工业视觉检测相机镜头的计算方式
- 格式:doc
- 大小:301.50 KB
- 文档页数:3
远心镜头计算公式远心镜头计算公式::光学倍率=相机芯片尺寸相机芯片尺寸((长、宽)/视野视野((长、宽)镜头支持靶面镜头支持靶面尺寸尺寸尺寸≥≥相机靶面尺寸相机芯片尺寸2/3 长8.45mm 宽 7.07mm1/2 长6.4mm 宽 4.8mm1/3 长4.8mm 宽 3.6mm1/4 长3.2mm 宽 2.4mm1/2.5 长5.12mm 宽3.84mm1/1.8 长7.13mm 宽 5.37mm1/2.3 长6.16mm 宽 4.62mm机器视觉系统中,工业镜头相当于人的眼睛,其主要作用是将目标的光学图像聚焦在图像传感器(相机)的光敏面阵上。
视觉系统处理的所有图像信息均通过工业镜头得到,工业镜头的质量直接影响到视觉系统的整体性能。
下面对机器视觉工业镜头的相关专业术语做以详解。
一、远心光学系统远心光学系统::指主光线平行于工业镜头光学轴的光学系统。
而光从物体朝向镜头发出,与光学轴保持平行,甚至在轴外同样如此,则称为物体侧远心光学系统。
:二、远心镜头远心镜头:远心镜头指主光线与镜头光源平行的工业镜头。
有物方远心,像方远心,双侧远心。
普通工业镜头主光线与镜头光轴有角度,因此工件上下移动时,像的大小有变化。
双侧远心境头主物方,像方均为主光线与光轴平行光圈可变,可以得到高的景深,比物方远心境头更能得到稳定的像最适合于测量用图像处理光学系统,但是大型化成本高物方远心境头只是物方主光线与镜头主轴平行工件上下变化,图像的大小基本不会变化使用同轴落射照明时的必要条件,小型化亦可对应像方远心境头只是像方主光线与镜头光轴平行相机侧即使有安装个体差,也可以吸收摄影倍率的变化用于色偏移补偿,摄像机本应都采用这种镜头三、远心光学系统的特色远心光学系统的特色::优点优点::更小的尺寸。
减少镜头数量,可降低成本。
缺点缺点::上下移动物体表面时,会改变物体尺寸或位置。
优点优点::上下移动物体表面时,不会改变物体尺寸或位置。
使用同轴照明时。
工业相机的基础知识一、概述工业相机(Industrial Camera)又称机器视觉相机(Machine Vision Camera),是一种特殊用途的相机,主要应用于工业生产过程中的自动化视觉检测和控制领域。
相比于普通的消费级相机,工业相机具有更高的精度、更快的速度和更强的稳定性,可以满足工业领域对于快速、精确、长时间运行的要求。
二、工业相机的构成1.图像传感器(Image Sensor)图像传感器是工业相机最关键的部件之一,它负责将光学成像转化为电信号。
常用的图像传感器包括CCD(Charge-Coupled Device)和CMOS(Complementary Metal-Oxide-Semiconductor)两种。
CCD传感器具有高灵敏度、低噪声和高动态范围等优点,适用于对图像质量要求较高的应用;而CMOS传感器具有低功耗、低成本和集成度高等优点,适用于对成本和集成度有要求的应用。
2.图像采集板(Image Capture Board)图像采集板是工业相机与计算机之间的桥梁,它负责将图像传感器采集到的图像数据通过传输介质(如USB、GigE、CameraLink等)传输到计算机上进行处理。
图像采集板通常包含了图像采集芯片、接口和一些额外的硬件模块,以实现图像数据的传输和处理功能。
3.镜头(Lens)镜头是工业相机光学系统中的一个关键组件,它负责将目标物体的光学信息聚焦到图像传感器上。
根据应用需求的不同,可以选择不同类型的镜头,包括定焦镜头、变焦镜头和特殊用途镜头等。
定焦镜头适用于需要固定焦距的应用;变焦镜头可以根据需要调整焦距,适用于视野范围变化较大的应用;特殊用途镜头(如鱼眼镜头、微观镜头等)则适用于特殊的视觉应用。
4.光源(Light Source)光源是工业相机成像的必备条件之一,它提供了待检测物体的照明条件。
常用的光源有白光、红外光、激光等,根据不同的应用需求选择合适的光源类型和亮度。
工业相机镜头地全参数与选型工业相机镜头是工业自动化领域中重要的设备之一,广泛应用于机器视觉、智能检测、无损检测等领域。
在选购工业相机镜头时,需要考虑到相机的应用环境、被测物体的特性以及相机镜头的参数。
本文将介绍工业相机镜头的全参数并进行选型分析。
一、工业相机镜头的全参数1.焦距(Focal Length):焦距是镜头将光线聚焦的能力。
不同的焦距会影响镜头的视角和放大倍数。
一般来说,较长焦距的镜头具有较大的放大倍数和较小的视角,适合远距离拍摄;较短焦距的镜头具有较小的放大倍数和较大的视角,适合近距离大范围拍摄。
2.镜头结构(Lens Structure):镜头的结构包括透镜的数量和排列方式。
常见的结构有单透镜结构、双透镜结构、复合透镜结构等。
不同的结构会影响成像质量、畸变程度和成本。
3.光圈(Aperture):光圈控制着进入相机的光线量,它是一个由多个薄片组成的机械装置。
可以通过调节光圈的大小来控制曝光量和景深。
较大的光圈适合拍摄光线较暗的场景,提高曝光量;较小的光圈适合拍摄光线较亮的场景,提高景深。
4.最小对焦距离(Minimum Focus Distance):最小对焦距离是指物体与镜头的最小距离,也是相机能够聚焦的最小距离。
镜头的最小对焦距离直接影响镜头的应用范围,较小的最小对焦距离适合拍摄微小物体,较大的最小对焦距离适合拍摄大型物体。
5.最大光学放大倍率(Maximum Optical Magnification):最大光学放大倍率是镜头能够放大物体的倍数。
较大的光学放大倍率可以提高图像的清晰度和细节,适合拍摄对细节要求较高的场景。
6.视场角(Field of View):视场角是指从相机镜头看到的场景范围。
它受到镜头焦距、相机感光元件尺寸和被测物体距离的影响。
一般来说,较长焦距的镜头具有较小的视场角,较短焦距的镜头具有较大的视场角。
7.图像传感器尺寸(Image Sensor Size): 图像传感器尺寸是指相机感光元件的尺寸。
机器视觉选型相机规则机器视觉是一种模拟人眼进行图像识别和处理的技术,广泛应用于工业自动化、无人驾驶、安防监控等领域。
而相机作为机器视觉的重要组成部分,其选型规则对于机器视觉系统的性能和稳定性具有关键影响。
本文将从分辨率、帧率、感光元件、镜头、接口等方面介绍相机选型的规则。
一、分辨率相机的分辨率是指图像的像素数量,通常用横向像素数和纵向像素数表示。
分辨率越高,图像细节越丰富,但也会增加图像处理的计算量。
在选择相机分辨率时,需根据实际应用场景和需求来确定,避免过高或过低的分辨率。
二、帧率帧率是指相机每秒传输的图像帧数,常用单位为fps(Frames Per Second)。
帧率越高,图像的连续性越好,适用于高速运动物体的检测和追踪。
但高帧率相机通常价格昂贵,且会增加数据处理的复杂度。
三、感光元件感光元件是相机的核心部件,决定了图像的质量和灵敏度。
常见的感光元件有CCD和CMOS两种。
CCD感光元件具有较高的图像质量和低噪声特性,适用于对图像质量要求较高的应用场景;而CMOS感光元件则具有低功耗、高速度、集成度高等优势,适用于对帧率要求较高的应用场景。
四、镜头镜头是相机的光学系统,直接影响图像的清晰度和视场范围。
选择镜头时,需考虑焦距、光圈、视场角等参数。
焦距决定了镜头的放大倍数,光圈决定了镜头的透光能力,视场角决定了镜头的拍摄范围。
根据实际需求,选择合适的镜头参数,以获得清晰、准确的图像。
五、接口相机与其他设备的连接通常通过接口完成,常见的接口有USB、GigE、Camera Link等。
USB接口简单易用,适用于小型相机和低带宽应用;GigE接口具有较高的传输速度和稳定性,适用于大带宽应用;Camera Link接口则适用于对图像传输速度和稳定性要求较高的应用。
总结起来,机器视觉选型相机的规则包括分辨率、帧率、感光元件、镜头和接口。
在选型时,需根据实际应用需求和预算来确定各项参数。
同时,还需要考虑相机的稳定性、可靠性和兼容性等因素,以确保机器视觉系统的正常运行和性能表现。
工业视觉检测相机镜头的计算方式
1、WD 物距工作距离(Work Distance,WD)
镜头第一个工作面到被测物体的距离
2、FOV 视场视野(Field of View,FOV)
相机实际拍到区域的尺寸。
3、DOV 景深(Depth of Field)。
景深是指在被摄物体聚焦清楚后,在物体前后一定距离内,其影像仍然清晰的范围。
景深随镜头的光圈值、焦距、拍摄距离而变化。
光圈越大,景深越小;光圈越小、景深越大。
焦距越长,景深越小,焦距越短,景深越大。
距离拍摄体越近时,景深越小;距离拍摄体越远时,景深越大。
4、Ho:视野的高度
5、Hi:摄像机有效成像面的高度(Hi来代表传感器像面的大小)
6、PMAG:镜头的放大倍数
7、f:镜头的焦距
8、LE:镜头像平面的扩充距离。
工业相机镜头焦距的计算方法
高速摄像系统的一般组成是:光源,镜头,高速相机,通讯单元,图像采集卡,高速存储系统,图像处理软件等。
其中,图像传感器将被摄目标的光信号转换成电信号,再转换成数字化信号,图像系统对这些信号进行处理,获取目标特征,根据判别的结果来控制现场的设备动作。
为了能清楚的成像,选择一个合适的镜头是必不可少的,其中镜头焦距的确定又是非常重要的一环。
因此,美国TEO将在本文中简要介绍镜头焦距的计算过程,为大家正确选择合适的镜头提供依据
图1:高速摄像系统
一、一般焦距的计算
在已知芯片的大小,视场大小和物距的情况,求焦距。
图2:焦距的计算
焦距:f = S×(Dmin/FOV)
如: 传感器芯片的宽度:S = 6.4mm,物距:Dmin = 20mm,焦距:FOV= 5mm
则: 焦距f = 6.4(20/5) = 25.6mm
二、1、镜头焦距在全分辨率(1280*1024)下,可以用下列公式计算:
焦距[mm] = A/(1+B/23)
A:镜头到被测物体的距离B:被测物体的大小
2、高速相机开窗后的镜头焦距计算,在知道高速相机的靶面大小、被测物体的范围、以及被测距离的时候,就可以通过下列方法推算出大致的镜头焦距。
在开窗的情况下(比如:800*600)焦距的计算如下:
传感器大小[mm] = 0.014
焦距[mm] = A/(1+B/传感器大小[mm])
A:镜头到被测物体的距离(mm)B:被测物体的大小(mm)C:水平方向像素数D:垂直方向像素数。
一、面阵相机和镜头选型已知:被检测物体大小为A*B,要求能够分辨小于C,工作距离为D解答:1. 计算短边对应的像素数E=B/C,相机长边和短边的像素数都要大于E。
2. 像元尺寸=产品短边尺寸B/所选相机的短边像素数3. 放大倍率=所选相机芯片短边尺寸/相机短边的视野范围4. 可分辨的产品精度=像元尺寸/放大倍率(判断是否小于C)5. 物镜的焦距=工作距离/(1+1/放大倍率)单位:mm6. 像面的分辨率要大于1/(2*0.1*放大倍率)单位:lp/mm以上只针对镜头的主要参数进行计算选择,其他如畸变、景深、环境等,可根据实际要求进行选择。
二、针对速度和曝光时间的影响,产品是否有拖影已知:确定每一次检测的范围为80mm*60mm,200万像素CCD相机(1600*1200),相机或产品运动速度为12m/min = 200mm/s。
曝光时间计算:曝光时间<长边视野范围/(长边像素值*产品运动速度)曝光时间< 80mm/(1600*250mm/s)曝光时间< 0.00025s = 1/4000 s总结:故曝光时间要小于1/4000 s ,图像才不会产生拖影。
三、线阵相机和镜头选型相机选型:已知:幅宽为1600mm、检测精度1mm/pixel、运动速度22000mm/s、物距1300mm相机像素数=幅宽/检测精度=1600mm / 1mm/pixel = 1600pixel最少2000个像素,选定为2k相机实际检测精度=幅宽/实际像素=1600mm/2048pixel=0.8mm/pixel扫描行频=运动速度/实际检测精度=22000mm/0.8mm=27.5KHz应选定相机为2048像素28kHz相机,像元尺寸10um选用一个VT-FAGL2015线阵相机或两个103k-1k线阵相机拼接镜头选型:sensor长度=像素宽度×像素数=0.01mm×2048=20.48mm镜头焦距= sensor长度×物距/幅宽=20.48×1300/1600=16mm四、图像采集卡、相机接口、PCI、PCI-E插槽的选型相机接口带宽USB1.1 1.5MB/sUSB2.0 60MB/s(一般40 MB/s)USB3.0 625MB/s(一般150MB/s)1394A 50MB/s1394B 100MB/s千兆网125MB/s插槽类型带宽PCI 132MB/sPCI-E(1 lane-x1) 250MB/s(一般200 MB/s)PCI-E(4 lane-x4) 1GB/sPCI-E(8 lane-x8) 2GB/sPCI-E(16 lane-x16)4GB/s图像采集卡的数据率(又称点频)>= 1.2 x相机数据率相机数据率(又称像素时钟)=相机分辨率x相机帧频相机接口的带宽要大于图像采集卡的数据率插槽的带宽>图像采集卡的数据率>相机接口的带宽> 1.2 x相机数据率PCI插槽有PCI 32bit和PCI 64bit的区别。
工业相机与镜头选型方法(含实例)一、根据应用需求选型工业相机与镜头的选型首先要根据实际应用需求来确定。
应该明确拍摄的对象、需要的图像质量、成像速度等方面的要求。
例如,是否需要高分辨率的图像、是否需要高速连续拍摄、是否需要逆光环境下的高动态范围等等。
根据这些需求,可以确定所需要的传感器规格和镜头类型。
二、根据传感器规格选型传感器规格是工业相机选型的重要依据之一、传感器的大小直接影响到成像的角度、分辨率和噪声水平。
常见的传感器规格有1/2.3英寸、1/1.8英寸、2/3英寸、1英寸以及APS-C和全画幅等。
一般而言,传感器越大,成像角度越大,分辨率越高,噪声水平越低。
根据应用需求,选择合适的传感器规格。
实例一:如果应用需求是需要拍摄大范围场景,例如工业检测、机器视觉等,可以选择传感器规格较小的相机,例如1/2.3英寸传感器。
实例二:如果应用需求是需要高分辨率的图像,例如精细检测、高精度测量等,可以选择传感器规格较大的相机,例如APS-C或全画幅传感器。
三、根据镜头类型选型根据传感器规格确定之后,接下来要选择合适的镜头类型。
工业相机通常有固定焦距镜头、变焦镜头和特殊用途镜头等类型。
固定焦距镜头一般适合需要固定场景的拍摄,一般具有较高的分辨率和较低的畸变等特点。
变焦镜头适用于需要不同焦距的应用,具有变焦范围广、灵活性高的特点。
特殊用途镜头适用于特殊的应用场景,例如近距离测量、显微镜观察等。
实例三:如果应用场景需要拍摄不同物体的细节,例如高精度检测、PCB检测等,可以选择具有高分辨率和低畸变的固定焦距镜头。
实例四:如果应用场景需要拍摄不同距离的对象,例如检测机器人、机器视觉等,可以选择具有变焦范围广的变焦镜头。
四、根据镜头参数选型在确定镜头类型之后,还需要根据具体应用的需求选择合适的镜头参数,包括焦距、光圈和视场角等。
焦距是指镜头的焦距长度,影响到成像的角度和视场大小。
一般而言,焦距较短的镜头可以拍摄宽广的场景,焦距较长的镜头可以拍摄较小的视场。
随着自动化的日益剧增,CCD相机、镜头倍率被提上日程,许多小伙伴们开始被客户问到这个问题,大部分无法很好的回答客户的问题,形成CCD相机、镜头倍率如神一般的存在。
相信很多小伙伴们都查阅了各大网站和资料,看起来算法很麻烦的样子。
可能是基于这个英寸转换问题和对自动化领域相对陌生的原因吧。
今天,测量攻城狮挤出一点时间和大家分享一下CCD相机、镜头倍率的算法,让大家都可以说出个一二。
认识CCD结构:CCD 相机+镜头CCD相机CCD芯片靶面尺寸单位是:mm如上图,假设靶面尺寸是1/4”型号,则靶面对角线是4mm,目镜镜头光学放大倍率是0.5X,显示器尺寸为14英寸。
则显示放大倍率=0.5*14*25.4/4=44.45X假设物镜放大到3X,那么放大倍率=44.45*3=133.35XCCD专业名词及型号选择:首先,要确定工业相机的接口、靶面尺寸和分辨率大小。
打比方是2/3" 工业相机,C接口,500万像素;那么我们可以先确定需要的工业镜头是C接口,最少支持2/3", 500万像素以上。
其次,确定所要达到的视野范围(FOV)和工作距离(WD),然后根据这两个要求和已知的靶面尺寸计算出工业镜头的焦距(f)。
其计算公式为:焦距f =工作距离(WD) ×靶面尺寸( H or V) /视野范围FOV( H or V) 视野范围FOV ( H or V)=工作距离(WD) ×靶面尺寸( H or V) / 焦距f 视野范围FOV( H or V)=靶面尺寸( H or V) / 光学倍率工作距离WD = f(焦距)×靶面尺寸/视野范围FOV( H or V) 光学倍率=靶面尺寸( H or V) /视野范围FOV( H or V) (H代表CCD 靶面水平宽度,V代表CCD靶面垂直高度)。
打比方视野是100*100mm, WD是500mm,先从工作距离确定工业镜头的焦距要在50mm以下,市场上工业镜头焦距一般是12mm, 16mm, 20mm, 25mm, 35mm, 50mm, 75mm。
更多光源、镜头解决方案————尽在方千科技Contact us :021-6115-2572 6439-7175 | | info@ Vanch Tech offers a wide range of illumination, lens and filter solutions to machine vision…工业相机的相关参数品牌(按字母顺序)型号分辨率像素大小总像素芯片种类芯片大小镜头接口AVT F504B/C 2452x2056 3.45um 500万CCD,Sony ICX6552/3"C Basler PIA24002448x2050 3.45um 500万CCD,Sony ICX6252/3"C Basler A4002352x17267um 400万CMOS 16.5x12mm M42x1/F Dalsa Pantera 4M 2048x20487.4um 400万 15.2x15.2mm M42x1/F Dalsa Pantera 6M 3072x204812um 600万 36.9x24.6mm M72x0.75/F E2VCamelia 4M 2048x204814um 400万 28.7x28.7mm F Funtion(方城)IK5002592x1944 2.2um 500万CMOS 1/2.5"C/CS Hitachi KP-F500SCL 2456x2058 3.45um 500万CCD 2/3"C JAITM/TMC-40002048x20487.4um 400万 2/3"C JAIBM-500GE2456X2058 3.45um 500万CCD 2/3"C Lumenera Aptina 2560x1920 2.2um 500万CCD1/2.5"C Pointgrey FL2G-50S5M/C 2448x2048 3.45um 500万CCD,Sony ICX6552/3"C Princeton(Redlak e)ES40202048x20487.4um 400万CCD,Kodak,KAI-40212/3"C/F SonyXCL-50002448x20503.45um500万CCD2/3"CI.400-600I.400-600万相素相机万相素相机Contact us :021-6115-2572 6439-7175 | | info@ Vanch Tech offers a wide range of illumination, lens and filter solutions to machine 更多光源、镜头解决方案————尽在方千科技2. APO-XNP 2.0/24 400万像素镜头最大可兼容最大可兼容1.31.3英寸英寸C 接口、接口、400400400万像素万像素相机。
工业视觉检测相机镜头的计算方式
1、WD 物距工作距离(Work Distance,WD)
镜头第一个工作面到被测物体的距离
2、FOV 视场视野(Field of View,FOV)
相机实际拍到区域的尺寸。
3、DOV 景深(Depth of Field)。
景深是指在被摄物体聚焦清楚后,在物体前后一定距离内,其影像仍然清晰的范围。
景深随镜头的光圈值、焦距、拍摄距离而变化。
光圈越大,景深越小;光圈越小、景深越大。
焦距越长,景深越小,焦距越短,景深越大。
距离拍摄体越近时,景深越小;距离拍摄体越远时,景深越大。
4、Ho:视野的高度
5、Hi:摄像机有效成像面的高度(Hi来代表传感器像面的大小)
6、PMAG:镜头的放大倍数
7、f:镜头的焦距
8、LE:镜头像平面的扩充距离
相机和镜头选择技巧
1、相机的主要参数:
感光面积SS(Sensor Size)
2、镜头的主要参数:
焦距FL(Focal Length)
最小物距Dmin(minimum Focal Distance) 3、其他参数:
视野FOV(Field of View)
像素pixel
FOVmin=SS(Dmin/FL)
如:SS=6.4mm,Dmin=8in,FL=12mm pixel=640*480
则:FOVmin=6.4(8/12)=4.23mm
4.23/640=0.007mm
如果精度要求为0.01mm,
1pixels=0.007mm<0.01mm
结论:可以达到设想的精度
放大率
光学放大率
影像大小相对于物体的放大率
β=y’/y
=b/a
=NA/NA’
=CCD相机元素尺寸/视场实际尺寸
电子放大率电子放大率是用相机拍照成像在CCD上的像呈现在显示器的放大倍数显示器放大率
显示器放大率是被拍物体通过镜头成像显示在显示器上的放大倍数
显示器放大率=(光学放大率)×(电子放大率)
例子:光学放大率=0. 2X, CCD大小1/2(对角线长8mm),显示器14〃
电子放大率=14×25.4/8=44.45(倍)
显示器放大率=0.2×44.45=8.89(倍) (1寸=25.4mm) 视场
视场是镜头与CCD相机连接时物体可被看见的范围大小
视场的大小是:(CCD格式大小)/(光学放大率)
例子:光学放大率=0.2X,CCD1/2〃(4.8mm长,6.4mm宽)
视场大小:长=4.8/0.2=24(mm)
宽=6.4/0.2=32(mm)。