概率论与数理统计知识点总结05209
- 格式:doc
- 大小:634.00 KB
- 文档页数:20
概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。
-频率和概率的关系,概率的基本性质。
-古典概型和几何概型的概念。
-条件概率和乘法定理。
-全概率公式和贝叶斯公式。
-随机变量和概率分布函数的概念。
-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。
2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。
-协方差、相关系数和线性变换的数学期望和方差公式。
-两个随机变量的和、差、积的数学期望和方差公式。
3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。
-中心极限定理的概念和中心极限定理的两种形式。
4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。
-样本统计量和抽样分布的概念。
-点估计和区间估计的概念。
-假设检验的基本思想和步骤。
-正态总体的参数的假设检验和区间估计。
5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。
-矩估计的原理和方法。
-最小二乘估计的原理和方法。
-一般参数的假设检验和区间估计。
6.相关分析和回归分析-相关系数和线性相关的概念和性质。
-回归分析的一般原理。
-简单线性回归的估计和检验。
7.非参数统计方法-秩和检验和符号检验的基本思想和应用。
-秩相关系数的计算和检验。
8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。
-正态总体参数的拟合优度检验。
-贝叶斯估计的基本思想和方法。
9.时间序列分析和质量控制-时间序列的基本性质和分析方法。
-时间序列预测的方法和模型。
-质量控制的基本概念和控制图的应用。
以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。
概率论与数理统计知识点总结一、概率论知识点总结:1.随机事件:随机事件是指在一次试验中,可能发生也可能不发生的事件。
例如:掷硬币的结果、抽取扑克牌的花色等。
2.概率:概率是描述随机事件发生可能性大小的数值。
概率的取值范围是[0,1],表示事件发生的可能性大小,0表示不可能发生,1表示一定会发生。
3.古典概型:古典概型是指每种可能的结果发生的概率相等的情形。
例如:掷骰子的结果、抽取彩色球的颜色等。
4.随机变量:随机变量是用来描述试验结果的数值,它的取值是根据随机事件的结果确定的。
例如:掷骰子的点数、抽取扑克牌的点数等。
5.概率分布:随机变量的概率分布描述了每个取值发生的概率。
常见的概率分布有离散概率分布和连续概率分布,如二项分布、正态分布等。
6. 期望值:期望值是衡量随机变量取值的平均值。
对于离散型随机变量,期望值=E[X]=∑[xP(X=x)];对于连续型随机变量,期望值=E[X]=∫[x f(x)dx],其中f(x)为概率密度函数。
7. 方差:方差是衡量随机变量取值与期望值之间的偏离程度。
方差=Var(X)=E[(X-E[X])^2]。
8.独立性:两个随机事件或随机变量之间的独立性表示它们的发生与否或取值无关联。
独立性的判定通常通过联合概率、条件概率等来进行推导。
二、数理统计知识点总结:1.样本与总体:在统计学中,样本是指从总体中选取的具体观测数据。
总体是指要研究的对象的全部个体或事物的集合。
2.参数与统计量:参数是描述总体特征的数值,如总体均值、总体方差等。
统计量是根据样本计算得到的参数估计值,用来估计总体参数。
3.抽样方法:抽样方法是从总体中选取样本的方法,常见的抽样方法有简单随机抽样、系统抽样、整群抽样等。
4.统计分布:统计分布是指样本统计量的分布。
常见的统计分布有t分布、F分布、x^2分布等,其中t分布适用于小样本、F分布适用于方差比较、x^2分布适用于拟合优度检验等。
5.点估计与区间估计:点估计是以样本统计量为基础,估计总体参数的数值。
概率论与数理统计知识点一、概率论知识点1.1 概率基本概念概率是研究事物变化规律的一门学科。
在概率学中,我们需要掌握一些基本概念:•随机试验:一种在相同条件下重复的可以观察到不同结果的试验。
•样本空间:随机试验所有可能结果的集合。
•事件:样本空间的子集。
•频率和概率:在大量重复实验中,某个事件出现的频率称为频率,其极限称为概率。
1.2 概率计算公式•加法公式:P(A∪B) = P(A) + P(B) - P(A∩B)•乘法公式:P(A∩B) = P(A|B)P(B) = P(B|A)P(A)•条件概率公式:P(A|B) = P(A∩B)/P(B)•全概率公式:P(B) = Σi=1nP(Ai)P(B|Ai)•贝叶斯公式:P(Ai|B) = P(Ai)P(B|Ai)/Σj=1nP(Aj)P(B|Aj)1.3 随机变量和分布随机变量是用来描述随机试验结果的数学量。
离散型随机变量和连续型随机变量是概率论中两个重要的概念。
•离散型随机变量:在一个范围内,只有有限个或无限个可能值的随机变量。
•连续型随机变量:在一个范围内,有无限个可能值的随机变量。
概率分布是反映随机变量取值情况的概率规律,可分为离散型概率分布和连续型概率分布。
•离散型概率分布:包括伯努利分布、二项分布、泊松分布等。
•连续型概率分布:包括正态分布、指数分布、卡方分布等。
1.4 常用概率分布概率论涉及到很多的分布,其中一些常用的分布如下:•二项分布•泊松分布•正态分布•均匀分布•指数分布1.5 统计推断在概率论中,统计推断是指根据样本数据来对总体进行参数估计和假设检验的方法。
统计推断主要涉及以下两个方面:•点估计:使用样本数据来推断总体参数的值。
•区间估计:使用样本数据来推断总体参数的一个区间。
二、数理统计知识点2.1 统计数据的描述为了更准确地描述数据,我们需要使用以下几个参数:•平均数:所有数据的和除以数据个数。
•中位数:将数据按大小排序,位于中间位置的数。
概率论与数理统计知识点总结概率论与数理统计是数学的一个重要分支,主要研究各种随机现象的规律性及其数值描述。
下面将对概率论与数理统计的一些重要知识点进行总结。
一、概率论知识点总结1. 随机事件与概率- 随机事件:指在一定条件下具有不确定性的事件。
- 概率:用来描述随机事件发生的可能性大小的数值。
2. 古典概型与几何概型- 古典概型:指随机试验中,所有基本事件的可能性相等的情况。
- 几何概型:指随机试验中,基本事件的可能性不完全相等,与图形的属性有关的情况。
3. 随机变量与概率分布- 随机变量:定义在样本空间上的函数,用来描述试验结果与数值之间的对应关系。
- 离散随机变量:取有限个或可列个数值的随机变量。
- 连续随机变量:取无限个数值的随机变量。
4. 期望与方差- 期望:反映随机变量平均取值的数值。
- 方差:反映随机变量取值偏离期望值的程度。
5. 大数定律与中心极限定理- 大数定律:指在独立重复试验中,随着试验次数增加,事件发生的频率趋近于其概率。
- 中心极限定理:指在独立随机变量之和的情况下,当随机变量数目趋于无穷时,这些随机变量之和的分布趋近于正态分布。
二、数理统计知识点总结1. 抽样与抽样分布- 抽样:指对总体进行有规则地选择一部分样本进行观察和研究的过程。
- 抽样分布:指用统计量对不同样本进行计算所得到的分布。
2. 参数估计与置信区间- 参数估计:根据样本推断总体的未知参数。
- 置信区间:对于总体参数估计的一个区间估计,用来表示这个参数的可能取值范围。
3. 假设检验与统计显著性- 假设检验:用来判断统计推断是否与已知事实相符。
- 统计显著性:基于样本数据,对总体或总体参数进行判断的一种方法。
4. 方差分析与回归分析- 方差分析:用来研究因素对于某一变量均值的影响程度。
- 回归分析:通过观察变量之间的关系,建立数学模型来描述两个或多个变量间的依赖关系。
5. 交叉表与卡方检验- 交叉表:将两个或多个变量的数据按照某种方式交叉排列而形成的表格。
概率论与数理统计总结3、分布函数与概率的关系 ∞<<∞-≤=x x X P x F ),()()()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<4、离散型随机变量的分布函数 (1) 0 – 1 分布 1,0,)1()(1=-==-k p p k X P kk(2) 二项分布 ),(p n B nk p p C k X P k n k k n,,1,0,)1()( =-==- 泊松定理 0lim >=∞→λnn np有,2,1,0!)1(lim ==---∞→k k ep p Ckkn n knk nn λλ(3) 泊松分布 )(λP =,2,1,0,!)(===-k k ek X P kλλ(5)几何分布 p q k p q k X P k -====-1,2,1}{1dt t f x F x ⎰∞-=)()(则称X 为连续型随机变量,其中函数f(x)称为随机变量X 的概率密度函数, 2、分布函数的性质:(1)连续型随机变量的分布函数F(x )是连续函数。
(2)对于连续型随机变量X 来说,它取任一指定实数a 的概率均为零,即P{X=a }=0。
3、常见随机变量的分布函数 (1) 均匀分布 ),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a ab x f⎪⎪⎩⎪⎪⎨⎧--=1,,0)(a b a x x F(2) 指数分布 )(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f x λλ ⎩⎨⎧≥-<=-0,10,0)(x ex x F xλ (3) 正态分布 N (μ , σ 2 )+∞<<∞-=--x ex f x 222)(21)(σμσπ⎰∞---=xt tex F d 21)(222)(σμσπN (0,1) — 标准正态分布+∞<<∞-=-x ex x 2221)(πϕ+∞<<∞-=Φ⎰∞--x t e x xt d 21)(22π2、连续型随机变量函数的分布: (1)分布函数法;(){}⎰⎰<==∈=yx g X l X yYdxx f dx x f l X P y F y)()()((2)设随机变量X 具有概率密度f X (x ),又设函数g(x )处处可导且恒有g '(x )>0 (或恒有g '(x )<0) ,则Y=g(X )的概率密度为()()[]()⎩⎨⎧<<'=其他βαy y h y h f y f XY 其中x =h(y )为y =g(x )的反函数,()()()()()()∞+∞-=∞+∞-=g g g g ,m ax ,,m in βα 3、 二维连续型随机变量(1)联合分布函数为dudvv u f y x F y x ⎰⎰∞-∞-=),(),(函数f (x ,y )称为二维向量(X ,Y )的(联合)概率密度.其中: 0),(≥y x f ,⎰⎰∞∞-∞∞-=1),(dxdy y x f(2)基本二维连续型随机向量分布均匀分布:⎪⎩⎪⎨⎧∈=其他),(1),(G y x Ay x f二维正态分布:+∞<<-∞+∞<<∞--=-+------y x ey x f y y x x ,121),(])())((2)([)1(212212222212121212σμσσμμρσμρρσπσ3、离散型边缘分布律:4、 连续型边缘概率密度 ,),()(dy y x f x f X⎰∞+∞-= dx y x f y f Y⎰∞+∞-=),()(F (x ,y )=F x (x )F Y (y ) 则称随机变量X 和Y 是相互独立的3、连续型随机变量独立的等价条件 设(X ,Y )是连续型随机变量,f (x ,y ),f x (x ),f Y (y )分别为(X ,Y )的概率密度和边缘概率密度,则X 和Y 相互独立的充要条件是等式 f (x ,y ) = f x (x )f Y (y ) 对f (x ,y ),f x (x ),f Y (y )的所有连续点成立. 五、条件分布1、离散型随机变量的条件分布律: (3)条件分布函数:2、连续型随机变量的条件分布 (1)条件分布函数⎰⎰∞-∞-==x Y Y X Y x YX du y f y u f y x F y f du y u f y x F )(),()|()(),()|(||或写成,(2)条件概率密度在Y=y 条件下X 的条件概率密度)(),()|(|y f y x f y x fY Y X =同理 X=x 条件下X 的条件概率密度)(),()|(|x f y x f x y f X X Y =六、多维随机函数的分布 1、离散型随机变量函数分布:二项分布:设X 和Y 独立,分别服从二项分布b (n 1,p ), 和b (n 2,p ),则 Z=X+Y 的分布律:Z ~b (n 1+n 2,p ).泊松分布:若X 和Y 相互独立,它们分别服从参数为21,λλ的泊松分布,则Z=X+Y 服从参数为21λλ+的泊松分布。
概率论与数理统计知识点总结免费超详细版概率论与数理统计是一门研究随机现象数量规律的学科,它在众多领域都有着广泛的应用,如统计学、物理学、工程学、经济学等。
以下是对概率论与数理统计知识点的超详细总结。
一、随机事件与概率(一)随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。
随机事件通常用大写字母 A、B、C 等来表示。
(二)样本空间样本空间是指随机试验的所有可能结果组成的集合,通常用Ω表示。
(三)事件的关系与运算1、包含关系:若事件 A 发生必然导致事件 B 发生,则称事件 B 包含事件 A,记作 A⊂B。
2、相等关系:若 A⊂B 且 B⊂A,则称事件 A 与事件 B 相等,记作A = B。
3、并事件:事件 A 与事件 B 至少有一个发生的事件称为 A 与 B的并事件,记作 A∪B。
4、交事件:事件 A 与事件 B 同时发生的事件称为 A 与 B 的交事件,记作A∩B 或 AB。
5、互斥事件:若事件 A 与事件 B 不能同时发生,则称 A 与 B 为互斥事件,即 AB =∅。
6、对立事件:若事件 A 与事件 B 满足 A∪B =Ω 且 AB =∅,则称 A 与 B 为对立事件,记作 B =A。
(四)概率的定义与性质1、概率的古典定义:若随机试验的样本空间Ω只包含有限个基本事件,且每个基本事件发生的可能性相等,则事件 A 的概率为 P(A) =n(A) /n(Ω) ,其中 n(A) 为事件 A 包含的基本事件个数,n(Ω) 为样本空间Ω包含的基本事件个数。
2、概率的统计定义:在大量重复试验中,事件 A 发生的频率稳定在某个常数 p 附近,则称 p 为事件 A 的概率,即 P(A) = p 。
3、概率的公理化定义:设随机试验的样本空间为Ω,对于Ω中的每一个事件 A,都赋予一个实数 P(A),如果满足以下三个条件:(1)非负性:0 ≤ P(A) ≤ 1 ;(2)规范性:P(Ω) = 1 ;(3)可列可加性:对于两两互斥的事件 A1,A2,,有P(A1∪A2∪)= P(A1) + P(A2) +,则称 P(A) 为事件 A 的概率。
《概率论与数理统计》知识点整理概率论与数理统计是数学中的一个重要分支,它研究随机现象发生的规律以及对这些规律的推断和决策问题。
在现代科学、金融、医学、工程等领域中都有广泛的应用。
下面是《概率论与数理统计》的一些重要知识点:一、概率论:1.概率的基本概念:随机试验、样本空间、事件、概率公理化定义等。
2.条件概率与概率的乘法定理:条件概率的定义、条件概率的乘法定理、独立事件的定义与性质等。
3.全概率公式与贝叶斯公式:全概率公式的推导与应用、贝叶斯公式的推导与应用等。
4.随机变量与概率分布:随机变量的定义与分类、概率分布的基本性质、离散型随机变量与连续型随机变量的概率分布等。
5.两随机变量函数的概率分布:随机变量的函数、数学期望的定义与性质、方差的定义与性质等。
6.多维随机变量及其分布:二维随机变量的概率分布、联合分布函数与边缘分布、条件分布等。
二、数理统计:1.统计数据的描述:数据的集中趋势度量(均值、中位数、众数)、数据的离散程度度量(极差、方差、标准差)、数据的分布形态度量(偏度、峰度)等。
2.参数估计:点估计的概念与方法、矩估计法、极大似然估计法、最小二乘估计法等。
3.假设检验:假设检验的基本概念、显著性水平与拒绝域、假设检验的步骤、单侧检验与双侧检验等。
4.统计分布:正态分布的性质与应用、t分布与χ²分布的概念与性质、F分布的概念与性质等。
5.方差分析与回归分析:方差分析的基本原理与应用、单因素方差分析、回归分析的基本原理与应用、简单线性回归分析等。
三、随机过程:1.随机过程的基本概念与性质:随机过程的定义、状态与状态转移概率、齐次性与非齐次性等。
2.马尔可夫链:马尔可夫链的定义与性质、状态空间的分类、平稳分布与极限等。
3.随机过程的描述:概率密度函数、概率生成函数、随机过程的矩、协方差函数等。
4.随机过程的分类:齐次与非齐次、连续与间断、宽离散与窄离散等。
一、随机变量及其分布(一维&多维) 1.分布函数的判定:(1)若1()F x 和 2()F x 是随机变量的分布函数,,a b 分别为非负常数,且1a b +=,则12()()()F x aF x bF x =+也可以做随机变量的分布函数。
(2)()F x 为分布函数,则0a >时,()F ax b +仍为分布函数。
(3)()i F x 为分布函数,则1()ni i F x =∏仍为分布函数。
(4)二元函数0,min{,}0(,)min{,},0min{,}11,min{,}1x y F x y x y x y x y <⎧⎪=≤<⎨⎪≥⎩是两个随机变量的联合分布,且相应的随机变量同分布。
2.分布函数的性质及其他相关命题:(1)随机变量X 取某个x a =的概率不等于零,当且仅当X 的分布函数在点x a =处不连续。
(2)随机变量()Y F X =在区间[01],上服从均匀分布,若随机变量X 的分布函数是连续函数。
(3)若随机变量X 的分布函数是严格单调的连续函数,且~[01]Y U ,,则随机变量1()Z F Y -=与X 具有相同的分布函数。
(4)若随机变量X 的分布函数1()F x 在x a =连续,随机变量Y 是分布函数2()F y 在x b =连续,则X Y ,的联合分布函数(,)F x y 在点(,)a b 连续。
(5)若随机变量X Y ,独立同分布,则对任意a b <,有22{min(,)}[{}][{}]P a X Y b P X a P Y b <≤=>->。
3.概率密度的性质(1) 若1()F x 和 2()F x 是随机变量的分布函数,1()f x 和2()f x 是其相应的概率密度,则12()()F x F x 是分布函数,且其概率密度为1212()()()()f x F x F x f x +。
(2)若随机变量X 的概率密度()f x 关于直线x a =对称,则X 的分布函数满足:()()1F a x F a x -++= ()x -∞<<∞(3)若X 是连续型随机变量,C 是常数,则随机变量Y X C =+也是连续型随机变量。
概率论与数理统计知识点总结一、概率论1.随机试验和样本空间:随机试验是具有不确定性的试验,其结果有多个可能的取值。
样本空间是随机试验所有可能结果的集合。
2.事件及其运算:事件是样本空间中满足一定条件的结果的集合。
事件之间可以进行并、交、补等运算。
3.概率的定义和性质:概率是描述随机事件发生可能性的数值。
概率具有非负性、规范性和可列可加性等性质。
4.条件概率和独立性:条件概率是在已知一事件发生的条件下,另一事件发生的概率。
事件独立表示两个事件之间的发生没有相互关系。
5.全概率公式和贝叶斯公式:全概率公式是一种计算事件概率的方法,将事件分解成互斥的多个事件的概率之和。
贝叶斯公式是一种用于更新事件概率的方法。
6.随机变量和分布函数:随机变量是样本空间到实数集的映射,用来描述试验结果的数值特征。
分布函数是随机变量取值在一点及其左侧的概率。
7.常用概率分布:常见的概率分布包括离散型分布(如二项分布、泊松分布)和连续型分布(如正态分布、指数分布)。
8.数学期望和方差:数学期望是随机变量的平均值,用于描述随机变量的中心位置。
方差是随机变量离均值的平均距离,用于描述随机变量的分散程度。
二、数理统计1.统计量和抽样分布:统计量是对样本数据进行总结和分析的函数。
抽样分布是统计量的概率分布,用于推断总体参数。
2.估计和点估计:估计是利用样本数据对总体参数进行推断。
点估计是利用样本数据得到总体参数的一个具体数值。
3.估计量的性质和评估方法:估计量的性质包括无偏性、有效性和一致性等。
评估方法包括最大似然估计、矩估计等。
4.区间估计:区间估计是对总体参数进行估计的区间范围。
置信区间是对总体参数真值的一个区间估计。
5.假设检验和检验方法:假设检验是在已知总体参数的条件下,对总体分布做出的统计推断。
检验方法包括参数检验和非参数检验。
6.正态总体的推断:当总体近似服从正态分布时,可以利用正态分布的性质进行推断。
7.方差分析和回归分析:方差分析用于比较两个或多个总体均值是否相等。
概率论与数理统计知识点总结一、概率的基本概念1.概率的定义:概率是描述事件发生可能性的数字,表示为一个介于0和1之间的数。
2.事件与样本空间:事件是可能发生的结果的集合,样本空间是所有可能结果的集合。
3.事件的运算:事件的运算包括并、交、差等,分别表示两个事件同时发生、至少一个事件发生、一个事件发生而另一个事件不发生等。
4.概率的性质:概率具有非负性、规范性、可列可加性等性质。
二、随机变量与概率分布1.随机变量的定义:随机变量是一个变量,它的值由随机事件决定。
2.离散随机变量:离散随机变量只能取有限或可数个值,其概率表示为离散概率分布函数。
3.连续随机变量:连续随机变量可以取任意实数值,其概率表示为概率密度函数。
4.分布函数:分布函数描述随机变量的概率分布情况,包括累积分布函数和概率质量函数。
三、常见概率分布1.离散分布:包括伯努利分布、二项分布、泊松分布等。
2.连续分布:包括均匀分布、正态分布、指数分布、伽玛分布等。
正态分布在自然界和社会现象中广泛存在。
3.其他分布:包括卡方分布、指数分布、F分布、t分布等。
四、抽样与统计推断1.抽样:抽样是从总体中选择一部分个体进行实验或调查的方法,常用的抽样方法包括随机抽样、分层抽样、整群抽样等。
2.统计推断:通过从样本中获得的数据,对总体做出有关参数的推断。
包括点估计和区间估计两种方法。
3.假设检验:通过对样本数据的统计量进行计算,判断总体参数是否满足其中一种假设。
包括单样本假设检验、两样本假设检验、方差分析等。
五、回归分析与相关分析1.回归分析:研究两个或多个变量之间关系的统计方法,包括一元线性回归分析、多元线性回归分析等。
2.相关分析:研究两个变量之间相关性的统计方法,常用的相关系数包括皮尔逊相关系数和斯皮尔曼相关系数。
六、贝叶斯统计学1.贝叶斯定理:根据先验概率和条件概率,计算后验概率的统计方法。
2.贝叶斯推断:根据贝叶斯定理以及样本数据,推断参数的后验分布。
概率论与数理统计各章重点知识整理(总13页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除概率论与数理统计各章重点知识整理第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件():每次试验中一定不会发生的事件.二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A-B(差事件)事件A 发生而B 不发生.5. AB=(A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A = B A B A = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0). P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0)3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,当P(A)>0, P(B i )>0时,六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0).(3)X~N (μ,σ2)参数为μ,σ的正态分布 222)(21)(σμσπ--=x ex f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质(1)非负性 0≤p i j ≤1 .(2)归一性 ∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-yxdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dy y f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称P{X=x i |Y=y j } 为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称 P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义,}{},{jji j j i p p y Y P y Y x X P •=====,}{},{•=====i j i i j i p p x X P y Y x X P随机变量X 离散型随机变量 连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛)函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) . 二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p)2.X~ b (n,p) (0<p<1) n pn p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i iX X n S 12211 样本标准差S 样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (μ,σ2 ) ,则 X ~ N (μ, σ2 /n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2). ③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P 的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点.3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X~t(n)自由度为n 的t 分布.(2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2)时, nS X μ-~ t (n-1) .③两个正态总体 相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1 X S 12 Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w (3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点. 注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X ,样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效.(3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量. 二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定. (2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α. (3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求. 2.单个正态总体待估参数 其它参数 W 及其分布 置信区间μ σ2已知 nX σμ-~N (0,1) (2/ασz n X ±) μ σ2未知 nS X μ-~ t (n-1))1((2/-±n t n S X α σ2 μ未知 22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n Sn n S n ααχχ 3.两个正态总体 (1)均值差μ 1-μ 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w+-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③.(2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα 注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。
数学三——概率论与数理统计知识点总结一、基本公式(一维)()()()P AB P B A P A =;1()(()())ni i i P A P B P B A ==∑;1()()()()()()(()())j j j j j niii P B P A B P B P A B P B A P A P B P BA ===∑;()()(),P AB P A P B independence =;()()()()P A B P A P B P AB ⋃=+-;()[(1)]()()P AB P A B P A P AB =-=-;2t e dt +∞--∞⎰二、常用分布(,)U a b2(,)N μσ(0,1)X N 三、基本公式(二维)()(){}{()}()Y X g x yF y P Y y P g x y f x dx ≤=≤=≤=⎰;(,)()()Y X X f x y f y x f x =;(,)()()X Y Y f x y f x y f y =; 二维正态:2212122221212()()2()()1[]2(1)(,)x y x y f x y μμρμμσσρσσ-----+--=四、期望、方差 1()()ni i i E x xf x dx p x +∞-∞===∑⎰;()(())()()E Y E g x g x f x dx +∞-∞==⎰;222()[(())]()[()]D X E X E X E X E X =-=-;()(),()()()2(,),D X D Y independence D X Y D X D Y Cov X Y dependence ±⎧±=⎨+±⎩(,)[(())(())]()()()Cov X Y E X E X Y E Y E XY E X E Y =--=-;(,)(,)Cov aX bY abCov X Y =XY ρ=五、切比雪夫不等式、大数定理、中心极限定理 1、切比雪夫不等式:2(){()}D X P X E X εε-≥≤2、大数定理:lim {}1n n P X A ε→∞-<=(1)切比雪夫大数定理:1111(),0lim {-()}1n ni i i n i i D X C P X E X n n εε→∞==≤>⇒<=∑∑(2)伯努利大数定理:(,),0lim {}1nn X X B n p P P nεε→∞>⇒-<=; (3)辛钦大数定理:11(),0lim {-}1ni i n i E X P X n μεμε→∞==>⇒<=∑3、中心极限定理:将不同的分布形态转化为标准正态分布 (1)棣莫弗—拉普拉斯中心极限定理:(,)lim {}()(0,1)(1)n n XB n p P x x N np p →∞⇒≤=Φ-(2)列维—林德伯格中心极限定理:212(,)lim {}()(0,1)nii n Xn X N P x x N μμσσ=→∞-⇒≤=Φ∑六、数理统计1、样本数字特征:(1)样本均值:11n i i X X n ==∑;(2)样本方差:2211()1n i i S X X n ==--∑;(3)222();();()E X D X E S nσμσ===2、抽样分布:(0,1),Y χY)3、参数估计(1)矩估计:证明()E X μ=,反解θ,得到()θμ;(2)极大似然:1()()(,)0ni i dL L f X d θθθθ==⇒=∏。
概率论与数理统计知识点总结1. 概率论基础- 随机事件:一个事件是随机的,如果它可能发生也可能不发生。
- 样本空间:所有可能事件发生的集合。
- 事件的概率:事件发生的可能性的度量,满足0≤P(A)≤1。
- 条件概率:在另一个事件发生的条件下,一个事件发生的概率。
- 贝叶斯定理:描述了随机事件A和B的条件概率和边缘概率之间的关系。
- 独立事件:两个事件A和B是独立的,如果P(A∩B) = P(A)P(B)。
- 互斥事件:两个事件A和B是互斥的,如果它们不能同时发生,即P(A∩B) = 0。
2. 随机变量及其分布- 随机变量:将随机事件映射到实数的函数。
- 离散随机变量:取值为有限或可数无限的随机变量。
- 连续随机变量:可以在某个区间内取任意值的随机变量。
- 概率分布函数:描述随机变量取值的概率。
- 概率密度函数:连续随机变量的概率分布函数的导数。
- 累积分布函数:随机变量取小于或等于某个值的概率。
- 期望值:随机变量的长期平均值。
- 方差:衡量随机变量取值的离散程度。
3. 多维随机变量及其分布- 联合分布:描述两个或多个随机变量同时取特定值的概率。
- 边缘分布:通过联合分布求得的单个随机变量的分布。
- 条件分布:给定一个随机变量的值时,另一个随机变量的分布。
- 协方差:衡量两个随机变量之间的线性关系。
- 相关系数:协方差标准化后的值,表示变量间的线性相关程度。
4. 大数定律和中心极限定理- 大数定律:随着试验次数的增加,样本均值以概率1收敛于总体均值。
- 中心极限定理:独立同分布的随机变量之和,在适当的标准化后,其分布趋近于正态分布。
5. 数理统计基础- 样本:从总体中抽取的一部分个体。
- 总体:研究对象的全体。
- 参数估计:用样本统计量来估计总体参数。
- 点估计:给出总体参数的一个具体估计值。
- 区间估计:给出一个包含总体参数可能值的区间。
- 假设检验:对总体分布的某些假设进行检验。
- 显著性水平:拒绝正确假设的最大概率。
概率论与数理统计知识点总结(免费超详细版) 题目:概率论与数理统计知识点总结摘要本文总结了概率论和数理统计方面的基础知识,涉及概率分布、参数估计、假设检验、卡方检验、多元分析等。
对这些知识点的理解和了解可以帮助人们更好地分析和利用数据,促进数据分析的发展。
关键词:概率论,数理统计,概率分布,参数估计,假设检验,卡方检验,多元分析正文1.概率论概率论是数理统计中一门重要科学,它是一门数学研究现实世界事件发生的规律性、可预测性及不确定性的学科。
在概率论中,我们引入了诸如概率、期望和方差等概念,用来描述和推断某种随机现象的发生。
2.概率分布概率分布是在给定的实际情况下随机变量取值的概率分布。
典型的概率分布包括正态分布、泊松分布和二项分布。
此外,也有一些联合分布,例如协方差、共轭先验、贝叶斯估计等。
3.参数估计参数估计是根据样本数据估计总体参数的统计方法。
它涉及到将总体参数估计为样本参数的过程,通常使用最大似然估计、贝叶斯估计和假定测试等方法。
4.假设检验假设检验是基于统计学原理,用来评估某一假设是否真实存在的方法。
其中包括t检验、F检验、Z检验等,它们之间的区别在于所使用的抽样分布不同。
5.卡方检验卡方检验是一种统计检验,用于直接检验某个抽样值是否遵循某种理论分布。
卡方检验可以根据观察到的抽样数据和理论分布之间的差异来衡量分布概率值的有效性。
6.多元分析多元分析是一种分析不同变量之间交互影响的统计方法。
它包括多元回归分析、多元判别分析、因子分析等,能够帮助我们了解多个变量之间的关系。
结论本文总结了概率论和数理统计方面的基础知识,包括概率分布、参数估计、假设检验、卡方检验和多元分析等。
了解这些知识点可以帮助人们更好地分析和利用数据,促进数据分析的发展。
概率论和数理统计方面的知识点在实际应用中有着重要作用。
概率论可以帮助研究人员对随机现象进行建模、分析和推断,其中包括使用概率分布建立统计模型和估计参数,并使用假设检验和卡方检验来检验假设,以及用多元分析来推断不同变量之间的关系。
《概率论与数理统计》内容指导一、概率部分1.概率论的基本概念及预备知识随机现象,随机试验E ,样本空间Ω,样本点ω,随机事件A ,基本事件{ω} 必然事件Ω,不可能事件∅,随机变量X ,随机向量(X ,Y)For personal use only in study and research; not for commercial use排列:从n 个元素中任取m组合:从n 个元素中任取m 2.事件间的关系与运算规律For personal use only in study and research; not for commercial use相互关系:1︒ 事件B 包含A :A ⊂B (指事件A 发生必导致B 发生) A 与B 相等:A =B (指A ⊂B 且B ⊂A )2︒ A 与B 的和事件:A ∪B (指A , B 中至少有一个发生) A 与B 的直和:A +B =A ∪B (A 与B 互不相容时) 3︒ A 与B 的积事件:A ∩B 或AB (指A 与B 同时发生), 4︒ A 与B 的差事件:A -B =AB (指A 发生而B 不发生) 5︒ A 与B 互不相容或互斥:A ∩B =∅.6︒ A 的对立事件ΩU -A .运算规律:(1) 交换律:A ∪B =B ∪A , A ∩B =B ∩A(2) 结合律:A ∪(B ∪C )=(A ∪B )∪C ,A ∩(B ∩C )=(A ∩B )∩C (3) 分配律:A (B ∪C )=AB ∪AC 3.频率的定义与性质事件A 发生的频率n A 为n 次试验中A 发生的次数)频率的基本性质:1︒(非负性) 对于任一随机事件A ,有f n (A )≥0 2︒(规范性) 对于必然事件Ω,有f n (Ω)=1 3︒(有限可加性)若A 1, A 2,…, A k 两两互斥,则()∑∑===⎪⎪⎭⎫ ⎝⎛k i i n k i i n A f A f 114.概率的定义与性质概率的公理化定义:称实值函数P (A )为事件A 的概率,如果P (A )满足下述公理: 公理1(非负性) 对于任一随机事件A ,有P (A )≥0 公理2(规范性) 对于必然事件Ω,有P (Ω)=1公理3(完全可加性) 对两两互不相容的事件A 1, A 2, …,有()∑∑∞=∞==⎪⎪⎭⎫ ⎝⎛11i i i i A P A P概率的基本性质:1︒ P (∅)=0; 0≤P (A )≤12︒(有限可加性)若A 1,A 2,…, A k 两两互斥,则()∑∑===⎪⎪⎭⎫ ⎝⎛k i i k i i A P A P 113︒ 若A ⊂B , 则P (B -A )=P (B )-P (A ),P (B )≥P (A ) 5.概率计算公式三种典型概率:古典概率计算公式几何概率计算公式条件概率计算公式加法定理:P (A ∪B )=P (A )+P (B )-P (AB ) 概率乘法定理:P (AB )=P (A )P (B | A )全概率公式:)( ++==∑∞=211)|()()(B B B A P B P A P i i i Ω贝叶斯公式6.等价定理等价定理1 对事件A与B ,下面四个命题等价(1) A 与B 相互独立; (2) A (3) B (4) 等价定理2 在1)(0,1)(0<<<<B P A P 时,下面四个命题等价 (1) A 与B 相互独立 (2) )()()(B P A P AB P =(3) )()|(A P B A P = (4) )()|(B P A B P = 7.随机变量的概率分布(分布函数、分布律、分布密度) 分布函数:}{)(x X P x F ≤=分布律: ,2,1 ),0()(}{=--===k x F x F p x X P k k k k 分布密度:)()(x F x f '=(在f (x )的连续点)常用分布:1).0-1分布(1次试验中A 发生的次数为k ,p A P =)()⎩⎨⎧==-==1,0,1}{k p k p k X P2).二项分布(,)B n p (n 重伯努利试验中A 发生的次数为k ,p A P =)()n k q p C k X P kn k k n ,,2,1,0 ,}{ ===-3).泊松分布()P λ(n →∞时二项分布的逼近分布,()(,)P np B n p ≈)4).均匀分布(,)U a b⎪⎩⎪⎨⎧∈-=其它 ,0),( ,1)(b a x ab x f5).指数分布()e λ⎩⎨⎧≤>=- 0,00,e )(x x x f x λλ 6).正态分布2(,)N μσ+∞<<∞-=--x x f x ,e π21)(222)(σμσ(常用分布的分布律、分布密度、数学期望及方差见《概率统计》附表1) 8.随机向量的概率分布(分布函数、分布律、分布密度)分布函数:联合分布函数:},{),(y Y x X P y x F ≤≤= 边缘分布函数:F X ( x )=P { X ≤x }=F ( x , +∞ )F Y ( y )=P { Y ≤y }=F ( +∞ , y ) 分布律: 联合分布律:P {X =x i ,Y =y j }=p i j , i , j =1, 2, …---=),0(),(j i j i j i y x F y x F p )0,0()0,(--+-j i j i y x F y x F边缘分布律条件分布律 分布密度:边缘分布密度:⎰∞+∞-='= ),()()(dy y x f x F x f XX⎰∞+∞-='= ),()( )( dxy x f y F y f Y Y条件分布密度f X (x )大于0的连续点)f Y ( y )大于0的连续点)9.构成分布函数、分布律、分布密度的充要条件F (x )为分布函数 ⇔ F (x )单调不减右连续且F (-∞)=0,F (+∞)=1 F (x , y )为分布函数 ⇔ F (x , y ) 关于x 和y 均单调不减右连续且F (-∞, y )=F (x ,-∞)=F (-∞,-∞)=0 , F (+∞,+∞)=1p k 为分布律 ⇔ )(, ,2,1011=≥=∑∞=k p p k k kp ij为分布律 ⇔),2,1,(0111 =≥=∑∑∞=∞=j i p p ij i j ij,f (x )为分布密度 ⇔)(1)( ≥=⎰∞+∞-x f dx x f ,f (x , y )为分布密度 ⇔ 0),(1),( ≥y x f d x d y y x f ,⎰⎰∞+∞-∞+∞-=10.连续型随机变量的性质1︒ 连续型随机变量的分布函数必连续,但分布函数连续的随机变量未必是连续型的.2︒ 一维(二维)连续型随机变量在任意一点(任意曲线上)取值的概率必为零.3︒ P {a <X <b }=P {a ≤X <b }=P {a <X ≤b }=P {a ≤X ≤b }=F (b )-F (a )=⎰badxx f )(4︒ 对平面区域G , 有⎰⎰=∈Gdxdyy x f G Y X P ),(}),{(11.随机变量相互独立的等价定理随机变量相互独立的等价定理 对于随机向量(X , Y ), 下面五个命题等价 (1) X 与 Y 相互独立;(2) 所有可能的条件分布律与相应的边缘分布律一致,2,1,,}{}|{}{}|{=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧========j i x X P y Y x X P y Y P x X y Y P i j i j i j或 所有可能的条件分布密度与相应的边缘分布密度几乎处处相等.)()|(|y f x y f Y X Y =(几乎处处相等) )()|(|x f y x f X Y X =(几乎处处相等)(3) j i ji pp p ∙∙⋅= 或 )()(),(y f x f y x f Y X 几乎= (4) 对于任意二实数集S , T ,有P {X ∈S ,Y ∈T } = P {X ∈S } P {Y ∈T } (5) 对于任意二实数x , y , 有F (x , y ) = F X (x ) F Y ( y )12.随机变量函数的重要结论1)Y =g (X )的分布函数 F Y (y )=P {Y ≤y }=P {g (X )≤y } 2)Z =g (X ,Y )的分布函数 F Z (z )=P {Z ≤z }=P {g (X ,Y )≤z } 3)Z =X +Y 的分布密度⎰∞+∞--= ),()(dx x z x f z f Z ⎰∞+∞--= ),(dyy y z f⎰∞+∞--= )()(dxx z f x f Y X (当X 与Y 相互独立时)4)当 X 1, X 2,…,X n 相互独立时,max(X 1, X 2,…,X n ) 和min(X 1, X 2,…,X n ) 的分布函数)()()()(21m a xz F z F z F z F n X X X = )](1[)](1)][(1[1)(21min z F z F z F z F n X X X ----=13.有关正态分布的重要结论若),(~2σμN X (正态分布),则N (μ,σ 2)与N (0,1)N (μ,σ 2) 的分布函数()F x 与N (0,1)的分布函数()Φx 满足Φ(-x )=1-Φ(x )以μ1, μ2, σ1, σ2, ρ 为参数的二维正态随机变量X ,Y 的密度函数为其中的随机变量X 与Y 相互独立的充要条件是 ρ=0. 14.随机变量的数字特征 数学期望的性质与计算: 1︒ ∑∞==1k k k p x EX⎰∞+∞-= )(dx x xf2︒∑∞==1)()]([k k k p x g X g E ⎰∞+∞-= )()(dxx f x g3︒∑∑∞=∞==11),()],([i j ijj i p y x g Y X g E ⎰⎰∞+∞-∞+∞-= ),(),(dxdyy x f y x g4︒ 若X 1, X 2,…,X n 是随机变量,a k 是常数,则∑∑==+=⎪⎪⎭⎫ ⎝⎛+nk nk n k n k X E a a X a a E 10105︒ 若X 1, X 2,…,X n 是相互独立的随机变量,则)())(()(2121n n EX EX EX X X X E =方差的性质与计算:1︒ DX =Cov(X ,X )=E (X -EX )2=EX 2-(EX )2, D (C )=0, D (CX )=C 2DX2︒ D (X +Y )=DX +DY +2 Cov(X ,Y )=DX +DY (X , Y 是相互独立)3︒ DX =0的充要条件是 X 以概率1取常数C =EX . 协方差的性质与计算:1︒ Cov(X ,Y )=Cov(Y , X )=E [(X -EX )(Y -EY )]=E (XY )-(EX )(EY ) 2︒ Cov(a ,X )=0,Cov(aX ,bY )=ab Cov(X , Y )3︒ Cov(X +Y , Z )=Cov(X ,Z )+Cov(Y ,Z ). 相关系数与矩:ρXY=0时称X与Y不相关),k阶原点矩:EX k,k+l阶混合原点矩:E(X k Y l),k阶中心矩:E(X-E X)k,k+l阶混合中心矩:E[(X-E X)k(Y-EY)l] 15.大数定律与中心极限定理切比雪夫不等式设X具有数学期望E X与方差DX,则对于任意的正数ε, 有P{|X-EX|≥ε}或P{|X-E X|<ε}≥1辛钦大数定律设X1,X2,…相互独立同分布μ=iEX),2,1(=i,则0>∀ε, 有或伯努利大数定律设n A是n重伯努利试验中A发生的次数, p=P(A), 则0>∀ε, 有或林德伯格-列维(Linderberg-levi)中心极限定理设X1,X2,…独立同分布且E X k =μ, 02>=σkDX),2,1(=k,则的极限分布是标准正态分布N(0,1))()(lim xxFnYnΦ=∞→或即()21,~σμnnNXnkk近似∑=棣莫佛-拉普拉斯(De Moivre-Laplace)中心极限定理设X~B(n, p)则对于任意的x,有)()(lim xxFnYnΦ=∞→或即())1(,~pnpnpNX-近似二、统计部分1.数理统计的基本概念总体(母体):所研究对象(取实数值)的全体. 个体: 组成总体的元素.样本(子样):n X X X ,,,21 (n 为样本容量)样本均值: ∑==ni iX n X 11 样本方差: ∑=--=n i i X X n S 122)(11 样本k 阶原点矩:∑==n i kik X n M 11=k (1,2,…) 样本k 阶中心矩:∑=-='ni k i kX X n M 1)(1=k (1,2,…) 频率直方图: 1(1,2,,)()ii i i n y i l n a a -==-2.基本分布1)标准正态分布 若),(~2σμN X , 则上侧分位数 αu :{}⎰+∞==≥ααϕαu dx x u U P )(2)2χ分布 设n X X X ,,,21 相互独立且)1,0(~N X i ,则)(~2122n X ni i χχ∑==上侧分位数 )(2n αχ:{}⎰+∞==≥)(2222)()(n dx x f n P αχχααχχ3)t 分布 设X 与Y 相互独立,且)1,0(~N X , )(~2n Y χ,则 n Y X T =~)(n t上侧分位数 )(n t α:{}⎰+∞==≥)()()(n t t dx x f n t T P ααα4)F 分布 设X 与Y 独立,且)(~12n X χ,)(~22n Y χ,则21n Y n X F =~F (21,n n )上侧分位数 ),(21n n F α:{}),(21n n F F P α≥=⎰+∞=),(21)(n n F F dx x f αα3.正态总体的抽样分布一个正态总体的抽样分布设总体),(~2σμN X ,2,,S X n 为样本容量、样本均值、样本方差,那么(1)),(~2N X σμ(2)X 与2S 相互独立,且)1(~)1(2222--=n S n χσχ(3))1(~/--=n t n S X T μ两个正态总体的抽样分布设),(~211σμN X , ),(~222σμN Y ,且它们相互独立,并设222211,,,,S Y n S X n ,分别为他们的样本容量、样本均值、样本方差,那么(1))1,0(~)()(22212121N n n Y X U σσμμ+---=(2)当2221σσ=时,)2(~)()(2121-+---=n n t Q Y X T μμ其中2)1()1(112122221121-+-+-⎪⎪⎭⎫ ⎝⎛+=n n S n S n n n Q(3))1,1(~2121222221--=n n F S S F σσ4.参数的点估计抽取子样:n X X X ,,,21 (样本值为n x x x ,,,21 ) 1)矩估计法(无需知道总体分布)矩估计方程:),,2,1(),,,(21k r EX M rk r ==θθθ解之得矩估计量:),,2,1(),,,(ˆˆ21k r X X X n r r ==θθ2)最大似然法 (1) 对总体X (k θθθ,,,21 未知).构造似然函数:),,,;(Π),,,(21121k i n i k x p L θθθθθθ ==(离散型总体的分布律) ),,,;(Π),,,(21121k i n i k x f L θθθθθθ ==(连续型总体的分布密度)令 ),,2,1(0),,,(ln 21k r L k r ==∂∂θθθθ(对数似然方程)即可解出(使似然函数取最大值的)最大似然估计值k θθθˆ,,ˆ,ˆ21 ,从而得最大似然估计值量),,2,1(),,,(ˆˆ21k r X X X n r r ==θθ3)估计量的评价标准 (1)无偏性 设θˆ=θˆ(n X X X ,,,21 )是θ的估计,若θθ=ˆE , 则称θˆ是θ的无偏估计.(2)有效性 设估计量),,,(ˆ211n X X X θ与),,,(ˆ212n X X X θ是参数θ的两个无偏估计量,若21ˆˆθθD D <,则称1ˆθ较2ˆθ有效.(3)一致性 设θˆ(n X X X ,,,21 )为参数θ的一个估计量,若θθ−→−P nX X X ),,,(ˆ21 则称θˆ(n X X X ,,,21 )是θ的一致估计(相合估计).5.参数的区间估计(1) 选择包含待估参数的正态总体抽样V .(2) 根据正态总体抽样~()V V γ构造大概率事件{}2||1P V V αα<=-(3) 根据大概率事件{}2||V V α<构造估计区间,正态总体均值与方差(或均值差与方差比)的区间估计表见附表7 6.参数的假设检验1)假设检验的一般原理(1) 选择包含检验参数的正态总体抽样V .(2) 根据正态总体抽样~()V V γ构造小概率事件{}||P V V αα≥=(3) 根据小概率事件{}2||V V α≥确定拒绝域.2)假设检验可能犯的两类错误 (1)第一类错误(弃真错误):原假设0H 正确,但我们却错误地拒绝了它。
概率论与数理统计知识点总结
05209(总18页)
--本页仅作为文档封面,使用时请直接删除即可--
--内页可以根据需求调整合适字体及大小--
第1章随机事件及其概率
我们作了n 次试验,且满足
每次试验只有两种可能结果,A 发生或A 不发生; n 次试验是重复进行的,即A 发生的概率每次均一样; 每次试验是独立的,即每次试验A 发生与否与其他次试验A 发生与否是互不影响的。
这种试验称为伯努利概型,或称为n 重伯努利试验。
用p 表示每次试验A 发生的概率,则A 发生的概率为q p =-1,用)(k P n 表示n 重伯努利试验中A 出现)0(n k k ≤≤次的概率,
k n k k
n n q p k P C -=)(,n k ,,2,1,0 =。
第二章 随机变量及其分布
),(~σμN X 第三章 二维随机变量及其分布
e
2 1
第四章随机变量的数字特征。
第1章随机事件及其概率
我们作了n 次试验,且满足
每次试验只有两种可能结果,A 发生或A 不发生; n 次试验是重复进行的,即A 发生的概率每次均一样;
每次试验是独立的,即每次试验A 发生与否与其他次试验A 发生与否是互不影响的。
这种试验称为伯努利概型,或称为n 重伯努利试验。
用p 表示每次试验A 发生的概率,则A 发生的概率为q p =-1,用)(k P n 表示n 重伯努利试验中A 出现)0(n k k ≤≤次的概率,
k n k k
n n q p k P C -=)(,n k ,,2,1,0Λ=。
第二章 随机变量及其分布
e 21
=、σ0
第三章二维随机变量及其分布
第四章随机变量的数字特征。