钢结构工程事故分析与处理作业(精选)
- 格式:ppt
- 大小:9.37 MB
- 文档页数:161
钢结构火灾事故案例分析一、案例背景2018年11月14日,中国上海发生了一起重大的钢结构火灾事故。
据报道,该事故发生在上海浦东新区的一家工厂内,造成了多人死亡和重大财产损失。
事故发生后,引起了社会的广泛关注和讨论。
钢结构作为现代建筑中常见的一种结构形式,其火灾事故对安全生产和建筑设计有着重要的启示意义。
本文将对该火灾事故进行深入分析,探讨事故的原因、影响和预防措施等问题,以期为类似事故的发生提供借鉴和警示。
二、事故调查与分析1. 事故发生时间和地点2018年11月14日,上海浦东新区一家大型工厂内发生了火灾。
事故发生在该工厂的钢结构建筑内,火势迅速蔓延,造成了大面积的破坏。
2. 事故原因据初步调查结果显示,该火灾事故的发生主要原因为以下几个方面:(1)设备故障:工厂内的一台机器因故障而发生了火灾,导致火势蔓延。
(2)建筑设计问题:工厂的钢结构建筑在设计和施工过程中存在一些隐患,加之没有进行定期的维护和检查,造成了火灾事故的发生。
(3)人为原因:工厂内的员工在发现火情后未能及时采取有效的应对措施,导致火势迅速蔓延,造成了较大的伤亡和财产损失。
3. 事故影响该火灾事故造成了严重的人员伤亡和财产损失,给工厂的生产经营和社会的稳定带来了严重的影响。
此外,火灾事故也引发了社会对安全生产和建筑设计的关注和反思,促使相关部门加强了对类似事故的预防和处置能力。
三、问题分析与意义1. 建筑结构设计存在的问题钢结构作为一种现代化的建筑结构形式,具有承重能力强、抗震性好的特点,因此在现代建筑中得到了广泛的应用。
然而,对于钢结构建筑,在设计和施工过程中存在一定的隐患,这在火灾事故中往往会被放大。
从本次火灾事故可以看出,建筑结构设计与施工过程中的质量问题是造成事故发生的重要原因之一。
因此,相关部门和企业在进行建筑设计和施工时应该加强对钢结构建筑的监管和质量控制,确保建筑结构的安全性和稳定性。
2. 安全生产意识的普及火灾事故中,员工未能及时发现火情并采取有效的应对措施,这也凸显了工厂内人员的安全意识相对薄弱。
钢结构⼯程事故剖析钢结构⼯程事故剖析1钢结构⼯程灾难性事故案例1.1设计不当造成的事故1. 1.1魁北克钢桥垮塌(事故1)加拿⼤跨越魁北克河三跨伸臂桥(如图1(a)所⽰),两边跨各长152.4m,中间跨长548.64m.1907年8⽉29⽇,该桥梁垮塌(如图1(b)所⽰),9000t重的钢桥坠⼊河中,死亡75⼈[3].事故原因:1)钢桥格构式下弦压杆的⾓钢缀条过于柔弱(其总⾯积仅为弦杆截⾯⾯积的 1.1%),这样柔弱的受压承载⼒远⼩于它实际所承受的压⼒,缀条在压⼒作⽤下失去稳定性,导致承载能⼒丧失,未能起到缀条将分肢连接成可靠整体的作⽤.未被可靠连接的分肢不能有效发挥承载作⽤,在压⼒作⽤下失稳,最终导致整个结构破坏.这是典型的局部失稳导致结构整体破坏的典型案例.2)这次严重的⼯程事故还与设计变更有关.(a)远景图(b)垮塌图图1魁北克钢桥钢桥原设计中间跨跨度为487.68m,但后来设计师Cooper认为河床中部⽔流湍急,若将两⽀墩分别向岸边移动,修建桥墩的费⽤会节省很多,于是将主跨跨度调整为548.64m,跨度增加了12.5%.这⼀变更使该桥成为当时世界上跨度最⼤的伸臂桥.设计师主观地认为这样做(指中间跨加⼤跨度)没有问题,因此对桥梁内⼒及其引起的效应改变没有重新计算.教训:1)本案例使⼯程师和学者们认识到缀条在格构式受压构件中的重要作⽤.虽然缀条是起构造作⽤的,但实际上,由于初始弯曲的存在,格构式轴⼼受压构件在长度⽅向是有弯矩作⽤的,⽽沿杆长的弯矩变化必然产⽣剪⼒,该剪⼒主要由缀条承受,因此受压缀条受到轴⼒作⽤.如果缀条截⾯过⼩,承载能⼒不⾜,就难免发⽣上述悲剧.通过这个案例,可以使我们充分认识到格构式构件中作为连接件的缀条的重要性,对相关公式和规范中的相关构造条⽂⽣起重视之⼼,因为令⼈头疼的、枯燥的构造条款来⾃⾎淋淋的⼯程事故的教训,如果早⽇有了这些条⽂,某些鲜活的⽣命可能就不会消失.2)跨度调整之后,按梁结构对这⼀结构进⾏近似分析,可以发现实际上这⼀变动会使各构件的内⼒增加到原来的27%,位移增加到原来的160%,这样的增⼤⽐例,必须重新进⾏计算,重新设计构件,才能安全地承担相应荷载,完成预定功能.1. 1.2Hartford⽹架失稳(事故2)美国Connecticut州Hartford城⼀体育馆⽹架于1978年1⽉⼤⾬雪后倒塌(如图2所⽰).该⼯程为91.4m×109.7m⽹架,4个等边⾓钢组成的⼗字形截⾯杆件⽤作受压弦杆和腹杆[4].图2Hartford城体育馆⽹架垮塌事故原因:只考虑了压杆的弯曲屈曲,没有考虑扭转屈曲,更没考虑到因⽀撑偏⼼⽽发⽣的弯扭屈曲,结果受压杆因弯扭失稳⽽破坏,进⽽造成整个结构失稳垮塌.教训:1)结构⼯程是极为复杂的系统,我国的规范是强制性规范,是总结以往⼯程经验和研究成果的结晶,遵循规范可以⼤⼤避免⼯程事故的发⽣,但规范并不是万能的.由于社会发展提出的功能需要、造成的技术可能和建筑师求新求变的本能欲望等复杂原因,⼯程常是活跃的、⽣动的.层出不穷的新结构往往没有现成规范可循,某些超⼤跨、超⾼层建筑物即便采⽤了成熟的结构形式,其参数也往往超限(超过规范的容许值或推荐值).⽽规范往往10年才修正、补充⼀次,其中也只纳⼊经过较多解析、试验和数值分析等⽅法研究⽐较成熟的结构形式和相应构件的相关条款.不深⼊掌握规范不⾏,但⼀味盲从规范也不⾏.我们⼀⽅⾯要不畏枯燥繁琐,吃透规范条⽂,最⼤限度地降低⼯程风险,同时⼜要了解规范的滞后性和局限性,以⾃⼰的⼒学、结构知识和⼯程经验为基础做出独⽴的判断.2)⼈类对⼯程的认识、对结构原理的深⼊理解不是⼀蹴⽽就的,从⼯程事故中汲取的教训,是⼯程科学进步的重要动⼒和灵感源泉.从类似⼯程事故中汲取教训,我国专家对⼗字形受压杆件进⾏了相关的理论研究和实验研究,在2003年的GB50017—2003《钢结构设计规范》中已纳⼊了该构件的弯扭稳定验算公式.1. 1.3轻钢梭形屋架失稳倒塌(事故3)1990年2⽉,辽宁省某重型机械⼚计量楼增层会议室14.4m跨的轻钢梭形屋架腹杆平⾯外出现半波屈曲,致使屋盖迅速塌落(如图3所⽰),造成42⼈死亡、179⼈受伤(当时正有305⼈在开会).图3轻钢梭形屋架⽀撑的屋盖发⽣倒塌事故原因:该轻钢梭形屋架适⽤于屋⾯荷载较⼩的情况,因为轻钢结构要求“轻对轻”(即荷载轻、⾃重轻),但是由于设计⼈员对此原则未能掌握,误⽤了重型屋盖,使钢屋架腹杆受到的实际⼒要⼤于按轻型屋盖确定的构件承载能⼒,⽽且还错⽤了计算长度系数,导致受压腹杆的平⾯外实际计算长度系数λy>300,如此纤细的受压腹杆不仅在稳定承载⼒上⽆法满⾜实际承载需要,⽽且从构造上也已经远远超过规范限值(受压构件长细⽐容许值为150,受拉杆为300).教训:1)我们应该充分认识不同的钢屋架应采⽤哪种钢屋盖(重型屋盖还是轻型屋盖).2)对受压腹杆的计算长度不得马虎,必须正确理解规范中对此类构件的有关规定,并严格执⾏,必要时可进⾏⾼等分析或者采⽤试验验证. 1.2安装不当造成的事故(事故4)1957年前苏联古⽐雪夫列宁冶⾦⼚锻压车间1200m2钢屋盖塌落.事故原因:⼀对拉、压钢杆装配颠倒.钢结构由于材料轻质⾼强,其构件通常较为纤细.在这种情况下,受拉构件只要满⾜强度和刚度的要求即可,因⽽长细⽐通常较⼤.⽽受压构件要同时满⾜强度、刚度、稳定性要求,并且通常是稳定条件在控制设计,长细⽐通常要⽐受拉构件⼩得多.在⼯程中,⼀旦拉、压杆颠倒配置,原本的受压杆⽤受拉杆代替,根据欧拉公式P cr=π2EI/(µl)2[5],受拉杆的计算长度(µl)通常要⽐受压杆的计算长度⼤得多,这样误⽤为受压杆的受拉杆能够承受的P cr要⽐本应由受压杆承担的设计压⼒⼩很多,杆件就会失去稳定发⽣破坏,并且造成附近杆件的⾻牌效应,接连发⽣破坏,进⽽造成整个结构的破坏.教训:这个事故可以鲜明⽣动地向学⽣阐明钢结构中拉、压构件在本质上的区别.将来从事钢结构领域的⼯作,不管是设计、制作,还是施⼯,都必须认真理解钢构件设计的基本原理,并且要认真负责,绝不允许把拉、压构件颠倒配置,以免类似事故再度发⽣.1.3施⼯不当造成的事故(事故5)宁波某轻钢门式刚架施⼯阶段倒塌(如图4所⽰).图中⼀系列门式刚架在施⼯过程中倒塌,发⽣严重塑性变形,修复极为困难,经济损失惨重.图4门式刚架施⼯倒塌事故原因:施⼯顺序不当、未设置必要的⽀撑等.门式刚架作为⼀种平⾯结构,在平⾯外的尺⼨⾮常⼩(仅仅是钢梁或钢柱的翼缘宽度),平⾯外的刚度很弱,并且很容易发⽣倾覆.在结构正常⼯作时,平⾯刚架体系通过纵向的柱间⽀撑来承受平⾯外作⽤,并防⽌结构倾覆.教训:施⼯中,单榀门式刚架是没有平⾯外承载能⼒的,必须及时设置⽀撑(柱间和屋⾯⽀撑),使两榀门式刚架通过⽀撑连接成⼀个有空间刚度的“可靠承载单元”,其他榀门式刚架通过刚性系杆与该“可靠承载单元”连接,才能避免在扰动作⽤下,门式刚架发⽣倒塌或倾覆. 2钢结构⼯程事故的影响因素2.1构件稳定性不⾜因为钢材轻质⾼强,所以钢构件通常做得⽐较纤细,这样的杆件在压⼒作⽤下,有可能发⽣失稳.失稳可能导致构件承载能⼒完全或部分丧失,从⽽引发事故.在钢构件设计中,稳定因素常常是最主要的控制因素.在钢结构事故中,构件或结构失稳占有很⼤的⽐例,上述5个例⼦,都与构件失稳有直接或间接关系.2.2设计缺乏合理性事故1、2、3都是设计不合理所致.事故1发⽣的原因在于设计师对缀条在格构式受压构件中的重要作⽤认识不⾜,没有认识到实际⼯程与理想模型的不同,从⽽发⽣了缀条破坏导致整个结构破坏的事故.事故2是由于设计师对⼗字形截⾯杆件扭转屈曲的可能性认识不⾜造成的.事故3是设计师误⽤了重型屋盖和错⽤了计算长度系数的双重错误所致.设计是钢结构⼯程的龙头,设计环节出了问题通常⽆法在其他阶段进⾏弥补,这就要求钢结构设计⼈员具有扎实的理论基础,对所设计的钢结构和钢构件有透彻了解,避免发⽣强度、刚度、稳定性⽅⾯的原则性设计错误,从⽽避免因设计失误导致的钢结构事故.2.3构件安装错误设计师的设计意图归根到底要靠制造⼈员来实现,制造⼈员缺少必要的钢结构理论知识,难以领会设计意图,或责任感不强都可能导致构件安装错误,使结构最终性态与设计意图不符,难以承受既定荷载,发⽣类似事故4那样的整体破坏.2.4施⼯不够规范⼟⽊⼯程领域存在着⼀定程度的重设计、轻施⼯的错误倾向,实际上,钢结构的施⼯往往涉及结构性态的复杂变化,可以说施⼯阶段的困难程度和技术含量,⼀点也不⽐设计阶段低,甚⾄犹有过之,在钢结构越来越复杂的今天就更是如此.某些施⼯单位不能在透彻理解结构施⼯原理的基础上制定科学合理的施⼯⽅案,或者不能严格遵守施⼯规范和施⼯⽅案,就可能因施⼯失误造成类似事故5那样的重⼤事故.2.5⼯程事故的复杂性⼯程事故的原因往往较为复杂,不⼀定是单⼀因素引起,例如上述魁北克钢桥垮塌事故,是对格构式构件缀条作⽤及受⼒性能缺少透彻了解和变更结构跨度后未对结构重新进⾏分析、论证双重原因所致,再加上盲⽬信任设计专家,监管不到位等因素共同导致了⼯程悲剧.再如上述轻钢梭形屋架失稳倒塌,是错⽤计算长度系数和轻钢结构误⽤重型屋盖的双重错误导致的结构破坏.实际上,在⼀个钢结构⼯程的设计、制作、施⼯等任⼀环节如果没有⾜够的责任⼼和对结构原理缺乏必要的了解,都可能犯导致结构整体或局部破坏的错误,造成巨⼤的⽣命财产损失.有些错误虽然不会马上导致结构的破坏,但由于结构⼯程的使⽤期往往长达50年、100年,这些问题隐藏在结构中,在超载、飓风、⼤震等⽐较极端的条件下就可能会发⽣破坏,成为⼯程中的极⼤隐患,其危害性也显⽽易见,必须排除和杜绝.。
钢结构工程事故剖析1钢结构工程灾难性事故案例1.1设计不当造成的事故1. 1.1魁北克钢桥垮塌(事故1)加拿大跨越魁北克河三跨伸臂桥(如图1(a)所示),两边跨各长152.4m,中间跨长548.64m.1907年8月29日,该桥梁垮塌(如图1(b)所示),9000t重的钢桥坠入河中,死亡75人[3].事故原因:1)钢桥格构式下弦压杆的角钢缀条过于柔弱(其总面积仅为弦杆截面面积的 1.1%),这样柔弱的受压承载力远小于它实际所承受的压力,缀条在压力作用下失去稳定性,导致承载能力丧失,未能起到缀条将分肢连接成可靠整体的作用.未被可靠连接的分肢不能有效发挥承载作用,在压力作用下失稳,最终导致整个结构破坏.这是典型的局部失稳导致结构整体破坏的典型案例.2)这次严重的工程事故还与设计变更有关.(a)远景图(b)垮塌图图1魁北克钢桥钢桥原设计中间跨跨度为487.68m,但后来设计师Cooper认为河床中部水流湍急,若将两支墩分别向岸边移动,修建桥墩的费用会节省很多,于是将主跨跨度调整为548.64m,跨度增加了12.5%.这一变更使该桥成为当时世界上跨度最大的伸臂桥.设计师主观地认为这样做(指中间跨加大跨度)没有问题,因此对桥梁内力及其引起的效应改变没有重新计算.教训:1)本案例使工程师和学者们认识到缀条在格构式受压构件中的重要作用.虽然缀条是起构造作用的,但实际上,由于初始弯曲的存在,格构式轴心受压构件在长度方向是有弯矩作用的,而沿杆长的弯矩变化必然产生剪力,该剪力主要由缀条承受,因此受压缀条受到轴力作用.如果缀条截面过小,承载能力不足,就难免发生上述悲剧.通过这个案例,可以使我们充分认识到格构式构件中作为连接件的缀条的重要性,对相关公式和规范中的相关构造条文生起重视之心,因为令人头疼的、枯燥的构造条款来自血淋淋的工程事故的教训,如果早日有了这些条文,某些鲜活的生命可能就不会消失.2)跨度调整之后,按梁结构对这一结构进行近似分析,可以发现实际上这一变动会使各构件的内力增加到原来的27%,位移增加到原来的160%,这样的增大比例,必须重新进行计算,重新设计构件,才能安全地承担相应荷载,完成预定功能.1. 1.2Hartford网架失稳(事故2)美国Connecticut州Hartford城一体育馆网架于1978年1月大雨雪后倒塌(如图2所示).该工程为91.4m×109.7m网架,4个等边角钢组成的十字形截面杆件用作受压弦杆和腹杆[4].图2Hartford城体育馆网架垮塌事故原因:只考虑了压杆的弯曲屈曲,没有考虑扭转屈曲,更没考虑到因支撑偏心而发生的弯扭屈曲,结果受压杆因弯扭失稳而破坏,进而造成整个结构失稳垮塌.教训:1)结构工程是极为复杂的系统,我国的规范是强制性规范,是总结以往工程经验和研究成果的结晶,遵循规范可以大大避免工程事故的发生,但规范并不是万能的.由于社会发展提出的功能需要、造成的技术可能和建筑师求新求变的本能欲望等复杂原因,工程常是活跃的、生动的.层出不穷的新结构往往没有现成规范可循,某些超大跨、超高层建筑物即便采用了成熟的结构形式,其参数也往往超限(超过规范的容许值或推荐值).而规范往往10年才修正、补充一次,其中也只纳入经过较多解析、试验和数值分析等方法研究比较成熟的结构形式和相应构件的相关条款.不深入掌握规范不行,但一味盲从规范也不行.我们一方面要不畏枯燥繁琐,吃透规范条文,最大限度地降低工程风险,同时又要了解规范的滞后性和局限性,以自己的力学、结构知识和工程经验为基础做出独立的判断.2)人类对工程的认识、对结构原理的深入理解不是一蹴而就的,从工程事故中汲取的教训,是工程科学进步的重要动力和灵感源泉.从类似工程事故中汲取教训,我国专家对十字形受压杆件进行了相关的理论研究和实验研究,在2003年的GB50017—2003《钢结构设计规范》中已纳入了该构件的弯扭稳定验算公式.1. 1.3轻钢梭形屋架失稳倒塌(事故3)1990年2月,辽宁省某重型机械厂计量楼增层会议室14.4m跨的轻钢梭形屋架腹杆平面外出现半波屈曲,致使屋盖迅速塌落(如图3所示),造成42人死亡、179人受伤(当时正有305人在开会).图3轻钢梭形屋架支撑的屋盖发生倒塌事故原因:该轻钢梭形屋架适用于屋面荷载较小的情况,因为轻钢结构要求“轻对轻”(即荷载轻、自重轻),但是由于设计人员对此原则未能掌握,误用了重型屋盖,使钢屋架腹杆受到的实际力要大于按轻型屋盖确定的构件承载能力,而且还错用了计算长度系数,导致受压腹杆的平面外实际计算长度系数λy>300,如此纤细的受压腹杆不仅在稳定承载力上无法满足实际承载需要,而且从构造上也已经远远超过规范限值(受压构件长细比容许值为150,受拉杆为300).教训:1)我们应该充分认识不同的钢屋架应采用哪种钢屋盖(重型屋盖还是轻型屋盖).2)对受压腹杆的计算长度不得马虎,必须正确理解规范中对此类构件的有关规定,并严格执行,必要时可进行高等分析或者采用试验验证. 1.2安装不当造成的事故(事故4)1957年前苏联古比雪夫列宁冶金厂锻压车间1200m2钢屋盖塌落.事故原因:一对拉、压钢杆装配颠倒.钢结构由于材料轻质高强,其构件通常较为纤细.在这种情况下,受拉构件只要满足强度和刚度的要求即可,因而长细比通常较大.而受压构件要同时满足强度、刚度、稳定性要求,并且通常是稳定条件在控制设计,长细比通常要比受拉构件小得多.在工程中,一旦拉、压杆颠倒配置,原本的受压杆用受拉杆代替,根据欧拉公式P cr=π2EI/(μl)2[5],受拉杆的计算长度(μl)通常要比受压杆的计算长度大得多,这样误用为受压杆的受拉杆能够承受的P cr要比本应由受压杆承担的设计压力小很多,杆件就会失去稳定发生破坏,并且造成附近杆件的骨牌效应,接连发生破坏,进而造成整个结构的破坏.教训:这个事故可以鲜明生动地向学生阐明钢结构中拉、压构件在本质上的区别.将来从事钢结构领域的工作,不管是设计、制作,还是施工,都必须认真理解钢构件设计的基本原理,并且要认真负责,绝不允许把拉、压构件颠倒配置,以免类似事故再度发生.1.3施工不当造成的事故(事故5)宁波某轻钢门式刚架施工阶段倒塌(如图4所示).图中一系列门式刚架在施工过程中倒塌,发生严重塑性变形,修复极为困难,经济损失惨重.图4门式刚架施工倒塌事故原因:施工顺序不当、未设置必要的支撑等.门式刚架作为一种平面结构,在平面外的尺寸非常小(仅仅是钢梁或钢柱的翼缘宽度),平面外的刚度很弱,并且很容易发生倾覆.在结构正常工作时,平面刚架体系通过纵向的柱间支撑来承受平面外作用,并防止结构倾覆.教训:施工中,单榀门式刚架是没有平面外承载能力的,必须及时设置支撑(柱间和屋面支撑),使两榀门式刚架通过支撑连接成一个有空间刚度的“可靠承载单元”,其他榀门式刚架通过刚性系杆与该“可靠承载单元”连接,才能避免在扰动作用下,门式刚架发生倒塌或倾覆. 2钢结构工程事故的影响因素2.1构件稳定性不足因为钢材轻质高强,所以钢构件通常做得比较纤细,这样的杆件在压力作用下,有可能发生失稳.失稳可能导致构件承载能力完全或部分丧失,从而引发事故.在钢构件设计中,稳定因素常常是最主要的控制因素.在钢结构事故中,构件或结构失稳占有很大的比例,上述5个例子,都与构件失稳有直接或间接关系.2.2设计缺乏合理性事故1、2、3都是设计不合理所致.事故1发生的原因在于设计师对缀条在格构式受压构件中的重要作用认识不足,没有认识到实际工程与理想模型的不同,从而发生了缀条破坏导致整个结构破坏的事故.事故2是由于设计师对十字形截面杆件扭转屈曲的可能性认识不足造成的.事故3是设计师误用了重型屋盖和错用了计算长度系数的双重错误所致.设计是钢结构工程的龙头,设计环节出了问题通常无法在其他阶段进行弥补,这就要求钢结构设计人员具有扎实的理论基础,对所设计的钢结构和钢构件有透彻了解,避免发生强度、刚度、稳定性方面的原则性设计错误,从而避免因设计失误导致的钢结构事故.2.3构件安装错误设计师的设计意图归根到底要靠制造人员来实现,制造人员缺少必要的钢结构理论知识,难以领会设计意图,或责任感不强都可能导致构件安装错误,使结构最终性态与设计意图不符,难以承受既定荷载,发生类似事故4那样的整体破坏.2.4施工不够规范土木工程领域存在着一定程度的重设计、轻施工的错误倾向,实际上,钢结构的施工往往涉及结构性态的复杂变化,可以说施工阶段的困难程度和技术含量,一点也不比设计阶段低,甚至犹有过之,在钢结构越来越复杂的今天就更是如此.某些施工单位不能在透彻理解结构施工原理的基础上制定科学合理的施工方案,或者不能严格遵守施工规范和施工方案,就可能因施工失误造成类似事故5那样的重大事故.2.5工程事故的复杂性工程事故的原因往往较为复杂,不一定是单一因素引起,例如上述魁北克钢桥垮塌事故,是对格构式构件缀条作用及受力性能缺少透彻了解和变更结构跨度后未对结构重新进行分析、论证双重原因所致,再加上盲目信任设计专家,监管不到位等因素共同导致了工程悲剧.再如上述轻钢梭形屋架失稳倒塌,是错用计算长度系数和轻钢结构误用重型屋盖的双重错误导致的结构破坏.实际上,在一个钢结构工程的设计、制作、施工等任一环节如果没有足够的责任心和对结构原理缺乏必要的了解,都可能犯导致结构整体或局部破坏的错误,造成巨大的生命财产损失.有些错误虽然不会马上导致结构的破坏,但由于结构工程的使用期往往长达50年、100年,这些问题隐藏在结构中,在超载、飓风、大震等比较极端的条件下就可能会发生破坏,成为工程中的极大隐患,其危害性也显而易见,必须排除和杜绝.。
钢结构事故分析与处理【摘要】随着我国在建筑施工中对钢结构的使用频率越来越高,因为钢结构施工不当而造成的钢结构事故也越来越多。
本文研究钢结构事故的分析和处理,拟在为我国钢结构施工出现的事故提出一些更为有效的分析和处理方法。
【关键词】钢结构;事故;分析;处理一、前言钢结构施工中事故的出现包涵多原因,对于材质的选择、施工要点的掌握、人员的掌控等等多方面的操作不当都有可能会导致钢结构事故的出现。
出现了钢结构事故之后,我们要进一步的研究分析钢结构事故的原因,并且进一步的进行处理,尽可能防止出现同样原因的钢架结构事故。
二、钢结构工程概述钢结构工程是以钢材制作为主的结构,是主要的建筑结构类型之一。
钢结构是现代建筑工程中较普通的结构形式之一。
中国是最早用铁制造承重结构的国家,远在秦始皇时代(公元前246-219年),就已经用铁做简单的承重结构,而西方国家在17世纪才开始使用金属承重结构。
公元3-6世纪,聪明勤劳的中国人民就用铁链修建铁索悬桥,著名的四川泸定大渡河铁索桥,云南的元江桥和贵州的盘江桥等都是中国早期铁体承重结构的例子。
三、钢结构的破坏与损伤1、力作用引起的破坏或损伤如裂纹、断裂、失稳、弯曲和局部挠曲、磨损、连接破坏等。
(一)结构实际工作条件与设计条件不符,主要是荷载确定不准或严重超载。
导致内力分析、截面选择、构造处理和节点设计错误;(二)结构体系、构件、节点等实际作用的计算图形,不可避免地简化和理想化,而结构实际作用的条件和特征又研究得不够,从而造成实际工作应力状态与理论分析应力状态的差异,导致设计计算结果出现较大差异;(三)母材和焊接连接中,熔融金属中有导致应力集中并加速疲劳缺陷或疲劳破坏的因素,从而降低了结构材料强度的特征值;(四)制造、安装时构件截面、焊缝尺寸、螺栓和铆钉数目及排列等产生偏差,超过设计与规范的规定;(五)在安装和使用过程中,造成结构构件的相对位置变化,如檩条挪位、使用中构件截面以外变形、或者在杆件上随意加焊和切割。
钢筋工程专项施工方案的施工安全事故案例分析与处理引言:钢筋工程是建筑施工中不可或缺的重要环节,但由于施工过程中存在一系列的风险和隐患,很容易发生安全事故。
本文将通过分析一些实际案例,探讨钢筋工程施工中的安全问题,并提出相应的解决方案,以期提高施工安全水平。
1. 案例一:高层建筑钢筋工程施工事故在某高层建筑钢筋工程施工过程中,一名工人因操作不当导致坠落,造成严重伤害。
经过调查,发现该工人没有正确使用安全带,并且在高空作业时没有进行有效的固定措施。
分析:该事故的发生主要是由于工人对安全操作规程不熟悉,也缺乏必要的安全意识。
另外,在施工现场缺乏有效的安全监督和管理,也是导致事故发生的原因之一。
解决方案:1. 提高工人的安全意识,加强安全培训,确保每位工人都熟悉并遵守安全操作规程。
2. 强化现场安全监督,设立专门的安全监控岗位,定期进行安全检查和巡视。
3. 加强安全设施的设置,如安全带、安全网等,确保高空作业人员的安全。
2. 案例二:钢筋焊接工程施工事故在某钢筋焊接工程施工过程中,由于焊接工人操作不当,发生了火灾事故。
火势迅速蔓延,造成严重的人员伤亡和财产损失。
分析:钢筋焊接工程涉及高温作业,一旦操作不当,很容易引发火灾。
此次事故的发生主要是由于焊接工人没有正确使用防护设备,同时施工现场的消防设备和应急预案不完善。
解决方案:1. 提供全面的安全培训,确保焊接工人熟悉焊接操作规程,并正确佩戴防护设备。
2. 加强现场消防设备的设置,确保灭火器、消防栓等设备的正常运行。
3. 制定完善的应急预案,明确各岗位责任和应急处理措施,确保在发生火灾时能够迅速有效地进行救援和疏散。
3. 案例三:钢筋加工厂施工事故某钢筋加工厂在进行钢筋加工过程中,发生了机械设备故障导致工人受伤的事故。
经过调查,发现该厂长期忽视设备维护和保养,导致设备故障频繁发生。
分析:这起事故的发生主要是由于钢筋加工厂对设备维护和保养工作的重视程度不够,导致设备故障率较高。
钢结构事故分析及处理钢结构建筑的发展,也是一个国家钢产量、建筑技术发展的象征与标志,钢结构与其他的建筑结构相比,无论是结构的性能,还是使用功能及经济效益,都有较大的优越性,其优点有自重轻、预生成化程度高、钢材的塑性和韧性好、钢结构建筑更富有功能化、能满足超高和大跨度的要求、符合国家“绿色、环保、节能”的环保理念,但钢结构工程也有其弊端,其产生的原因、加固方法也呈多元化,主要影响因素:人员、材料、施工工艺、机械设备、环境因素。
一、钢结构材料引起的缺陷及事故钢结构具有塑性和韧性好、强度高、截面小、重量轻等许多优点。
但由于管理和质量检验等方面的原因,已建钢结构也存在比较多的问题,有些问题甚至反复出现。
实践表明,这些问题的产生大多与材料的选择、检验、使用、维护有关。
1、钢材性能与钢结构工程质量的联系(1)强度,钢材强度达不到要求与工程中调剂代换,钢材在流通领域的多次周转,数据传抄有误、库存混放,厂家生产钢材材质差,使用时质检不严等有关。
(2)塑性,具有良好塑性的钢材,在应力超过屈服强度后能产生显著的塑性(残余)变形而不立即断裂。
(3)韧性,冲击韧性指标是保证动载结构和焊接结构质量的基本指标,因为经常承受动力荷载的结构发生脆断的可能性打,而对于焊接结构,由于刚性较打,焊接残余应力也较大,焊缝附近的材质容易变坏,所以更易在动力荷载作用下脆断。
(4)可焊性,施工可焊性好,则在一定的焊接工艺条件下,焊缝金属和近缝区均不会产生裂纹,焊接接头和焊缝的冲击韧性以及缝区的塑性,均不会低于母材的力学性能。
(5)冷弯性能,冷弯性能指钢材在常温下加工生产塑性变形时,对产生裂缝的抵抗能力。
它通过冷弯试验确定,良好的冷弯性能是保证钢材冷加工制作质量的先决条件。
(6)耐久性,钢材的耐久性是决定钢结构使用寿命的基本因素。
2、影响钢材性能的因素分析(1)化学成分钢的含碳量小于2%的铁碳合金,碳大于2%时则为铸铁,而碳素结构钢由纯铁、碳及杂质元素组成,其中纯铁约占99%,碳及杂质元素约占1%。
钢结构工程施工质量事故分析3篇钢结构工程施工质量事故分析1钢结构工程施工质量事故分析随着钢结构工程在建筑行业中的广泛应用,其在建筑施工中所占的重要地位也越来越受到人们的重视。
钢结构工程在建筑施工中的主要特点是施工速度快、质量高、工期短,然而在实际施工过程中,钢结构工程中的施工质量事故也时有发生。
这些事故不仅会造成人员伤亡和财产损失,还会影响游客的游览体验,给建筑公司的信誉带来不良影响。
因此,深入分析钢结构工程施工质量事故成因,提出控制措施和预防方法,对提高施工质量和工程安全具有重要意义。
一、钢结构工程施工质量事故的分类钢结构工程施工质量事故一般可分为以下四类:1. 设计质量不足引发的事故:这类事故主要是由于设计师在设计过程中未能考虑到建筑施工中的具体情况,造成设计不够完善,从而导致工程质量问题。
2. 材料质量不合格引发的事故:这类事故主要是由于材料采购环节中出现了问题,例如采购了质量不合格的钢材、焊材等原材料,从而导致工程质量问题。
3. 施工方法不规范引发的事故:这类事故主要是由于施工人员在施工过程中因为经验不足、操作不规范等原因所导致的工程质量问题。
4. 管理不当引发的事故:这类事故主要是由于建筑公司在工程管理过程中存在漏洞,导致工程质量问题和事故的发生。
钢结构工程施工质量事故的发生是多方面因素所致,建筑公司在开展施工前,需要充分考虑工程的可行性、工期控制、环境保护等方方面面,从而确保施工的安全、质量和进度。
二、钢结构工程施工质量事故的原因分析1. 设计质量不足设计质量不足是导致钢结构工程施工质量事故的重要原因之一。
设计师在设计过程中未能实地考察施工现场情况,造成设计不够完善,才会在施工过程中出现问题。
同时,在设计过程中,也需要考虑到防火、防氧化等因素,不能仅追求外形美观和造型新颖。
因此,建筑公司在选择设计机构时,应该考虑到设计机构的经验、能力和口碑,确保设计质量合格。
2. 材料质量不合格材料质量不足也是导致钢结构工程施工质量事故的重要原因之一。
钢结构安装坍塌事故案例分析及警示1、零事故安全文化的理念国外零事故的定义:预防所有可能事故,包含重大伤亡事故、财产损失、停工、施工局部受限制和进度延误等。
工程施工的安全事故发生遵循“工程事故冰山模型“,即一次重大安全事故,建立在100次的小安全事故之上;100次小安全事故又建立在1000次安全隐患上。
2、钢结构安装坍塌事故类型及原因分析2.1钢网格工程安装坍塌事故1)施工方案不合理,无相关施工验算钢网格施工是一项技术性很强、精度要求高的工作,必须具备专业资质的施工单位和丰富施工经验,必须由具备专业资质的施工单位和丰富施工经验的安装人员完成,还要制定出详细合理的施工方案和完备的施工组织设计,并进行必要的施工阶段验算,特别是结合安装方法和吊装机械特点的吊装验算。
2)结构安装阶段状态与设计成型状态不一致钢网格结构除采用满堂脚手架外,采用其它的安装方法时,结构在安装阶段的受力状态与使用阶段的状态有较大差别,特别是安装阶段钢桁架之间的连系撑和剪刀撑直接决定了大跨度钢桁架的平面外稳定性,其安装的最少数量应有必要的计算复核。
南京浦口发生的钢结构安装事故,5榀桁架由西向东依次倒塌。
事故的主要原因为钢排架安装过程中屋盖部分钢桁架间仅安装了纵向系杆和檩条,未安装上下弦间的水平剪刀撑,未形成稳定的结构区格单元,以致60m跨钢桁架发生平面外失稳而整体坍塌。
钢网格在安装时虽然何在不大,但支撑条件改变了,吊装单元与原整体结构也发生较大的变化,某些拉杆会变为压杆,甚至吊装单元如不进行临时加固会成为几何可变体系。
因此,必须根据不同的结构、不同的施工方法,对安装单元、机具及施工相关的结构进行验算和设计。
另外,在施工时,由于不对称铺设屋面板、局部堆放大量材料、吊点布置不合理、起吊不合理、起吊不同步等,既不对杆件内力、挠度等进行验算又不采取必要的加固措施,导致部分杆件弯曲或吊装单元扭曲的现象多有发生。
3)不按设计图纸和要求施工施工单位对设计有不同意见或建议时,理应及时会同设计部门协商修改,重视安全施工,避免发生纠纷、拖延工期或造成事故。