多巴胺
- 格式:doc
- 大小:58.00 KB
- 文档页数:7
多巴胺的功效与作用多巴胺(Dopamine)是一种神经递质,广泛存在于人体的神经系统中,对人体具有重要的调节作用。
多巴胺作为一种神经递质,对人体的机能有着广泛的调节作用,下面将详细介绍多巴胺的功效与作用。
首先,多巴胺在中枢神经系统中起着重要的调节作用。
它是一个重要的兴奋性神经递质,可以提高大脑的警觉性和注意力,促进思维活跃和学习记忆。
多巴胺水平的增加可以增强大脑的认知功能,使人更加专注和集中注意力,提升工作和学习效率。
此外,多巴胺也参与了情绪的调节,可以增加积极情绪(如快乐、满足感)的体验,提升人的幸福感。
其次,多巴胺对运动系统也具有重要的调节作用。
它参与调节运动的平衡、协调和灵活性,促进肌肉的收缩和放松。
多巴胺不足可以导致肌肉僵硬和运动障碍,如帕金森病等。
而适当的多巴胺水平可以提高身体的运动能力和协调性,增强身体的活力和力量。
此外,多巴胺还参与了体液的调节。
它可以影响肾脏的尿液生成,增加尿液的排泄,达到排毒和清除废物的作用。
同时,多巴胺还可以影响血压的调节,使血管扩张,增加血液的流动和供氧,促进组织的修复和再生。
多巴胺还与食欲和奖赏相关。
它可以调节食欲的产生和抑制,促进胃肠道的蠕动和消化液的分泌,增加饮食的兴趣和满足感。
在奖赏系统中,多巴胺在脑内核团的活动中发挥重要作用,与愉悦感和满足感相关。
适当的多巴胺水平可以促进积极行为的产生,提高个体的自我激励和动力。
然而,多巴胺的过度或不足都会导致问题。
多巴胺过度活跃会引发注意力不集中、冲动和嗜好障碍,如多动症和药物成瘾等。
而多巴胺不足则会导致情绪低落、动力不足和运动障碍,如抑郁症和帕金森病等。
综上所述,多巴胺作为一种神经递质,在人体的神经系统中具有重要的调节作用。
它可以提高大脑的警觉性和注意力,促进思维活跃和学习记忆;参与调节运动系统,提高运动能力和协调性;参与体液的调节,促进排毒和修复;调节食欲和奖赏,增强兴趣和满足感。
然而,多巴胺的过度或不足都会引发问题。
多巴胺是什么?多巴胺由脑内分泌,可影响一个人的情绪,确定多巴胺为脑内信息传递者的角色使他赢得了2000年诺贝尔医学奖。
多巴胺是一种神经传导物质,用来帮助细胞传送脉冲的化学物质。
这种脑内分泌主要负责大脑的情欲,感觉将兴奋及开心的信息传递,也与上瘾有关。
1、多巴胺的临床适应症是什么多巴胺是一种α、β受体激动剂,它可以使得扩张外周血管,多巴胺适用于血压下降的患者,多半适用于一些中老年人的身上,而多巴胺还可以适用于突然休克的患者,多巴胺对于休克的患者,是没有过多的并发症和副作用的。
对于一些医生可能会把多巴胺用于充血性心力衰竭,使用多巴胺中、小量可以使得肌力有力且不增加心率,后续也没有什么适应症发生。
2、多巴胺是什么物质多巴胺是一种化学物质,在化学领域被称为4-(2-氨基乙基)-1,2-苯二酚。
多巴胺由脑内分泌,可以帮助细胞传送脉冲,多巴胺是控制大脑的情欲的,将兴奋、悲伤和惊恐等感觉传输给大脑,多巴胺也跟上瘾有关系。
多巴胺能够治疗抑郁症,在临床上缺少多巴胺的患者会有失去控制肌肉的能力,而我们在生活中见到的多巴胺多为有光泽的白色结晶。
3、盐酸多巴胺的作用盐酸多巴胺也叫多巴胺盐酸盐,是一种白色且有光泽的结晶。
盐酸多巴胺的作用一般用于治疗一些精神类的疾病,比如抑郁症之类的疾病。
盐酸多巴胺还可以为肾血流量增强,从而使得人体的尿液量增强,适用于一些肾脏有疾病的患者。
在一些突然发生休克的患者,医生也会使用盐酸多巴胺,尤其是对于适用于休克伴有心收缩力减弱,肾功能不全的患者作用非常好。
4、多巴胺与帕金森多巴胺是一种化学物质,在化学领域被称为4-(2-氨基乙基)-1,2-苯二酚,是一种白色且有光泽的结晶。
多巴胺是控制大脑的情欲的,将兴奋、悲伤和惊恐等感觉传输给大脑。
而帕金森病是一种精神系统变性疾病,多发于老年人,导致帕金森病的原因目前还不清楚,但是跟患者的生长过程、环境、遗传和年龄老化有关系,多巴胺会让帕金森的病情加剧。
5、多巴胺与抑郁症多巴胺与抑郁症是一种非常奇妙而又复杂的关系,换句话说多巴胺太多或者太少,都是可以导致抑郁症的发生。
多巴胺注意事项
1.避免过量使用:过量使用多巴胺会导致副作用加重或者是产生新的不良反应。
2.不应与某些药物(特别是MAO抑制剂)一起使用:这些药物可以增加多巴胺的血浆水平,从而导致多巴胺能过高,进而引起副作用。
3.谨慎使用于患有高胆固醇、高脂血症、心律紊乱、高血压、甲状腺激素过高以及中风后遗症等疾病的患者。
4.应该避免在妊娠或哺乳期使用多巴胺。
5.注意长期使用的副作用:多巴胺依赖性引起的不良反应如运动障碍、抽动综合症等。
6.不要戒断药物的使用:剧烈的戒断多巴胺会增加症状严重性,使治疗或康复不利。
7.严格按照医生的指示使用:多巴胺应严格按照医生的建议和用量使用,不要自行调整剂量或停用。
什么是多巴胺多巴胺(dopamine)是一种神经递质,又称为神经递质多巴酚。
它在人类体内起着重要的作用,与许多生理和心理过程有关,包括运动协调、奖赏和惊奇体验、情感、记忆和学习等。
本文将从多个方面来介绍什么是多巴胺。
一、多巴胺的发现和结构多巴胺最早是由瑞典科学家Arvid Carlsson和Nils-Åke Hillarp于1957年在研究肾上腺素和去甲肾上腺素的生物合成过程中发现的。
他们发现,当使用一种药物来阻断去甲肾上腺素合成时,神经元仍然释放出一种类似于去甲肾上腺素的物质。
这种物质后来被确认为多巴胺。
多巴胺是一种单胺类化合物,由苯丙氨酸经过羟化和脱羧反应而来。
它的化学名为3,4-二羟基苯乙胺,分子式为C8H11NO2,分子量为153.18。
多巴胺在水中的溶解度较低,但在酸性条件下可以形成盐酸盐或硫酸盐,溶解度则会增加。
二、多巴胺的合成和代谢多巴胺的生物合成主要发生在中枢神经系统中。
它是由苯丙氨酸经过酪氨酸羟化酶(tyrosine hydroxylase)的作用形成的。
酪氨酸羟化酶是一种铜金属依赖性酶,它的活性可以受到调节,从而影响多巴胺的合成量。
多巴胺合成的过程中,酪氨酸羟化酶将苯丙氨酸羟化为3,4-二羟基苯丙氨酸(L-DOPA),然后L-DOPA由羧化酶(aromatic L-amino acid decarboxylase)作用转化为多巴胺。
多巴胺的代谢主要通过两个酶来进行:一是多巴酚氧化酶(monoamine oxidase,MAO),二是多巴胺-β-羟化酶(dopamine β-hydroxylase,DBH)。
多巴酚氧化酶是一种在线粒体内的酶,它可以将多巴胺氧化为3,4-二羟基苯乙酸(DOPAC)。
DOPAC还可以进一步被代谢为3-甲氧基-4-羟基苯乙酸(homovanillic acid,HVA)。
多巴胺-β-羟化酶则将多巴胺转化为去甲肾上腺素,这个过程需要维生素C作为辅助因子。
多巴胺的结构和功能一、多巴胺的简介多巴胺(dopamine,DA,或3-羟酪胺,3、4-二羟苯乙胺)又名儿茶酚乙胺或羟酪胺,是儿茶酚胺类的一种,分子式为C8H11 N O2(化学式和空间结构如图1)。
是内源性含氮有机化合物,为酪氨酸在代谢过程中经二羟苯丙氨酸所产生的中间产物[1]。
图1 多巴胺的化学式和空间结构多巴胺是去甲肾上腺素的前体,多巴胺能神经末梢中的囊泡与去甲肾上腺素囊泡不同点在于它不含多巴胺β-羟化酶,所以不会将多巴胺羟化成去甲肾上腺素,可以行使储存多巴胺的功能。
脑内多巴胺的代谢产物主要是3-甲氧基-4-羟基苯乙酸(HVA)[2]。
多巴胺神经元在脑内分布相对集中,支配范围较局限。
多巴胺能神经纤维主要投射于黑质-纹状体,中脑边缘系统和结节-漏斗部位。
黑质纹状体部位的多巴胺能神经元位于中脑黑质,其神经纤维投射到纹状体,在纹状体储存。
当黑质被破坏或黑质-纹状体束被切断,纹状体中多巴胺的含量随即降低;中脑边缘系统的多巴胺能神经元位于中脑脚间核头端的背侧部位,其神经纤维投射到前脑边缘;结节-漏斗部位的多巴胺能神经元位于下丘脑弓状核,其神经纤维投射到正中隆起[2]。
在大脑中合成、分泌多巴胺递质的多巴胺能神经元主要集中位于中脑组织黑质致密部、腹侧被盖区和红核后区。
二、多巴胺的功能多巴胺是儿茶酚胺类神经递质,可以与脑内广泛表达的多巴胺能受体结合,在中枢神经系统中有着极其重要的作用,多巴胺神经元可调节和控制许多重要的行为过程,其中包括运动、认知、奖赏、情感、学习记忆和神经内分泌的调节等。
其中阿尔维德·卡尔森(Arvid Carlsson)确定多巴胺为脑内信息传递者的角色,使他获得了2000年诺贝尔医学奖。
1.运动——帕金森病多巴胺对运动控制起重要作用,多巴胺拮抗剂和激动剂应用的研究表明了多巴胺受体在运动控制中的重要作用如:大鼠的前进,后退,僵直,吸气和理毛功能。
通常激动剂提高多巴胺的运动功能,拮抗剂作用相反。
多巴胺是A系列神经的介质,是由A8神经到A10神经分泌出来的,其中分泌量最大的是A10神经,而掌控A10神经的关键性物质是脑内吗啡,即β-内啡肽。
多巴胺与内啡肽相比较而言,是脑内兴奋剂,它使我们的精神更加振作。
当我们精力充沛时,脑异常地活跃,不断地分泌这种物质,它是激发人热情干劲的激素,但如果分泌过多,会使人早逝,即使幸免一死,也会出现精神分裂症、癫痫病的症状;不分泌或少分泌,又会使人得帕金森氏综合症、痴呆症等。
多巴胺分泌出来后,若是消耗过量,人就会明显感到力不从心,精疲力竭。
此时若是分泌出足够的脑内吗啡,多巴胺就会发挥出相当于平时的10倍、20倍的功能作用,可见脑内吗啡具有增强能量的作用。
A10神经是影响人们心理活动的重要部分,由于它是唯一的一条通过下丘脑、边缘系统及大脑新皮质三部分的神经,因此一旦被激活,人就会情绪高涨,干劲十足,思维敏捷,记忆力明显增强,产生无比的快感。
当我们心情愉快地从事某项工作时,肯定就是这根神经在起作用。
而对激活A10神经具有重要作用的是多巴胺,掌控A10神经的关键物质是脑内吗啡,即β-内啡肽。
它对多巴胺的功效具有多倍数放大的作用第三节多巴胺能效应[拟多巴胺能效应]在中枢,主要有4条多巴胺能通路,一是中脑-边缘通路,二是中脑-皮质通路,三是黑质-纹状体通路,四是下丘脑-漏斗通路,现将介绍这些通路激动时的中枢效应和药物治疗。
一.中脑-边缘通路中脑-边缘通路多巴胺能亢进引起精神分裂症阳性症状、物质滥用、唤醒和激越,不足引起抑郁症和社交恐怖症。
㈠精神分裂症阳性症状⒈激动多巴胺D2受体:由中脑腹侧被盖部到边缘系统(膈区、伏膈核和嗅结节)的通路称中脑-边缘通路,该通路经多巴胺能传导,故又称中脑-边缘多巴胺能通路。
当中脑-边缘通路的多巴胺能亢进时,激动突触后膜D2受体,引起阳性症状(如幻觉、妄想、瓦解症状和精神病性攻击)。
三环抗抑郁药阻断多巴胺回收,单用于精神分裂症时,可能恶化偏执和瓦解症状;舍曲林有拟多巴胺能,曾有引起幻视的报告。
多巴胺多巴胺(dopamine, DA)是神经系统中另一类重要的儿茶酚胺类神经递质,其含量至少占整个中枢神经系统儿茶酚胺含量的50%。
多巴胺一度被认为仅是去甲肾上腺素生物合成过程中的中间产物。
1958年,瑞典药理学家Carlson首先报道纹状体内多巴胺含量极高,约占全脑多巴胺含量的70%,且和去甲肾上腺素的分布并不一致。
这使人们提出设想,多巴胺可能是脑内独立存在的神经递质。
60年代,人们证实帕金森病是黑质致密区多巴胺能神经元变性所致,用多巴胺的前体左旋多巴(L-DOPA)可获较好疗效,这对多巴胺的研究起了极大的推动作用。
70年代中,应用放射受体结合分析方法证实体内存在着多巴胺受体,某些化合物能与其结合而产生生理效应。
进入80年代后,大量实验深入分析了DA受体的亚型及其与多种生理功能和疾病的关系。
80年代末至90年代初,随着分子生物学技术的发展,DA受体的不同类型得以克隆,其结构也被阐明。
第一节 多巴胺能神经元的分布及纤维联系一、多巴胺能神经元的主要分布采用荧光组织化学、免疫细胞和组织化学方法可以显示出多巴胺能神经元在中枢神经系统中的分布。
Falck-Hillarp(1962)发现,神经元内的单胺类物质可与甲醛蒸汽反应,聚合成为异喹啉(isoquinoline)类化合物,该化合物在荧光显微镜下可发射出波长不同的荧光,神经元内的儿茶酚胺可转变成绿色荧光物,5-羟色胺可转变成黄色荧光物。
运用这一方法,中枢多巴胺能神经元的胞体分布被成功定位。
到目前为止,已知脑内有10个多巴胺细胞群,继去甲肾上腺素的A1 ~ A7细胞群之后,被命名为A8 ~ A17,其中A8 ~ A10细胞群分布于中脑,A11 ~ A14细胞群在丘脑,A15、A16位于端脑,A17在视网膜内(表1)。
A8 ~ A10细胞群集中了约70%的DA能神经元。
表1 脑内多巴胺能神经元胞体的定位A8 位于红核后方的网状结构内,内侧丘系外侧部的背侧A9 位于中脑大脑脚的背内侧黑质复合体,大部分位于致密部,少部分位于网状部A10 位于脚间核的背侧和腹侧被盖区。
多巴胺药理知识点总结高中一、多巴胺的生理作用1.多巴胺在中枢神经系统的作用多巴胺是一种重要的神经递质,它在大脑中的含量和分布与许多重要的生理和病理过程密切相关。
多巴胺参与了运动控制、情感和认知功能的调节。
在运动调节方面,多巴胺与运动功能神经元的活动有关,参与了动作的发出和抑制。
在情感和认知功能方面,多巴胺在奖赏感知和决策制定中起着重要作用。
2.多巴胺在外周神经系统的作用多巴胺也存在于外周神经系统中,它在心血管系统、内分泌系统和消化系统等方面都起到重要的调节作用。
在心血管系统中,多巴胺的作用主要是扩血管,增加心输出量,使心脏的收缩力增强。
在内分泌系统中,多巴胺可以刺激肾上腺素能受体,增加肾素的分泌。
在消化系统中,多巴胺可以增加胃肠蠕动,促进消化液的分泌。
二、多巴胺相关药物及其临床应用1.多巴胺受体激动剂多巴胺受体激动剂是一类常用的多巴胺药物,主要用于治疗帕金森病和多动症等疾病。
常见的多巴胺受体激动剂包括左旋多巴、多巴酚丁胺和阿片多尔等。
这些药物能够通过激动多巴胺受体,增加多巴胺的含量,从而改善运动功能和注意力不集中等症状。
2.多巴胺转运体抑制剂多巴胺转运体抑制剂是另一种常用的多巴胺药物,主要用于治疗抑郁症和多动症等疾病。
常见的多巴胺转运体抑制剂包括舍曲林、米氮平等。
这些药物能够通过抑制多巴胺转运体,增加多巴胺在突触间隙的浓度,从而起到抗抑郁和注意力不集中的作用。
3.多巴胺受体拮抗剂多巴胺受体拮抗剂是一类常用的多巴胺药物,主要用于治疗精神分裂症和麻痹性疯狂等疾病。
常见的多巴胺受体拮抗剂包括氯丙嗪、氟哌啶醇等。
这些药物能够通过拮抗多巴胺受体,减少多巴胺的作用,产生镇静和抗精神病症的效果。
三、多巴胺药理学知识1.多巴胺受体的分类多巴胺受体主要分为D1类和D2类两个亚型,每个亚型又分为D1和D5,D2、D3和D4五个亚种。
多巴胺受体的不同亚型在不同的脑区和细胞中的分布和功能也有所不同。
例如D1类多巴胺受体主要分布于胞体区和突触前膜上,其激动可增加腺苷酸环化酶的活性,起促进效应,与运动功能、学习和记忆功能有关;而D2类多巴胺受体主要分布于突触后膜和远离突触后膜的自主神经内核区,多数是抑制效应,与情感、认知功能、快感等有关。
多巴胺——创造神秘的“幸福感”题记:早在高中时期,多巴胺就时常出现于课本之中,然而当时仅局限于其结构的研究,而未真正涉及其本性。
大学期间又有兴趣去更多了解,特查阅文献,进一步去探秘创造人幸福感的物质——多巴胺。
随着对人的精神状况的“科学解释”的日渐丰富,对其加以解决的技术手段(有些还是设想)也如雨后春笋般地涌现出来。
由于“多巴胺”的研究揭示了一些心智现象的生理基础,其神奇功能不断扩展,它能解释的现象也越来越多,因此有可能成为解决人的精神问题的重要途径之一.多巴胺对我们来说已经不是一个太陌生的词了,各种医学报道和科普文章都频频捉到它。
多巴胺(dopamine)是一种脑内分泌的化学物质,简称“DA”。
它是一种神经传送素,主要负责大脑的情欲、感觉,将兴奋及开心的信息传递。
多巴胺能传递快感,能影响每一个人对事物的欢愉感受。
据说性高潮和吸毒者所产生的快感都因为脑垂体分泌了多巴胺,人们对一些事物“上瘾”主要是由于它。
例如,香烟中的尼古丁会令人上瘾,是由于尼古丁刺激神经元分泌多巴胺,使人感到快感。
因此,近年的一些戒烟研究都以针对多巴胺来进行。
相反,一旦多巴胺分泌减少,向下传递的信号就无法很正确地传递到肢体,这个时候我们执行的命令就可能是错误的,或者根本没有受到大脑控制,帕金森病人的颤拌及僵直等症状的神经功能障碍疾病,就可从多巴胺入手,给患者脑内移植含有多巴胺生成细胞的人胚胎脑组织,可以消除部分患者的症状。
一位意大利科学家在试验中给帕金森氏症患者注射普通的盐水,结果发现他们的脑细胞出现了与接受药物注射时同样的反应。
也就是说,安慰剂能够通过提高脑部多巴胺水平来产生疗效,甚至像个别帕金森氏症病人接受“虚假”手术后也能够提升身体原本缺乏的多巴胺水平。
一.多巴胺提高人对快乐的预期有人甚至认为人们追求财富和权力也是源自多巴胺的驱动,多巴胺无孔不入,对财富、权力、性以及成功的欲望都来自于它。
据资料称。
曾有研究人员给61名志愿者列出一份包括希腊和泰国等80个旅游胜地的名单,请他们对到这些地方旅游可能带来的快乐程度进行排序。
在对其中一些旅游胜地可能带来的快乐进行评估时,部分受试者服用可以增强大脑中多巴胺作用的药物,其他受试者则服用安慰剂。
第二天,受试者被要求对这些旅游胜地重新排序,结果那些在强化多巴胺作用下被想象过的景点,排序位置普遍上升。
研究人员说,尽管预料到多巴胺会提高人们对快乐的预期,但其作用能维持24小时以上的强力效果仍然让人惊奇。
这项结果有助于对吸毒上瘾等大脑神经活动的研究。
临床上,多巴胺适用于伴有显著血流动力学异常陶低血压(收缩压<90mmHg伴组织灌制不足、少尿或神志改变=。
所用剂量应以能使重要脏器得到足够血流灌注的最小剂量为度。
血管阻力增高、肺淤血或心脏前负荷增高是多巴胺的相对禁忌证。
此时只能用小剂量(1~2μg/k/min)以增加肾血流。
多巴胺通常仅用于伴有症状的心动过缓导致的低血压或自主循环恢复后的低血压。
当维持血压所需的多巴胺剂量大于20μg/k/min时,应加用去甲肾上腺素。
Gonzalez等研究9例院外心脏骤停者对逐步增大的肾上腺素静脉内注射剂量(1,3和5mg)的升压反应,同时给或不给多巴胺(15μg/kg/min)。
结果发现,单用肾上腺素对收缩压和舒张压产生显著的(P<0.05)剂量依赖性升压作用。
同时给予肾上腺素和多巴胺并不产生升压作用的相加。
在复苏后,可能需要给予大剂量多巴胺造成暂时性高血压以增加脑血流灌注。
此时要注意其α肾上腺素能作用可使肺动脉压力增高,从而诱发或加重肺淤血(即使在较小剂量给药时)。
扩血管药(如硝酸甘油或稍普钠)可以对抗多巴胺所致的动静脉阻力增高,因此,可合用以降低前负荷,改善心输出量。
多巴胺和稍普钠合用的血流动力学作用类似多巴酚丁胺。
多巴胺起始剂量为1~5μg/kg/min,逐渐增加输液速度直至血压、尿量和其它重要脏器的血流灌注得到改善。
推荐的最终剂量范围5~20 μg/kg/min。
为减少不良反应,宜采用能产生满意的血流动力学效果的最小给药速率。
多巴胺应通过输液泵给药,以保证精确的给药速率。
对于冠心病或充血性心力衰竭患者,应进行血流动力学监测,以保证多巴胺的合适使用。
停用多巴胺时,应逐渐停药,以免产生急性低血压反应。
多巴胺增快心率,可诱发或加重室上性或室性心律失常。
而且,即使小剂量多巴胺也会加重肺淤血,降低心输出量,以致有时需要减量甚至停药。
给予大剂量多巴胺时,血流动力学指标得到改善,但心肌氧耗量和心肌乳酸生成可增加,说明冠脉血流未能有足够的增加以代偿心肌作功的增加。
这种供需的不平衡可诱发或加重心肌缺血。
恶心和呕吐是多巴胺常见的副作用,尤其在给予大剂量时。
如同去甲肾上腺素一样,多巴胺血管外渗漏可使组织坏死。
对嗜铬细胞瘤患者,多巴胺可诱发高血压危象,应禁用。
作为一种神经传递物质,多巴胺与基因显然有关,从而与人的个性、性格有关。
科学家揭示,可复制出较长多巴胺受体的遗传基因携带者对事物怀有广泛的好奇心,而且有很强的参与意识。
所以,如同赖特在《基因的力量——人是天生的还是造就的》一书中所说的,与基因相联系的多巴胺“在决定我们是否快乐或郁闷、积极或消极、聪明或迟钝、开朗或保守、相信唯物主义或信仰宗教等方面起着很大的作用”。
对多巴胺导致幸福感阐释得最多的,莫过于认为它与爱情的密切关系,即认为爱情的产生,是源于多巴胺的分泌所带来的特殊亢奋。
二.多巴胺让人感受爱和幸福大脑中心——丘脑是人的情爱中心,其间贮藏着丘比特之箭——多种神经递质,也称为恋爱兴奋剂,包括多巴胺、肾上腺素等。
当一对男女一见钟情或经过多次了解产生爱慕之情时,丘脑中的多巴胺等神经递质就源源不断地分泌,势不可挡地汹涌而出。
于是,我们就有了爱的感觉。
而且,你对爱人的欲望愈是炽烈,脑中的多巴胺浓度愈高。
直到某个时刻,多巴胺浓度达到峰值,前额叶皮层再也压抑不住冲动。
由于人的前额叶皮层被大量多巴胺淹没,它已经很难听到理智的声音了。
问题是,这时候,你的大脑将面临多巴胺长期处于高风险的状态。
一旦爱人不在身边,就会心神不宁,继而做出种种疯狂的举动。
而这些,在面对一个不那么爱的人的时候,多巴胺就安静多了。
甚至“移情别恋”也可以通过多巴胺的变化来解释:人处于恋爱状态时,脑部分泌的多巴胺使人身心舒畅,激情饱满。
但对于同一个人,这种分泌只能持续半年到一年,之后由于对这个人进入熟悉状态,这份感觉会日渐淡化,于是,为继续寻求这种美妙的感觉,又要寻找新的猎物来让自己进入分泌多巴胺的状态。
于是,所有的恋爱行为都可以Array从化学角度去解释,爱无非是大脑中的化学元素——多巴胺等——刺激某一特定区域产生的特定反应。
人是否有爱情,是否有激情,是否感到一种美妙的幸福……均与多巴胺的状况有关。
我们的情绪,尤其是幸福和快乐的情绪,统统受多巴胺控制。
在充足的多巴胺作用下,我们可以感觉到爱和幸福。
而从另一方面看:人的一切精神性不良似乎也都是有多巴胺方面的生理根源的。
面对同样的半杯水,有的人看到的是只剩半杯,而有的人多巴胺分子结构图看到的是还有半杯,可能他们之间的多巴胺分泌状况是不一样的。
看到了多巴胺与人的精神状况进而人的幸福感之间的如上关联,必然产生这样的追问:通过技术手段寻求人的精神幸福的前景如何?如果多巴胺起着如此重要的作用,那么只要我们在技术上能够人工合成多巴胺,将其植入缺少它的那些人的脑内,似乎就为我们解决了精神或情绪问题,从而也提高了人的幸福感。
在目前人间的物质财富急剧增长而幸福感如此匮乏的年代,如果技术能为我们解决幸福感的问题,无疑是发挥了最重要的人文功能。
传统的精神幸福是靠人文手段解决的,即使在物质生活十分艰苦的条件下,如果具有丰厚的人文追寻,人也是可以获得幸福感的,所以印度人才能拥有和新加坡人相同的幸福指数。
这表明,至少在目前,人文手段的作用依然是强大的。
问题是随着技术手段的作用日益强大,它在将来是否会成为获得幸福感的主要手段,并且通过“物质变精神”而得到哲学上合理性的论证?这种技术手段将带来一些新的人文问题。
一是这种幸福感的真实性问题。
这种幸福感可恰当地被称为“人工幸福”,因此多少带有“虚拟幸福”的性质,甚至与“虚假的幸福”联系在一起。
它是不是我们真正追求的幸福?这是我们难免要面临的疑问。
二是这种幸福感的内容问题。
由技术手段造成的幸福感似乎是无对象无原因的幸福感,我高兴,但我却不知道为什么高兴。
对比在人文手段中,可能是我寻到了恋人,找到了人生的追求或阅读了一部好小说,观赏一部好片子,由这些有人文内容的对象激发了多巴胺的分泌,从而导致了一种愉快的感觉;当这些内容性的对象消逝后,多巴胺不再分泌,愉快的感觉不复存在。
但仅有多巴胺而无内容所导致的高兴,是一种什么样的高兴?一种空洞的、莫名其妙的高兴吗?无原因、无对象的喜乐是否还属于精神正常的范围?当我们习惯于人文导向的幸福感时,总难免会对这种无内容依托的愉快有所质疑。
三是这种幸福感的持久性问题。
多巴胺给人带来愉悦,其高级阶段便是进入激情的状态,那也是给人幸福感最强烈的状态。
但维持这种状态通常需要身体付出极大的代价,一个人的身体也不可能长久支撑一种心跳过速的巅峰状态,正如不能不停地被注射兴奋剂一样。
这样,依靠多巴胺手段来制造幸福感就必然面临持久性的问题。
当然,我们也将幸福感定位于对平静的追求,从平静中体会安宁的愉悦,避免因激情造成的情绪上的大起大落,使得代价大于所获。
但是对平静的追求更是人文手段的所长了,这样的状态恰恰是需要多巴胺的减少,因为较多的多巴胺从一定意义上就意味着不平静,而不平静就是一种消耗,就是付出生理和心理代价而获得的幸福感,是一种原则上不可能持久的幸福感。
所以,关于哪种手段更能给人以持久的幸福感,也使我们可能对技术手段有所质疑。
四是这种幸福感的负面作用问题。
首先不能不提到依赖性或成瘾的问题。
采用技术来解决心情好不好的问题,很可能形成技术依赖或“技术成瘾”,就类似于药物依赖和成瘾。
原则上,对多巴胺的追求是会上瘾的。
因为当一个人经历较多地分泌多巴胺所带来的兴奋与愉快而进人结束分泌多巴胺的阶段之后,就会同时进入空虚寂寞甚至肉体痛苦的感觉状态,而且这种感觉比分泌多巴胺之前来得更强烈,会逼得他再次寻觅能够刺激分泌多巴胺的载体,这就是吸毒成瘾和上网成瘾的机理。
如果改用其他技术手段来直接生成多巴胺,显然会因为对多巴胺的依赖而造成对那种技术手段的依赖,至少会造成和网络成瘾类似的效果,从而走向摧残人的身心健康的反面效果。
其次,如果维持幸福感的技术便捷可用,而人显然是不会愿意让自己难受的,于是总倾向于在技术手段维持下让自己总是处于一种幸福感之中(犹如在炎热的夏日如果有空调的话,就总是想待在空调环境中让自己保持凉爽一样),就有可能失去喜怒哀乐所带来的不同情感、情绪、心情的对比,幸福感也就随之不再有价值。