线圈B的两端接在一起,构成一个闭合回路.下列说法正确的是()A.闭合开关S时,B中产生与图示方向相同的感应电流B.闭合开关S时,B中产生与图示方向相反的感应电流C.断开开关S时,电磁铁会继续吸住衔铁D一小段时间D.断开开关S时,弹簧K立即将衔铁D拉起解析:选BC.由题意可知,闭合S后,线圈A中产生磁场,穿过线圈B的磁通量要增加,根据楞次定律及右手螺旋定则可知,B中产生与图示方向相反的感应电流,故A错误,B正确;断开S,回路电流减小,铁芯中磁场减小,由楞次定律及右手螺旋定则可知,线圈B产生图示方向的电流,减缓磁场减小的趋势,电磁铁会继续吸住衔铁D 一小段时间,故C 正确,D 错误.13.(山东省2020等级考试)(多选)竖直放置的长直密绕螺线管接入如图甲所示的电路中,通有俯视顺时针方向的电流,其大小按图乙所示的规律变化.螺线管内中间位置固定有一水平放置的硬质闭合金属小圆环(未画出),圆环轴线与螺线管轴线重合.下列说法正确的是( )A .t =T 4时刻,圆环有扩张的趋势B .t =T 4时刻,圆环有收缩的趋势 C .t =T 4和t =3T 4时刻,圆环内的感应电流大小相等 D .t =3T 4时刻,圆环内有俯视逆时针方向的感应电流 解析:选BC .t =T 4时刻,线圈中通有顺时针逐渐增大的电流,则线圈中由电流产生的磁场向下且逐渐增加.由楞次定律可知,圆环有收缩的趋势.A 错误,B 正确;t =3T 4时刻,线圈中通有顺时针逐渐减小的电流,则线圈中由电流产生的磁场向下且逐渐减小,由楞次定律可知,圆环中的感应电流为顺时针,D 错误;t =T 4和t =3T 4时刻,线圈中电流的变化率一致,即由线圈电流产生的磁场变化率一致,则圆环中的感应电流大小相等,C 正确.14.如图所示,在一有界匀强磁场中放一电阻不计的平行金属导轨,虚线为有界磁场的左边界,导轨跟圆形线圈M 相接,图中线圈N 与线圈M 共面、彼此绝缘,且两线圈的圆心重合,半径R M <R N .在磁场中垂直于导轨放置一根导体棒ab ,已知磁场垂直于导轨所在平面向外.欲使线圈N 有收缩的趋势,下列说法正确的是( )A .导体棒可能沿导轨向左做加速运动B .导体棒可能沿导轨向右做加速运动C .导体棒可能沿导轨向左做减速运动D .导体棒可能沿导轨向左做匀速运动解析:选C .导体棒ab 加速向左运动时,导体棒ab 中产生的感应电动势和感应电流增加,由右手定则判断知ab 中电流方向由b →a ,根据安培定则可知M 产生的磁场方向垂直纸面向外,穿过N 的磁通量增大,线圈面积越大抵消的磁感线越多,所以线圈N 要通过增大面积以阻碍磁通量的增大,故A 错误;导体棒ab 加速向右运动时,导体棒ab 中产生的感应电动势和感应电流增加,由右手定则判断知ab 电流方向由a →b ,根据安培定则判断可知M 产生的磁场方向垂直纸面向里,穿过N 的磁通量增大,同理可知B 错误;导体棒ab 减速向左运动时,导体棒ab中产生的感应电动势和感应电流减小,由右手定则判断知ab 中电流方向由b →a ,根据安培定则判断可知M 产生的磁场方向垂直纸面向外,穿过N 的磁通量减小,线圈面积越大抵消的磁感线越多,所以线圈N 要通过减小面积以阻碍磁通量的减小,故C 正确;导体棒ab 匀速向左运动时,导体棒ab 产生的感应电动势和感应电流恒定不变,线圈M 产生的磁场恒定不变,穿过线圈N 中的磁通量不变,没有感应电流产生,则线圈N 不受磁场力,没有收缩的趋势,故D 错误.二、【法拉第电磁感应定律 自感和涡流】典型题1. (多选)如图所示,闭合金属导线框放置在竖直向上的匀强磁场中,匀强磁场的磁感应强度随时间变化.下列说法正确的是( )A .当磁感应强度增加时,线框中的感应电流可能减小B .当磁感应强度增加时,线框中的感应电流一定增大C .当磁感应强度减小时,线框中的感应电流一定增大D .当磁感应强度减小时,线框中的感应电流可能不变解析:选AD .线框中的感应电动势为E =ΔB ΔtS ,设线框的电阻为R ,则线框中的电流I =E R =ΔB Δt ·S R ,因为B 增大或减小时,ΔB Δt可能减小,也可能增大,也可能不变.线框中的感应电动势的大小只和磁通量的变化率有关,和磁通量的变化量无关.故选项A 、D 正确.2.如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中.在Δt 时间内,磁感应强度的方向不变,大小由B 均匀地增大到2B .在此过程中,线圈中产生的感应电动势为( )A .Ba 22ΔtB .nBa 22ΔtC .nBa 2ΔtD .2nBa 2Δt解析:选B .磁感应强度的变化率ΔB Δt =2B -B Δt =B Δt ,法拉第电磁感应定律公式可写成E =n ΔΦΔt =n ΔB ΔtS ,其中磁场中的有效面积S =12a 2,代入得E =n Ba 22Δt,选项B 正确,A 、C 、D 错误. 3.如图所示,长为L 的金属导线弯成一圆环,导线的两端接在电容为C 的平行板电容器上,P 、Q 为电容器的两个极板.磁场方向垂直于环面向里,磁感应强度以B =B 0+kt (k >0)随时间变化.t =0时,P 、Q 两极板电势相等,两极板间的距离远小于环的半径.经时间t ,电容器的P 极板( )A .不带电B .所带电荷量与t 成正比C .带正电,电荷量是kL 2C 4πD .带负电,电荷量是kL 2C 4π解析:选D .磁感应强度均匀增加,回路中产生的感应电动势的方向为逆时针方向,Q 板带正电,P 板带负电,A 错误;由L =2πR ,得R =L 2π,感应电动势E =ΔB Δt ·S =k ·πR 2,解得E =kL 24π,电容器上的电荷量Q =CE =kL 2C 4π,B 、C 错误,D 正确.4.在一空间有方向相反,磁感应强度大小均为B 的匀强磁场,如图所示,垂直纸面向外的磁场分布在一半径为a 的圆形区域内,垂直纸面向里的磁场分布在除圆形区域外的整个区域,该平面内有一半径为b (b >2a )的圆形线圈,线圈平面与磁感应强度方向垂直,线圈与半径为a 的圆形区域是同心圆.从某时刻起磁感应强度在Δt 时间内均匀减小到B 2,则此过程中该线圈产生的感应电动势大小为( )A .πB (b 2-a 2)2ΔtB .πB (b 2-2a 2)ΔtC .πB (b 2-a 2)ΔtD .πB (b 2-2a 2)2Δt解析:选D .磁感线既有垂直纸面向外的,又有垂直纸面向里的,所以可以取垂直纸面向里的方向为正方向.磁感应强度大小为B 时线圈磁通量Φ1=πB (b 2-a 2)-πBa 2, 磁感应强度大小为B 2时线圈磁通量Φ2 =12πB (b 2-a 2)-12πBa 2,因而该线圈磁通量的变化量的大小为ΔΦ=|Φ2-Φ1|=12πB (b 2-2a 2).根据法拉第电磁感应定律可得线圈中产生的感应电动势的大小为E =ΔΦΔt =πB (b 2-2a 2)2Δt.故选项D 正确. 5.在如图所示的电路中,两个灵敏电流表G 1和G 2的零点都在刻度盘中央,当电流从“+”接线柱流入时,指针向右摆;电流从“-”接线柱流入时,指针向左摆.在电路接通后再断开的瞬间,下列说法中符合实际情况的是( )A .G 1表指针向左摆,G 2表指针向右摆B .G 1表指针向右摆,G 2表指针向左摆C .G 1、G 2表的指针都向左摆D .G 1、G 2表的指针都向右摆解析:选B .电路接通后线圈中电流方向向右,当电路断开时,线圈L 中电流减小,产生与原方向同向的自感电动势,与G 2和电阻组成闭合回路,所以G 1中电流方向向右,G 2中电流方向向左,即G 1指针向右摆,G 2指针向左摆,B 正确.6.如图所示,水平“U 形”导轨abcd 固定在匀强磁场中,ab 与cd 平行,间距L 1=0.5 m ,金属棒AB 垂直于ab 且和ab 、cd 接触良好,AB 与导轨左端bc 的距离为L 2=0.8 m ,整个闭合回路的电阻为R =0.2 Ω,磁感应强度为B 0=1 T 的匀强磁场竖直向下穿过整个回路.金属棒AB 通过滑轮和轻绳连接着一个质量为m =0.04 kg 的物体,不计一切摩擦,现使磁场以ΔB Δt=0.2 T/s 的变化率均匀地增大.求:(1)金属棒上电流的方向;(2)感应电动势的大小;(3)物体刚好离开地面的时间(g 取10 m/s 2).解析:(1)由楞次定律可以判断,金属棒上的电流由A 到B .(2)由法拉第电磁感应定律得E =ΔΦΔt =S ΔB Δt=0.08 V . (3)物体刚好离开地面时,其受到的拉力F =mg而拉力F 又等于棒所受的安培力,即mg =F 安=BIL 1 其中B =B 0+ΔB Δtt I =E R解得t =5 s.答案:(1)由A 到B (2)0.08 V (3)5 s7. (多选)如图所示的电路中,L为一个自感系数很大、直流电阻不计的线圈,D1、D2是两个完全相同的电灯,E是内阻不计的电源.t=0时刻,闭合开关S.经过一段时间后,电路达到稳定,t1时刻断开开关S.I1、I2分别表示通过电灯D1和D2的电流,规定图中箭头所示方向为电流正方向,以下各图中能定性描述电流I随时间t变化关系的是()解析:选AC.当S闭合时,L的自感作用会阻碍其中的电流变大,电流从D1流过;当L的阻碍作用变小时,L中的电流变大,D1中的电流变小至零;D2中的电流为电路总电流,电流流过D1时,由于线圈L自感的影响,D2的电流较小,当D1中电流为零时,电流流过L与D2,总电阻变小,电流变大至稳定;当S再断开时,D2马上熄灭,D1与L组成回路,由于L的自感作用,D1慢慢熄灭,电流反向且减小;综上所述知选项A、C正确.8.如图所示,三个灯泡L1、L2、L3的阻值关系为R1<R2<R3,电感线圈L的直流电阻可忽略,D为理想二极管,开关S从闭合状态突然断开时,下列判断正确的是()A.L1逐渐变暗,L2、L3均先变亮,然后逐渐变暗B.L1逐渐变暗,L2立即熄灭,L3先变亮,然后逐渐变暗C.L1立即熄灭,L2、L3均逐渐变暗D.L1、L2、L3均先变亮,然后逐渐变暗解析:选B.开关S处于闭合状态时,由于R1<R2<R3,则分别通过三个灯泡的电流大小I1>I2>I3,开关S 从闭合状态突然断开时,电感线圈产生与L中电流方向一致的自感电动势,由于二极管的反向截止作用,L2立即熄灭,电感线圈、L1、L3组成闭合回路,L1逐渐变暗,通过L3的电流由I3变为I1,再逐渐减小,故L3先变亮,然后逐渐变暗,选项B正确.9. (多选)如图所示,一导线弯成直径为d的半圆形闭合回路,虚线MN右侧有磁感应强度为B的匀强磁场,方向垂直于回路所在的平面.回路以速度v向右匀速进入磁场,直径CD始终与MN垂直.从D点到达边界开始到C 点进入磁场为止,下列说法中正确的是()A .感应电流方向为逆时针方向B .CD 段直导线始终不受安培力C .感应电动势的最大值E =Bd vD .感应电动势的平均值E -=18πBd v解析:选AD .线圈进磁场过程,垂直平面向里的磁通量逐渐增大,根据楞次定律“增反减同”,感应电流方向为逆时针方向,选项A 正确;CD 端导线电流方向与磁场垂直,根据左手定则判断,安培力竖直向下,选项B 错误;线圈进磁场切割磁感线的有效长度是初、末位置的连线,进磁场过程,有效切割长度最长为半径,所以感应电动势最大值为Bd v 2,选项C 错误;感应电动势的平均值E -=ΔΦΔt =B ·12π⎝⎛⎭⎫d 22d v=Bd πv 8,选项D 正确.10. (多选)如图所示,水平面上固定一个顶角为60°的光滑金属导轨MON ,导轨处于磁感应强度大小为B 、方向竖直向下的匀强磁场中,质量为m 的导体棒CD 与∠MON 的角平分线垂直,导轨与棒单位长度的电阻均为r .t =0时刻,CD 在水平外力F 的作用下从O 点以恒定速度v 0沿∠MON 的角平分线向右滑动,在滑动过程中始终保持与导轨良好接触.若棒与导轨均足够长,则( )A .流过导体棒的电流I 始终为B v 03rB .F 随时间t 的变化关系为F =23B 2v 209r tC .t 0时刻导体棒的发热功率为23B 2v 3027r t 0D .撤去F 后,导体棒上能产生的焦耳热为12m v 20解析:选ABC .导体棒的有效切割长度L =2v 0t tan 30°,感应电动势E =BL v 0,回路的总电阻R =(2v 0t tan 30°+2v 0t cos 30°)r ,通过导体棒的电流I =E R =B v 03r ,选项A 正确;导体棒受力平衡,则外力F 与安培力平衡,即F =BIL ,得F =23B 2v 209r t ,选项B 正确;t 0时刻导体棒的电阻为R x =2v 0t 0tan 30°·r ,则导体棒的发热功率P 棒=I 2R x =23B 2v 3027r t 0,选项C 正确;从撤去F 到导体棒停下的过程,根据能量守恒定律有Q 棒+Q 轨=12m v 20-0,得导体棒上能产生的焦耳热Q 棒=12m v 20-Q 轨<12m v 20,选项D 错误. 11.如图所示,abcd 为水平放置的平行“匚”形光滑金属导轨,导轨间距为l ,电阻不计.导轨间有垂直于导轨平面向上的匀强磁场,磁感应强度大小为B .金属杆放置在导轨上,与导轨的接触点为M 、N ,并与导轨成θ角.金属杆以ω 的角速度绕N 点由图示位置匀速转动到与导轨ab 垂直,转动过程中金属杆与导轨始终接触良好,金属杆单位长度的电阻为r .则在金属杆转动过程中( )A .M 、N 两点电势相等B .金属杆中感应电流的方向由N 流向MC .电路中感应电流的大小始终为Bl ω2rD .电路中通过的电荷量为Bl2r tan θ解析:选A .根据题意可知,金属杆MN 为电源,导轨为外电路,由于导轨电阻不计,外电路短路,M 、N 两点电势相等,故选项A 正确;根据右手定则可知金属杆中感应电流的方向是由M 流向N ,故选项B 错误;由于切割磁感线的金属杆长度逐渐变短,E =12B ⎝⎛⎭⎫l sin θ2ω,R =l sin θ r ,I =E R =Bl ω2r sin θ,θ增大,回路中的感应电流逐渐变小,故选项C 错误;由于金属杆在电路中的有效切割长度逐渐减小,所以接入电路的电阻逐渐减小,R >lr ,根据法拉第电磁感应定律有q =I Δt =ΔΦΔt ·R·Δt =ΔΦR <Bl2r tan θ,故选项D 错误.12.如图所示,足够长的平行光滑金属导轨水平放置,宽度L =0.4 m ,一端连接R =1 Ω的电阻.导轨所在空间存在竖直向下的匀强磁场,磁感应强度B =1 T .导体棒MN 放在导轨上,其长度恰好等于导轨间距,与导轨接触良好.导轨和导体棒的电阻均可忽略不计.在平行于导轨的拉力F 作用下,导体棒沿导轨向右匀速运动,速度v =5 m/s.求:(1)感应电动势E 和感应电流I ; (2)在0.1 s 时间内,拉力冲量I F 的大小;(3)若将MN 换为电阻r =1 Ω的导体棒,其他条件不变,求导体棒两端的电压U . 解析:(1)由法拉第电磁感应定律可得,感应电动势 E =BL v =1×0.4×5 V =2 V , 感应电流I =E R =21 A =2 A .(2)拉力大小等于安培力大小 F =BIL =1×2×0.4 N =0.8 N ,冲量大小I F =F Δt =0.8×0.1 N ·s =0.08 N ·s. (3)由闭合电路欧姆定律可得,电路中电流。
电磁感应经典例题及解析电磁感应是电磁学中的重要概念,也是我们日常生活中常常会遇到的现象。
在电磁感应的过程中,磁场的变化会导致电场的产生,进而引发电流的产生。
这一原理广泛应用于发电机、变压器等电磁设备中。
下面我们来看一些经典的电磁感应例题,并对其进行解析。
例题1:一个磁感强度为0.2 T的匀强磁场,以2 m/s的速度向垂直于磁场的方向移动,求导体中感应电动势的大小。
解析:根据电磁感应的原理,导体中感应电动势的大小等于磁感强度与导体的速度的乘积,即E = Bv。
将已知数据代入计算,E = 0.2 T × 2 m/s = 0.4 V。
例题2:一个圆形线圈的半径为10 cm,磁感强度为0.5 T的磁场垂直于线圈的平面,在0.2 s内磁场的强度从0.2 T增加到0.6 T,求线圈中感应电流的大小。
解析:根据电磁感应的原理,感应电流的大小等于感应电动势与电阻的比值,即I = ε/R。
感应电动势可以通过磁场的变化率来计算,即ε = -dφ/dt。
其中,φ表示磁通量。
磁通量的大小等于磁感强度与线圈面积的乘积,即φ = Bπr^2。
将已知数据代入计算,φ = 0.2 T ×π× (0.1 m)^2 = 0.02π Tm^2。
对磁通量关于时间的导数,即dφ/dt,可以计算为(0.6 T - 0.2 T)/0.2 s = 2 T/s。
因此,感应电动势的大小为ε = -2 T/s。
线圈的电阻需要另外给定,才能计算感应电流的大小。
通过以上例题的解析,我们可以看到,在电磁感应问题中,需要根据已知条件来计算磁通量的变化率,从而得到感应电动势的大小。
最后,根据电路中的电阻情况,可以计算出感应电流的大小。
电磁感应是电磁学中的重要概念,掌握电磁感应的原理和应用,对于理解和应用电磁学的知识具有重要意义。
通过解析经典的电磁感应例题,可以加深对电磁感应原理的理解,提高解决实际问题的能力。
电磁感应经典高考题〔全国卷1〕17.某地的地磁场磁感应强度的竖直分量方向向下,大小为4.5x 10-5T 。
一灵敏电压表连接在当地入海河段的两岸,河宽100m ,该河段涨潮和落潮时有海水〔视为导体〕流过。
设落潮时,海水自西向东流,流速为2m/s 。
以下说法正确的选项是A. 河北岸的电势较高B .河南岸的电势较高C .电压表记录的电压为9mVD .电压表记录的电压为5mV【答案】BD【解析】海水在落潮时自西向东流,该过程可以理解为:自西向东运动的导体棒在切割竖直向下的磁场。
根据右手定则,右岸即北岸是正极电势高,南岸电势低,D 对C 错。
根据法拉第电磁感应定律 E 二BLv 二4.5x 10-5x 100x 2二9x 10-3V ,B 对A 错。
【命题意图与考点定位】导体棒切割磁场的实际应用题。
〔全国卷2〕18•如图,空间某区域中有一匀强磁场,磁感应强度方向水平,且垂直于纸面向里,磁场上边界b 和下边界d 水平。
在竖直面内有一矩形金属统一加线圈,线圈上下边的距离很短,下边水平。
线圈从水平面a 开始下落。
已知磁场上下边界之间的距离大于水平面a 、b 之间的距离。
假设线圈下边刚通过水平面b 、c 〔位于磁场中〕和d 时,线圈所受到的磁场力的大小分别为F 、F 和F ,则bedA.F >F >Fdcb C.F >F >Fcbd 【答案】D【解析】线圈从a 到b 做自由落体运动,在b 点开始进入磁场切割磁感线所有受到安培力F ,由于线b圈的上下边的距离很短,所以经历很短的变速运动而进入磁场,以后线圈中磁通量不变不产生感应电流,在c 处不受安培力,但线圈在重力作用下依然加速,因此从d 处切割磁感线所受安培力必然大于b 处,答案D o【命题意图与考点定位】线圈切割磁感线的竖直运动,应用法拉第电磁感应定律求解。
B.F <F <F cdbD.F <F <F cbd〔新课标卷〕21.如下图,两个端面半径同为R的圆柱形铁芯同轴水平放置,相对的端面之间有一缝隙,铁芯上绕导线并与电源连接,在缝隙中形成一匀强磁场一铜质细直棒ab 水平置于缝隙中,且与圆柱轴线等高、垂直•让铜棒从静止开始自由下落,铜棒下落距离为0.2R 时铜棒中电动势大小为L 下落距离为0.8R 时电动势大小为E 2,忽略涡流损耗和边缘效应.关于「E 2的大小和铜棒离开磁场前两端的极性,以下判断正确的选项是 B 、E i >E 2,b 端为正答案:D 又根据右手定则判断电流方向从a 到b ,在电源内部,电流是从负极流向正极的,所以选项D 正确。