SPSS多因素方差分析上课讲义
- 格式:doc
- 大小:249.00 KB
- 文档页数:11
S P S S学习笔记之——重复测量的多因素方差分析SPSS学习笔记之——重复测量的多因素方差分析1、概述重复测量数据的方差分析是对同一因变量进行重复测量的一种试验设计技术。
在给予一种或多种处理后,分别在不同的时间点上通过重复测量同一个受试对象获得的指标的观察值,或者是通过重复测量同一个个体的不同部位(或组织)获得的指标的观察值。
重复测量数据在科学研究中十分常见。
分析前要对重复测量数据之间是否存在相关性进行球形检验。
如果该检验结果为P﹥0.05,则说明重复测量数据之间不存在相关性,测量数据符合Huynh-Feldt条件,可以用单因素方差分析的方法来处理;如果检验结果P﹤0.05,则说明重复测量数据之间是存在相关性的,所以不能用单因素方差分析的方法处理数据。
在科研实际中的重复测量设计资料后者较多,应该使用重复测量设计的方差分析模型。
球形条件不满足时常有两种方法可供选择:(1)采用MANOVA(多变量方差分析方法);(2)对重复测量ANOVA检验结果中与时间有关的F值的自由度进行调整。
2、问题新生儿胎粪吸入综合征(MAS)是由于胎儿在子宫内或着生产时吸入了混有胎粪的羊水,从而导致呼吸道和肺泡发生机械性阻塞,并伴有肺泡表面活性物质失活,而且肺组织也会发生化学性炎症,胎儿出生后出现的以呼吸窘迫为主,同时伴有其他脏器受损现象的一组综合征[11]。
血管内皮生长因子(vascular endothelial growth factor,VEGF)是一种有丝分裂原,它特异作用于血管内皮细胞时,能够调节血管内皮细胞的增殖和迁移,从而使血管通透性增加。
而本实验旨在通过观察分析给予外源性肺表面活性物质治疗前后胎粪吸入综合征患儿血清中VEGF的含量变化,评价药物治疗的效果。
将收治的诊断胎粪吸入综合症的新生儿共42名。
将患儿随机分为肺表面活性物质治疗组(PS组)和常规治疗组(对照组),每组各21例。
PS组和对照组两组所有患儿均给予除用药外的其他相应的对症治疗。
SPSS统计分析教程-多因素方差分析多因素方差分析是对一个变量是否受一个或多个因素或变量影响而进行的方差分析oSPSS调用“Univariate ”过程,检验不同水平组合之间因变量均数,由于受不同因素影响是否有差异的问题。
在这个过程中可以分析每一个因素的作用,也可以分析因素之间的交互作用,以及分析协方差,以及各因素变量与协变量之间的交互作用。
该过程要求因变量是从多元正态总体随机采样得来,且总体中各单元的方差相同。
但也可以通过方差齐次性检验选择均值比较结果。
因变量和协变量必须是数值型变量,协变量与因变量不彼此。
因素变量是分类变量,可以是数值型也可以是长度不超过8 的字符型变量。
固定因素变量(Fixed Factor) 是反应处理的因素; 随机因素是随机地从总体中抽取的因素。
[ 例子] 研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表5-7。
分析不同温度和湿度对粘虫发育历期的影响是否存在着显著性差异。
表5-7 不同温度与不同湿度粘虫发育历期表相对湿度( %)温度C 重复1 2 3 4 100 25 91.2 95.0 93.8 93.0 27 87.6 84.7 81.2 82.429 79.2 67.0 75.7 70.6 31 65.2 63.3 63.6 63.3 80 25 93.2 89.3 95.1 95.527 85.8 81.6 81.0 84.4 29 79.0 70.8 67.7 78.8 31 70.7 86.5 66.9 64.9 4025 100.2 103.3 98.3 103.8 27 90.6 91.7 94.5 92.2 29 77.2 85.8 81.7 79.731 73.6 73.2 76.4 72.5 数据保存在“ DATA5 2.SAV'文件中,变量格式如图5-1。
1)准备分析数据在数据编辑窗口中输入数据。
建立因变量历期“历期”变量,因素变量温度“ A”,湿度为“B'变量,重复变量“重复”。
SPSS统计分析教程-多因素方差分析多因素方差分析是对一个变量是否受一个或多个因素或变量影响而进行的方差分析。
SPSS 调用“Univariate”过程,检验不同水平组合之间因变量均数,由于受不同因素影响是否有差异的问题。
在这个过程中可以分析每一个因素的作用,也可以分析因素之间的交互作用,以及分析协方差,以及各因素变量与协变量之间的交互作用。
该过程要求因变量是从多元正态总体随机采样得来,且总体中各单元的方差相同。
但也可以通过方差齐次性检验选择均值比较结果。
因变量和协变量必须是数值型变量,协变量与因变量不彼此。
因素变量是分类变量,可以是数值型也可以是长度不超过8 的字符型变量。
固定因素变量(Fixed Factor)是反应处理的因素;随机因素是随机地从总体中抽取的因素。
[例子]研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表5-7。
分析不同温度和湿度对粘虫发育历期的影响是否存在着显著性差异。
表5-7 不同温度与不同湿度粘虫发育历期表相对湿度(%)温度℃ 重复 1 2 3 4 100 25 91.2 95.0 93.8 93.0 27 87.6 84.7 81.2 82.4 29 79.2 67.0 75.7 70.6 31 65.2 63.3 63.6 63.3 80 25 93.2 89.3 95.1 95.5 27 85.8 81.6 81.0 84.4 29 79.0 70.8 67.7 78.8 31 70.7 86.5 66.9 64.9 40 25 100.2 103.3 98.3 103.8 27 90.6 91.7 94.5 92.2 29 77.2 85.8 81.7 79.7 31 73.6 73.2 76.4 72.5 数据保存在“DATA5-2.SAV”文件中,变量格式如图5-1。
1)准备分析数据在数据编辑窗口中输入数据。
建立因变量历期“历期”变量,因素变量温度“A”,湿度为“B”变量,重复变量“重复”。
S P S S多因素方差分析
体育统计与SPSS读书笔记(八)—多因素方差分析(1)
具有两个或两个以上因素的方差分析称为多因素方差分析。
多因素是我们在试验中会经常遇到的,比如我们前面说的单因素方差分析的时候,如果做试验的不是一个年级,而是多个年纪,那就成了双因素了:不同教学方法的班级,不同年级。
如果再加上性别上的因素,那就成了三因素了。
如果我们把实验前和试验后的数据用一个时间的变量来表示,那又多了一个时间的因素。
如果每个年级都是不同的老师来上,那又多了一个老师的因素,等等等等,所以我们在设计试验的时候都要进行充分考虑,并确定自己只研究哪些因素。
下面用例子的形式来说说多因素方差分析的运用。
还是用前面说单因素的例子,前面的例子说了只在五年级抽三个班进行不同教学方法的试验,现在我们还要在初二和高二各抽三个班进行不同教学方法的试验。
形成年级和不同教学法班级双因素。
分析:
1.根据实验方案我们划出双因素分析的表格,可以看出每个单元格都是有重复数据(也就是不只一个数据),
年级
不同教学方法的班级
定性班
定量班
定性定量班
五年级
(班级每个人)
(班级每个人)
(班级每个人)
初中二年级
(班级每个人)
(班级每个人)
(班级每个人)
高中二年级
(班级每个人)
(班级每个人)
(班级每个人)
2.因为有重复数据,所以存在在数据交互效应的可能。
我们来看看交效应的含义:如果在A因素的不同水平上,B因素对因变量的影响不同,则说明A、B两因素间存在交互作用。
交互作用是多因素实验分析的一个非常重要的内容。
如因素间存在交互作用而又被忽视,则常会掩盖因素的主效应的显著性,另一方面,如果对因变量Y,因素A与B之间存在交互作用,则已说明这两个因素都Y对有影响,而不管其主效应是否具有显著性。
在统计模型中考虑交互作用,是系统论思想在统计方法中的反映。
在大多数场合,交互作用的信息比主效应的信息更为有用。
根据上面的判断。
根据上面的说
法,我也无法判断是否有交互作用,不像身高和体重那么直接。
这里假设他们之间有交互作用。
根据上面的分析,可以把实验当成3*3的析因实验设计模式。
下面是SPSS的分析步骤。
SPSS步骤:
1.输入数据。
2.先对前测数据进行检验。
执行“分析——〉一般线形模型——〉一元多因素方差分析”,弹出对话框。
因变量:为我们要分析的变量:选择“前测平均”;
固定因子和随机因子:这是因子的两个分类。
固定因素指的是该因素在样本中所有可能的水平都出现了,换言之,该因素所有可能的水平就这几种。
随机因素是指该样本所有可能的取值没有都出现或不可能都出现。
根据上面的理解,不同教学方法的班级应该放在固定因子,而年级应该放在随机因子(因为我是要分析不同年级,而不是只针对五年级、初二和高二,所以年级在这里具有随机性)。
协方差:用于选择协变量,如果在一个实验中,因变量是Y,存在另一连续变量X, X不能被实验者控制,但可以随着一起被观察到,X对Y有影响,而且其关系是线性的,则称为协变量。
关于协方差分析后面将会讲。
WLS加权:用于选入加权最小二乘法的权重系数。
(我也不理解,反正也用不到,可以不用去理解)
这个窗口我们了解后,点“模型”按钮,弹出对话框:
模型我们选择“自定义”,选中后就会发现中间的“建立条件”变为可选,”I NTERACTION”为交互效应,只有选择这个选项才可以产生交互效应因子。
“M AIN EFFECTS”主效应。
如果选择这个,那么模型里就只能选择“班级”和“年级”这两个主效应。
A LL 2-WAY,A LL 3-WAY等,二阶效应、三阶效应。
平方和也有几个选项,只要默认的TYPE III就可以了。
这里的操作是:由于我们是检验期初是否有差异,看是否实验前所有样本的条件都相同,还没进行实验,所以我们不用检查交互,只需要检验主效应就行。
在“建立条件”里选择”M AIN EFFECTS”,然后选中左边的“班级”和“年级”变量。
至于“对比”对话框,目前我们不会怎么去用他,可以不必去理解。
这里什么都不选。
下面看“画图”对话框,见下面的图。
对于这个划图有没有用我也不太清楚,不过看学生们在用那就拿出来讲讲。
左上的窗口为“因子”,水平坐标轴选择“年级”变量,分隔线选择“班级”表示按不同水平的班级分层做出均数直线。
选择好后在下面点“增加”按钮。
“两两比较”对话框,这个我们做单因素的时候也做过了。
就是在检验出现显著差异的时候,就需要进行两两比较,这里就是选择用什么样的方法进行两两比较。
一般用LSD法(可以理解为每个实验对象都与对照对象进行检验)或S-N-K法(两两互相比较)。
根据自己的喜欢看的结果来选择。
这里我们先不做两两比较。
“保存”对话框,就是将模型拟合时产生的中间结果或参数保存为新变量供继续分析时用。
我们估计也用不到这么高深的东西,所以这里也不详细介绍。
只把汉化的窗口显示出来给大家看看。
“选项”对话框,主要用于一些附件的选项,这里我们也没什么要选的,对话框见下图:
SPSS中多因素方差分析
一、概念
在SPPS下的操作步骤如下:
1. 建立数据文件
2. 选入变量及参数设置
依次单击菜单“分析→一般线性模型→单变量”命令,打开“单变量方差
分析”如图:
将左侧变量列表框中“销售量”选入“因变量”列表框,“超市规模”和“摆放位置”选入“固定因子”列表框如图:
单击“模型”按钮,打开“单变量:模型”对话框,“指定模型”选项组选择“设定”,将“因子与协变量”列表框中的变量选入到“模型”列表框中,“平方和”选项组选择“类型Ⅲ”,“构建项”类型选择“主效应”。
如图:
单击“对比”按钮,打开“单变量:对比”对话框,对比的方法都改成简单,如图:
单击“绘制”按钮,打开“单变量:轮廓图”对话框,将“因子”列表框的两个变量
变量“超市规模”有三个水平,即大型、中型和小型,每个水平有8个个案;变
从表中可以看出,同种商品不同规模和不同摆放位置的“销售量”的检验统计量F的观测值为30.409,检验的概率值为0,小于0.05,拒绝零假设,可以认为
从上面表中可以看出C位置销量>B位置销量>A位置销量>B位置销量,也就是说堆头位置销量>端架位置销量>货架阳面第一位>货架阳面第二位,这也就是为什么超市里的堆头、端架向来都是各供应商争抢阵地。
总结:
精品文档
同种商品在不同规模超市和不同摆放位置的情况下,销售量存在显著差异,并且堆头位置销量>端架位置销量>货架阳面第一位>货架阳面第二位。
收集于网络,如有侵权请联系管理员删除。