建筑施工手册: 木结构计算
- 格式:doc
- 大小:327.11 KB
- 文档页数:11
木结构工程工程量计算规则一、工程量计算规则1木屋架和檀条的工程量按竣工木料体积以m3计算,附属于其上的木夹板、垫木、风撑、挑檐木、檄条三角条均按竣工木料体积并入屋架、檀条工程量内。
单独挑檐木并入檀条工程量内。
檀托木、檀垫木已包括在定额项目内,不再另行计算。
2.圆木屋架上的挑檐木、风撑等设计规定为方木时,应将方木竣工木料体积乘以系数17折合成圆木并入圆木屋架工程量内。
3.简支檀木长度设计无规定时,按相邻屋架或山墙中距增加0.20m接头计算,两端出山柳条算至搏风板;连续檄的长度按设计长度增加5%的接头长度计算。
4,需要刨光的屋架、柳条在计算竣工木料体积时,应加刨光损耗,方木按一面刨光加3mm计算,两面刨光加5mm计算,圆木刨光按每m3竣工木料体积增加0.05m3计算。
5.椽子、屋面板、挂瓦条、竹帘子工程量按屋面斜面积以m2计算,屋面烟囱、人孔及斜沟所占面积不扣除。
6.封檐板工程量按设计图示檐口外围长度以m计算。
搏风板按斜长度计算,每个大刀头增加长度0.50m o7.带气楼的屋架,其气楼屋架并入所依附屋架工程量内计算。
8.屋架的马尾、折角和正交部分半屋架,并入相连屋架工程量内计算。
9钢木屋架工程量按屋架的竣工木料体积以m3计算,定额内已包括钢构件的用量,不再另行计算。
二.说明1定额中木材木种是综合取定的,木种不同时,不再调整。
2,屋架的跨度是指屋架两端上、下弦中心线交点之间的长度。
3,支撑屋架的混凝土垫块,应按第四章混凝土工程中相应定额项目计算。
4,木屋架、钢木屋架定额项目中的钢板、型钢、圆钢用量与设计不同时,按设计数量另加6%损耗进行换算,其他不再调整。
2-6 木结构计算12-6-1木结构计算用表1.承重结构构件材质等级(表2-97)承重结构构件材质等级表2-97注:•屋面板、挂瓦条等次要构件可根据各地习惯选材,不统一规定其材质等级。
2.本表中的材质等级系按承重结构的受力要求分级,其选材应符合《木结构设计规范》GBJ 5-88材质标准的规定,不得用一般商品材等级标准代替。
2.常用树种木材的强度设计值和弹性模量(表2-98)常用树种木材的强度设计值和弹性模量(N/mm2)表2-98注:1•对位于木构件端部(如接头处)的拉力螺栓垫板,其计算中所取用的木材横纹承压强度设计值,应按“局部表面及齿面”一栏的数值采用。
木材树种归类说明见《木结构设计规范》附录五。
1因新的木结构设计规范尚未岀版,此处仍按“木结构设计规范”(GBJ 5-88)编写。
2 •当采用原木时,若验算部位未经切削,其顺纹抗压和抗弯强度设计值和弹性模量可 提高15%。
3•当构件矩形截面短边尺寸不小于150mm 时,其抗弯强度设计值可提高10%。
4 •当采用湿材时,各种木材横纹承压强度设计值和弹性模量,以及落叶松木材的抗弯 强度设计值宜降低 10%。
5.在表2-99所列的使用条件下,木材的强度设计值及弹性模量应乘以该表中给出的调 整系数。
木材强度设计值和弹性模量的调整系数表2-99注:.仅有恒荷载或恒荷载所产生的内力超过全部荷载所产生的内力的 时,应单独以恒荷载进行验算。
2•当若干条件同时出现,表列各系数应连乘。
木材强度检验标准见表2-100。
木材强度检验标准表2-100注:•检验时,应从每批木材的总根数中随机抽取根为试材,在每根试材髓心以外部分切取3个试件为一组,根据各组平均值中最低的一个值确定该批木材的强度等级。
2 •试验应按现行国家标准《木材物理力学性能试验方法》进行。
并应将试验结果换算 到含水率为12%的数值。
3•按检验结果确定的木材强度等级,不得高于表2-98中同树种木材的强度等级。
木结构计算书一、设计概述本文档是对某建筑项目中使用的木结构进行计算和分析的技术说明。
木结构作为一种古老而可靠的建筑材料,具有很高的承载能力和美观性。
本文档旨在通过详细的计算和分析,确保木结构在项目中的安全可靠性。
二、结构参数1. 木材种类:选择了经过研究证明具有良好承载能力且符合项目需求的木材种类。
2. 几何形状:对木结构的各个组成部分进行了准确的测量和分析,包括梁、柱、桁架等。
3. 荷载情况:根据建筑规范和项目要求,确定了各个荷载情况,包括自重、活载、风载等。
三、梁的计算1. 梁截面的选择:根据设计要求,结合木材的强度参数,选择了适合的截面形状和尺寸。
2. 弯矩计算:根据荷载情况和梁的支座条件,计算了梁在不同截面位置的弯矩大小。
3. 梁的抗弯能力:通过与弯曲强度极限进行对比,验证了梁的抗弯能力是否满足设计要求。
四、柱的计算1. 柱截面的选择:根据设计要求和建筑规范,选择了合适的柱截面形状和尺寸。
2. 柱的稳定性:进行了柱的稳定性分析,通过计算柱的抗压能力和压力大小,验证了柱的稳定性。
3. 柱与梁的联接:对柱与梁的连接方式进行了分析和计算,确保联接的可靠性和稳定性。
五、桁架的计算1. 桁架构件的选择:根据设计要求和桁架的受力情况,选择了合适的桁架构件。
2. 桁架的稳定性:进行了桁架的稳定性分析,通过计算桁架构件的抗压能力和应力大小,验证了桁架的稳定性。
3. 桁架与梁柱的连接:对桁架与梁柱的连接方式进行了分析和计算,确保连接的可靠性和稳定性。
六、其他设计要素1. 拉索和节点的计算:对拉索和节点进行了计算和分析,确保其承载能力和稳定性。
2. 防火措施:根据建筑规范和项目要求,对木结构的防火措施进行了考虑和设计,确保安全性。
七、总结与建议根据对木结构的详细计算和分析,结合建筑规范和项目要求,木结构在本项目中具备安全可靠的承载能力。
然而,我们建议在实施过程中严格按照设计要求进行施工,并加强对木材质量和防火措施的监控。
2 常用结构计算2-5 钢结构计算2-5-1 钢结构计算用表为保证承重结构的承载能力和防止在一定条件下出现脆性破坏,应根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑,选用合适的钢材牌号和材性。
承重结构的钢材宜采用Q235钢、Q345钢、Q390钢和Q420钢,其质量应分别符合现行国家标准《碳素结构钢》GB/T 700和《低合金高强度结构钢》GB/T 1591的规定。
当采用其他牌号的钢材时,尚应符合相应有关标准的规定和要求。
对Q235钢宜选用镇静钢或半镇静钢。
承重结构的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。
焊接承重结构以及重要的非焊接承重结构的钢材还应具有冷弯试验的合格保证。
对于需要验算疲劳的焊接结构的钢材,应具有常温冲击韧性的合格保证。
当结构工作温度等于或低于0℃但高于-20℃时,Q235钢和Q345钢应具有0℃C冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。
当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有-20℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-40℃冲击韧性的合格保证。
对于需要验算疲劳的非焊接结构的钢材亦应具有常温冲击韧性的合格保证,当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有0℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。
当焊接承重结构为防止钢材的层状撕裂而采用Z向钢时,其材质应符合现行国家标准《厚度方向性能钢板》GB/T 5313的规定。
钢材的强度设计值(材料强度的标准值除以抗力分项系数),应根据钢材厚度或直径按表2-77采用。
钢铸件的强度设计值应按表2-78采用。
连接的强度设计值应按表2-79至表2-81采用。
钢材的强度设计值(N/mm2)表2-77注:表中厚度系指计算点的钢材厚度,对轴心受力构件系指截面中较厚板件的厚度。
最全木结构计算木结构计算是指对木质结构的设计和计算过程。
木结构广泛应用于建筑领域,具有轻质、高强度、耐用等优点。
本文将从设计原则、计算方法和例子等方面介绍木结构计算。
首先,设计原则是进行木结构计算的基础。
木结构的设计原则包括:遵循力学平衡原理,确保结构的稳定性和安全性;合理利用材料,减小结构的重量;考虑木材的湿度因素,避免因湿润而导致木材变形和腐朽;考虑结构的施工和维护过程,确保结构的可持续发展。
其次,在进行木结构计算时,需要采用一定的计算方法。
常见的计算方法有静力学方法和有限元方法。
静力学方法适用于简单木结构的计算,例如梁、柱等。
有限元方法适用于复杂木结构的计算,例如悬挂结构、曲面结构等。
计算方法需要考虑结构的荷载、约束和形状等因素,以确定结构的稳定性和强度。
最后,以下是一个例子,展示了如何进行木结构计算。
假设有一个木制的桌子,长度为1.5米,宽度为0.8米,高度为0.7米。
现在需要计算该桌子的强度。
首先,需要确定桌子的荷载。
假设桌子上放置一个重量为50千克的物体,并假设该物体均匀分布在桌子的面积上。
则桌子的荷载为50千克除以桌子的面积,即50千克除以1.5米乘以0.8米,约为41.67千克/平方米。
______然后,需要计算木柱和木板的强度。
根据静力学方法,木柱的强度需要满足荷载的承载能力和木材的强度。
木板的强度需要满足荷载的承载能力和木材的弹性模量。
最后,根据木柱和木板的强度计算结果,确定桌子的总强度。
根据设计原则,桌子的总强度应该足够满足荷载的要求,并避免出现结构的破坏和变形。
综上所述,木结构计算是对木质结构进行设计和计算的过程。
设计原则和计算方法是进行木结构计算的基础。
通过合理确定荷载和结构,可以保证木结构的稳定性和强度。
通过以上例子,可以清楚地了解木结构计算的过程。
木结构计算书范本一、引言木结构作为一种传统的建筑结构形式,具备优良的力学性能和美观的外观,被广泛应用于建筑工程领域。
为了确保木结构的稳定性和安全性,需要进行严谨的计算和设计。
本文以某建筑项目的木结构设计为例,旨在展示木结构计算书的范本,详细介绍设计过程和各个参数的计算方法。
二、基本信息1. 结构名称:某建筑项目木结构设计2. 项目地点:XXX市3. 使用要求:满足建筑安全和稳定性要求三、受力分析与设计计算1. 水平荷载计算根据建筑所在地的风荷载标准以及建筑的高度和风力系数,确定水平荷载的设计值。
以该建筑项目为例,水平荷载设计值为X kN。
2. 竖向荷载计算根据建筑自重和使用荷载以及规范要求,计算竖向荷载的设计值。
以该建筑项目为例,竖向荷载设计值为X kN。
3. 荷载传递路径分析根据建筑结构的力学特性和施工方式,分析荷载传递路径,确定各个部位的荷载分担比例,并计算受力情况。
4. 木材选择与截面计算根据设计荷载和木材的力学性能指标,选择合适的木材材料,并进行截面计算。
按照规范的验算方法,计算木材截面的承载力和抗弯刚度以及刚度的满足程度。
5. 连接件设计计算对于木结构中的连接部分,进行设计计算。
考虑连接的承载力和强度,选择合适的连接方式,并进行强度验算。
6. 结构整体稳定性分析对木结构的稳定性进行分析和计算。
考虑结构的垂直和水平稳定性,采用相应的计算方法和参数,确保结构的整体稳定。
7. 构件尺寸计算与调整根据上述计算结果和设计要求,对木构件的尺寸进行计算和调整。
确保构件的尺寸满足强度和稳定性的要求,同时考虑建筑的美观效果。
四、结果与讨论根据上述计算,我们得到了木结构的各个参数和构件尺寸。
经过讨论和分析,我们认为该设计满足了建筑安全和稳定性的要求。
同时,结合建筑的实际情况和预算限制,我们采用了合理的设计方案,既满足了结构的力学性能,又兼顾了经济性和建筑美观效果。
五、总结通过本文的木结构计算书范本,我们展示了木结构设计的基本步骤和计算方法。
木结构工程计算书木结构工程计算书(H栋)1.设计依据1.1本工程结构设计所依据的主要规范、规程、标准及绘图标配图集如下GB50068-2001《建筑结构可靠度设计统一标准》、GB5009-2012《建筑结构荷载规范》、GB50005-2003《木结构设计规范》(2005年版)、GB50003-2011《砌体结构设计规范》、GB50223-2008《建筑工程抗震设防分类标准》、50206-2012《木结构施工质量验收规范》、GB50010-2010《混凝土结构设计规范》、GB50011-2010《建筑抗震设计规范》GB 18306-2015《中国地震动参数区划图》2.本工程相关设计等级、类别、参数如下:2.1 构设计使用年限:50年;2.2建筑防火分类:二类;耐火等级:二级;2.3抗震设防烈度:8度, 设计基本地震加速:0.3g,设计地震分组:三组;2.4建筑结构安全等级:二级;2.5建筑抗震设防类别:丙级;2.6建筑场地类别:Ⅱ类, 2.7场地特征周期:0.45S, 2.8基本风压:0.35KN/m2,地面粗糙度:B类;2.9地震影响系数最大值:小震0.24;3.0地基基础设计等级:丙级;3.1混凝土结构耐久性:按一类环境(±0.00以上)、环境二类a(±0.00以下)规定的基本要求施工3.结构计算简图及计算构件选取构件选取一层轴交轴MZΦ260, 轴上~ 轴间双梁L1 150×210,地板梁L3 150×160;二层选取轴上~ 轴间双梁L2 150×210, L4 150×210;轴上~ 轴间檩组合梁180×180+70×160+150×150进行内力计算。
屋面与水平方向最大夹角30度, cosα=0.874.材料信息本工程材料均为云南松, 强度等级为TC13 A组, 材质等级均为Ⅰa, 抗弯强度设计值fm=13N/mm2、抗压强度fc=12 N/mm2、抗拉强度ft=8.5 N/mm2、抗剪强度fv=1.5N/mm2、弹性模量E=10000 N/mm25.荷载信息5.1屋面层恒载标准值KN/m2冷摊瓦0.5椽子80×80间距250 0.30.08×0.08×2.1×6×4防水卷材0.3恒载总计 1.1活载不上人屋面0.5屋面荷载标准值P K1=1.1/ cos30°+0.5=1.76KN屋面荷载设计值P n1=1.35×1.1/ cos30°+1.4×0.5=2.4KN5.2一层楼面荷载恒载标准值KN/m2实木地板(厚35)0.21活载 3.5一层楼面荷载标准值P K2=0.21+3.5=3.7KN一层楼面荷载设计值P n2=1.35×0.21+1.4×3.5=5.2KN5.3 外墙荷载, 墙体均为360厚免烧砖, 均由基础直接承重, 木结构主体不计一层层高3.0米q=(18×0.36+0.8)×3.0=21.8KN/m二层层高2.7+1.2*0.5=3.30 q=(18×0.36+0.8)×3.3=24KN/m内墙门窗隔墙实木墙体厚606×0.06×2.6=0.94 KN/m6.计算过程6.1 屋面层檩条均有组合梁180×180+70×160+150×150 构成, 以顶梁180×180为主要受弯构件, 其余为安全储备;檩条180×180自重标准值P K3=0.18×0.18×6=0.2KN/m檩条180×180自重设计值P n3=1.35×0.18×0.18×6=0.26KN/m檩条180×180上均布荷载标准值P K4=1.25P K1+ P K3=1.25×1.76+0.2=2.4 KN檩条180×180上均布荷载设计值P n4=1.25 P n1+ P n3=1.25×2.4+0.26=3.3KN轴力R A1=R B1= ql /2=0.5×3.3×4=6.6 KN剪力V A1=R A1=6.6 KN V B1=-R B1=-6.6 KN1ql2= 3.3×42/8=6.6KN.m弯矩 Mmax=8受弯构件净截面抵抗矩W= bh2/6=0.18×0.182/6=1.0×10-3m3抗弯承载力M/Wn=6.6/1.0×10-3×103=6.6N/mm2<13N/mm2满足要求檩条在木柱支端切削后截面为70×180由《木结构设计规范》第5.2.5条: ×()=(3*6.6×(0.18/0.18))/(2×0.07×0.18×103)=0.8N/mm2<1.5N/mm2满足要求变形验算,矩形截面全截面惯性矩I=bh3/12=0.18×0.183/12=0.9×10-4m4W=5ql4/384EI=5×2.4×44/(384×104×0.9×10-4)=8.9mm<l/250=4000/250=16.0mm满足要求其余梁在木柱支端轴力标准值R Ak2=R Bk2= ql /2=(0.07×0.16+0.15×0.15)×6×4/2=0.4 KN 其余梁在木柱支端轴力设计值R A2=R B2= 1.35 R Ak2=1.35×0.4=0.54KN6.2 二层屋顶L2 150×210 内力计算如下L4 150×210在木柱支端轴力标准值R Ak3=R Bk3= ql /2= 0.5×0.15×0.21×1.1×6=0.1KNL4 150×210在木柱支端轴力设计值R A3=R B3= 1.35 R Ak3=1.35×0.1=0.14 KN其上木柱Φ200自重标准值P K5=3.14×0.12×0.57×6=0.1KN其上木柱Φ200自重设计值P n5=1.35 P k5=1.35×0.1=0.14 KN/mL2 150×210上集中荷为F k=2R Ak1+2R Ak2+R Ak3+0.1=0.5×2.4×4.0×2+0.4×2+0.1+0.1=10.6KNF n=2R A1+2R A2+R A3+0.14=6.6×2+0.54×2+0.14+0.14=14.5KNL2 150×210为双梁, 以顶梁为主要受弯构件, 其余梁为安全储备;L2 150×210 自重标准值P K6=0.15×0.21×6×2=0.38 KNL2 150×210 自重设计值P n6=1.35 P k6=1.35×0.38=0.5 KN轴力标准值RAk4=R Bk4= F/2+ql/2=10.6/2+0.38×2.2/2=5.72KN轴力RA4=R B4= F/2+ql/2=14.5/2+0.5×2.2/2=7.8KN剪力V A4=R A4=7.8KN V B4=-RB4= -7.8KN弯矩Mmax=Fl/4+ql 2/8=14.5×2.2/4+0.5×2.22/8=8.28KN.m 受弯构件净截面抵抗矩 Wh=bh 2/6=0.15×0.212/6=1.1×10-3m 3抗弯承载力M/Wh=8.28/1.1×10-3×103=7.53N/mm 2<13N/mm 2满足要求 受弯构件在木柱支端切削后截面为 70×210bhn V 23×(hnh )=(3×7.8×(0.21/0.21))/(2×0.07×0.21×1000)=0.8N/mm 2<1.5mm 2满足要求 变形验算矩形截面惯性矩I=bh 3/12=0.15×0.213/12=1.16×10-4m 4Wmax=Fl 3/48EI+5ql 4/384EI=10.6×2.23/(48×104×1.16×10-4)+5×0.38×2.24/(384×104×1.16×10-4)=2.1<l/250=2200/250=8.8mm 满足要求6.3 一层 轴线上 - 轴间双梁L1 150×210内力计算如下, 地板梁L3 150×160, 间距550其自重标准值P K7=0.15×0.16×6=0.14KN 自重设计值P n7=1.35 P k7=1.35×0.14=0.20 KN轴力标准值 RAk5=R Bk5=ql/2=0.5×(3.7×0.55+0.14)×4.0=4.35KN 轴力RA5=R B5=ql/2=3.1×4/2=6.2KN剪力V A5=R A5 =6.2KN;V B5=-R B5=-6.2KN弯矩Mmax=ql2/8=3.1×42/8=6.2KN.m受弯构件净截面抵抗矩Wn=bh2/6=0.15×0.162/6=0.64×10-3m3抗弯承载力M/Wn=6.2/0.64×10-3×103=9.7 N/mm2<13 N/mm2满足要求剪切面以上的截面面积对中性轴的面积矩S=bh2/8=0.15×0.162/8=4.8×10-4 mm3矩形截面全截面惯性矩I=bh3/12=0.15×0.163/12=0.51×10-4m3地板梁抗剪承载力Vs/Ib=6.2×4.8×10-4/(0.51×10-4×0.15×1000)=0.4N/mm2<1.5N/mm2满足要求变形验算, 一层楼面荷载标准值q=3.7×0.55+0.14=2.2KN/m矩形截面全截面惯性矩I=bh3/12=0.15×0.163/12=0.51×10-4m3W=5ql4/384EI=5×2.2×44/(384×104×0.51×10-4)=14.4<l/250=4000 /250=16 mm满足要求6.4一层轴上- 轴间L1 150×210为双并梁, 以顶梁为主要受弯构件其自重标准值P K8=0.15×0.21×6×2=0.38KN其自重设计值P n8=1.35 P K8=1.35×0.38=0.5KN轴力R A6=R B6= 3F/2+ ql/2=3×12.4/2+0.5×0.5×2.2=19.15KN剪力V A6=R A6=19.15 ;V B6=-R A6= -19.15KN弯矩Mmax=FL/2+ql2/8=12.4×2.2/2+0.5×2.22/8=13.94KN.m受弯构件截面抵抗矩Wn=bh2/6=0.15×0.212/6=1.1×10-3mm3抗弯承载力 M/Wn=13.94/1.1×10-3×103=12.6N/mm 2<13N/mm 2满足要求 受弯构件抗剪承载力计算受弯构件在木柱支端切削后截面为 95×210bhn V 23×(hnh )=(3×19.15×(0.21/0.21))/(2×0.095×0.21×1000)=1.44N/mm 2<1.5 N/mm 2满足要求 变形验算矩形截面全截面惯性矩I=bh 3/12=0.15×0.213/12=1.16×10-4m 4Wmax=19Fl 3/384EI+5ql 4/384EI=19×2×4.35×2.23/(384×104×1.16×10-4)+5×0.38×2.24/(384×104×1.16×10-4)=4.05<l/250=2200/250=8.8 mm 满足要求 6.5 轴交 轴木柱Φ260为轴心受压构件, 内力计算如下: 按强度验算An=πR 2-0.095×0.26=3.14×0.132-0.095×0.26=0.03m 2 木柱自重设计值P n9=3.14×0.132×6.9×6×1.35=3.0KN/mN=2(R A1+R A2+R A3+R A4+R A5+R A6)+3.0=2×(6.6+0.54+0.14+7.8+6.2+19.15)+3.0=83.8 KN N/An=83.8/0.03×103=2.8N/mm 2<12N/mm 2满足要求 按稳定验算木柱惯性矩 I=πd 4/64=3.14×0.264/64=2.2×10-4m 3 A=πR2=3.14×0.132=0.053m 2ⅰ= =0.064受压构件两端铰接, 长度系数为1 λ=lo/ⅰ=6.9/0.064=108>91, λ<[λ]=120因缺口不在边缘Ao=0.9A=0.9πR 2=0.9*3.14*0.132=0.05mm 2 φ=2800/λ2=2800/1082=0.24N/φAo=83.8/(0.24×0.05×1000)=7N/mm 2<12 N/mm 2满足要求。
木结构计算书范本(1)一、引言木结构作为一种传统的建筑结构形式,具有轻巧、环保、美观等优点,在现代建筑中得到了广泛的应用。
为了确保木结构的设计和计算的准确性,本文给出了一份木结构计算书范本,以供设计师和工程师参考使用。
二、背景介绍木结构的计算书是为了满足工程建设中对木结构设计合理性、可靠性的要求而编制的一份文件。
它包含了对木结构各构件进行设计和计算的具体要求和方法,确保在各种荷载作用下,木结构能够安全可靠地承受力学效应。
三、计算书内容3.1 结构基本信息木结构计算书首先需要提供结构的基本信息,包括建筑的位置、功能、设计规范等。
此外,还需提供建筑的整体布局、建筑物尺寸、木材种类和规格等信息。
3.2 荷载计算接下来,需要对木结构的荷载进行计算。
包括自重、使用荷载、风荷载、雪荷载等。
通过合理的荷载计算,可以确定木结构设计的主要参数,确保结构能够满足使用要求。
3.3 受力分析在荷载计算的基础上,对木结构的受力进行分析。
通过将结构按照不同的受力方式进行划分,计算每个部分的受力情况,以确定其稳定性和强度。
3.4 构件设计在受力分析的基础上,需要对木结构中的各个构件进行设计。
包括墙体、梁、柱等。
通过计算和选择合适的木材规格、连接方式和支撑形式,确保木结构构件能够承受所需的荷载。
3.5 连接设计木结构中的连接设计对于整个结构的稳定性和可靠性至关重要。
计算书需要指明连接的类型、计算方法和设计要求,并提供连接件的选型表和构件连接示意图。
3.6 抗震设计为了提高木结构的耐震性能,计算书还需要包含抗震设计的相关内容。
通过给出结构的抗震等级、抗震措施和强度验算等,确保木结构在地震条件下不发生倒塌或严重损坏。
3.7 构造施工和防火设计最后,计算书还需要包含木结构构造施工和防火设计的内容。
确保结构的施工符合相关规范和要求,并采取合适的防火措施,提高木结构的安全性和耐久性。
四、总结本文以木结构计算书范本为主题,介绍了木结构计算书的基本内容和要求。
2-6 木结构计算1
2-6-1 木结构计算用表
1.承重结构构件材质等级(表2-97)
承重结构构件材质等级表2-97
注:1.屋面板、挂瓦条等次要构件可根据各地习惯选材,不统一规定其材质等级。
2.本表中的材质等级系按承重结构的受力要求分级,其选材应符合《木结构设计规范》GBJ 5-88材质标准的规定,不得用一般商品材等级标准代替。
2.常用树种木材的强度设计值和弹性模量(表2-98)
常用树种木材的强度设计值和弹性模量(N/mm2)表2-98
注:1.对位于木构件端部(如接头处)的拉力螺栓垫板,其计算中所取用的木材横纹承压强度设计值,应按“局部表面及齿面”一栏的数值采用。
木材树种归类说明见《木结构设计规范》附录五。
1因新的木结构设计规范尚未出版,此处仍按“木结构设计规范”(GBJ 5-88)编写。
2.当采用原木时,若验算部位未经切削,其顺纹抗压和抗弯强度设计值和弹性模量可提高15%。
3.当构件矩形截面短边尺寸不小于150mm时,其抗弯强度设计值可提高10%。
4.当采用湿材时,各种木材横纹承压强度设计值和弹性模量,以及落叶松木材的抗弯强度设计值宜降低10%。
5.在表2-99所列的使用条件下,木材的强度设计值及弹性模量应乘以该表中给出的调整系数。
木材强度设计值和弹性模量的调整系数表2-99
注:1.仅有恒荷载或恒荷载所产生的内力超过全部荷载所产生的内力的80%时,应单独以恒荷载进行验算。
2.当若干条件同时出现,表列各系数应连乘。
木材强度检验标准见表2-100。
木材强度检验标准表2-100
切取3个试件为一组,根据各组平均值中最低的一个值确定该批木材的强度等级。
2.试验应按现行国家标准《木材物理力学性能试验方法》进行。
并应将试验结果换算到含水率为12%的数值。
3.按检验结果确定的木材强度等级,不得高于表2-98中同树种木材的强度等级。
对于树名不详的木材,应按检验结果确定的等级,采用表2-98中该等级B的设计指标。
3.新利用树种木材的强度设计值和弹性模量(表2-101)新利用树种木材的强度设计值和弹性模量(N/mm2)表2-101
注:杨木和拟赤杨的顺纹强度设计值和弹性模量可按TB11级数值乘以0.9采用;横纹强度设计值可按TB11级数值乘以0.6采用。
若当地有使用经验,也可在此基础上做适当调整。
4.受弯构件容许挠度值(表2-102)
受弯构件容许挠度值 表2-102
注:l ——受弯构件的计算跨度。
5.受压构件容许长细比(表2-103)
受压构件容许长细比 表2-103
6.轴心受压构件稳定系数
轴压构件稳定系数φ值:
(1)强度等级为TC17、TC15及TB20的木材 当λ≤75时
2
)
80
(
11λϕ+=
(2-11a )
λ>75时
2
3000
λ
ϕ=
(2-11b )
(2)强度等级TC13、TC11、TB17、TB15的木材 当λ≤91时
2
)
65
(
11λϕ+=
(2-12a )
λ>91时
2
2800
λ
ϕ=
(2-12b )
式中 λ——构件的长细比。
构件的长细比,不论构件截面上有无缺口,均按下式计算:
λ=l 0/i (2-13)
A
I
i
(2-14) 式中 l 0——受压构件的计算长度(mm );
i ——构件截面的回转半径(mm ); I ——构件的毛截面惯性矩(mm 4); A ——构件的毛截面面积(mm 2)。
受压构件的计算长度,应按实际长度乘以下列系数:
两端铰接
1.0 一端固定,一端自由
2.0 一端固定,一端铰接
0.8
7.原木、方木截面的几何及力学特性表(表2-104、表2-105)
(1)原木和半原木截面的几何及力学特性公式表 表2-104
(2)矩形截面的几何及力学特性表表2-105
8.桁架最小高跨比(表2-106)
桁架最小高跨比表2-106
序号桁架类型h/l
注:h——桁架中央高度;
l——桁架跨度。
9.螺栓连接和钉连接中木构件的最小厚度(表2-107)
木构件连接的最小厚度表2-107
注:c——中部构件的厚度或单剪连接中较厚构件的厚度;
a——边部构件的厚度或单剪连接中较薄构件的厚度;
d——螺栓或钉的直径。
2-6-2 木结构计算公式
1.木结构构件计算(表2-108)
木结构构件计算表2-108
2.木结构连接计算(表2-109)
木结构连接计算表2-109
建筑施工手册
建筑施工手册2020。