光测量基本知识
- 格式:pdf
- 大小:1.32 MB
- 文档页数:38
1、相对孔径一、相对孔径与数值孔径1. 定义(见图1-1):相对孔径通光口径与焦距之比D f'像方数值孔径物方孔径角u的正弦与物空间的折射率n的乘积NA=n sin u 物方图1-1a、为什么用入瞳直径D不用出瞳直径D' ?若用D',它到系统后焦点F'的距离就不一定是焦距f '。
若用入瞳直径,对于物在无限远的成像系统来说,不管入瞳在什么地方,相对孔径总是D f'。
见图1-2。
后主面F'U'maxf'D图1-2b、为什么用sin u不用tan u?理想光学系统的物像空间不变式:n·y·tan u=n'·y'·tan u'考虑到设计计算方便,采取规格化(归一化)的措施,故采用正弦代替正切。
相应的,显微镜的设计必须满足正弦条件:n·y·sin u=n'·y'·sin u'D f'、NA与对准精度、调焦精度、分辨率、光学传递函数密切相关,而且是D f'、NA 越大,对准、调焦精度越高,分辨率越高,像质越好。
2. 对准:对准误差用γ、Δy 表示。
11610min (~)γα= 11610min (~)y ε∆=1.02D λα= 道斯 0.51NAλε= 道斯 D f '、NA 越大,对准越高。
3. 调焦: 焦深是对应K λ(K =4~8)波前误差的像点位置变化量。
望远物镜、照相物镜的焦深表示为:22max 22()sin x F k U Kλλ'∆=±≈±⋅' 显微物镜的焦深表示为: 22()x k NA λ∆=±⋅ D f '、NA 越大,调焦精度越高。
4. 分辨率:D f '、NA 越大,分辨率越高。
5. 像质:星点直径望远、照相物镜: 2.44d F λ=⋅显微物镜: 1.22d NA λ=衍射受限系统的光学传递函数:2()arccos()c r OTF r r π⎡=⋅-⎢⎣ r c - 截至空间频率 c D r dλ= (D -出瞳直径,d -出瞳面到像平面的距离) 对于无限远目标成像,d 可用f '替代,则:1c r Fλ=见图1-3。
光学测量原理光学测量是一种利用光学原理进行测量的方法,它广泛应用于工程领域,包括机械制造、建筑工程、材料科学等领域。
光学测量原理是基于光的传播和反射规律,通过测量光的传播路径、光的反射角度等参数来实现对被测对象的测量。
本文将介绍光学测量的基本原理和常见的测量方法。
光学测量的基本原理是利用光的传播规律进行测量。
光是一种电磁波,它在空间中传播时遵循直线传播的规律。
在光学测量中,我们通常利用光的传播路径来测量被测对象的形状、尺寸等参数。
例如,我们可以利用光的折射规律来测量透明介质的折射率,从而推断出介质的密度和成分;我们也可以利用光的反射规律来测量物体的表面形状和粗糙度。
光学测量的常见方法包括干涉测量、衍射测量、散射测量等。
其中,干涉测量是利用光的干涉现象进行测量的方法。
当两束光波相遇时,它们会发生干涉现象,通过测量干涉条纹的位置和间距,我们可以推断出被测对象的形状和尺寸。
衍射测量是利用光的衍射现象进行测量的方法。
当光波通过一个孔或者物体边缘时,会产生衍射现象,通过测量衍射图样的形状和大小,我们可以推断出被测对象的形状和尺寸。
散射测量是利用光的散射现象进行测量的方法。
当光波照射到一个粗糙表面时,会发生散射现象,通过测量散射光的强度和方向,我们可以推断出被测对象的表面形状和粗糙度。
在实际应用中,光学测量具有许多优点,例如测量精度高、非接触式测量、适用于复杂形状的测量等。
然而,光学测量也面临一些挑战,例如对环境光的干扰、对被测对象表面质量要求高等。
因此,在进行光学测量时,我们需要针对具体的测量对象和环境条件选择合适的测量方法,并采取相应的措施来提高测量精度和稳定性。
总之,光学测量是一种基于光学原理进行测量的方法,它具有广泛的应用前景和重要的理论意义。
通过深入理解光学测量的基本原理和常见方法,我们可以更好地应用光学测量技术解决工程实际问题,推动工程技术的发展和进步。
希望本文能够对您有所帮助,谢谢阅读!以上就是光学测量原理的相关内容,希望能对你有所帮助。
光学测量及其应用知识点
光学测量是一种利用光学原理进行测量的方法,广泛应用于工
程领域中。
以下是光学测量及其应用的一些基本知识点:
1.光学测量基础
光学测量基于光的传播和反射原理,通过测量光的特性来获取
目标物体的相关信息。
常见的光学测量方法包括光线法、自动对焦、相位差法等。
2.直接测量和间接测量
光学测量可以分为直接测量和间接测量。
直接测量是通过直接
测量光的特性,如光线的强度、颜色等来获得目标物体的相关参数。
间接测量是通过测量光线的反射、折射以及干涉等现象来推导目标
物体的参数。
3.光学测量的应用
光学测量在工程领域有着广泛的应用。
以下是一些光学测量的应用领域:
3.1.制造业中的应用
光学测量在制造业中有着重要的应用,用于测量产品的尺寸、形状等参数。
例如,在汽车制造过程中,光学测量可以用于检测车身的平坦度、形状偏差等。
3.2.非接触性测量
光学测量具有非接触性的特点,可以应用于对被测对象表面的非破坏性测量。
这在一些精密仪器的制造和质量控制过程中非常重要。
3.3.精度测量
光学测量可以实现高精度的测量,对于一些需要高精度的工程项目非常重要。
例如,在航天器制造中,光学测量可以用于测量器件的尺寸和形状,确保其符合设计要求。
总结
光学测量是一种基于光学原理的测量方法,具有广泛的应用领域。
光学测量在制造业中起着重要的作用,可以应用于非接触性测量和高精度测量等领域。
对于工程领域的研究和应用而言,光学测量是一项重要的技术和工具。
第一章名称解释1. 光通量2 坎德拉3. 照度4 半导体中的非平衡载流子5 绝对黑体6 基尔霍夫定律7 热噪声8 产生-复合噪声91/f 噪声知识要点半导体材料的光吸收效应(1) 本征吸收(2) 杂质吸收2. 非平衡载流子浓度载流子复合过程一般有直接复合和间接复合两种。
物体的光谱发射率总等于其光谱吸收比。
也就是强吸收体必然是强发射体。
维恩位移定律指出:当绝对黑体的温度增高时,单色辐出度的最大值向短波方向移动。
光电子发射过程可以归纳为以下三个步骤:(1) 物体吸收光子后体内的电子被激发到高能态;(2) 被激发电子向表面运动,在运动过程中因碰撞而损失部分能量;(3) 克服表面势垒逸出金属表面。
一般光电检测系统的噪声包括三种:(1) 光子噪声包括:信号辐射产生的噪声和背景辐射产生的噪声。
(2) 探测器噪声包括:热噪声、散粒噪声、产生-复合噪声、1/f 噪声和温度噪声。
(3) 信号放大及处理电路噪声在半导体器件中1/f 噪声与器件表面状态有关。
多数器件的1/f 噪声在300Hz 以上时已衰减到很低水平,所以频率再高时可忽略不计。
在频率很低时;l/f 噪声起主导作用;当频率达到中间频率范围时,产生-复合噪声比较显著;当频率较高时,只有白噪声占主导地位,其它噪声影响很小了光电探测器的合理选择(1) 根据待测光信号的大小,确定探测器能输出多大的电信号,即探测器的动态范围。
(2) 探测器的光谱响应范围是否同待测光信号的相对光谱功率分布一致。
即探测器和光源的光谱匹配。
(3) 对某种探测器,它能探测的极限功率或最小分辨率是多少—需要知道探测器的等效噪声功率;需要知道所产生电信号的信噪比。
(4) 当测量调制或脉冲光信号时,要考虑探测器的响应时间或频率响应范围。
(5) 当测量的光信号幅值变化时,探测器输出的信号的线性程度。
第二章名称解释光源的发光效率色温色表显色性相关色温分布温度知识要点选择光源时,应综合考虑光源的强度、稳定性、光谱特性等性能根据斯奇芬-玻尔兹曼定律知,物体只要其温度大于绝对零度,都会向外界辐射能量,其辐射特性与温度的四次方有关气体放电光源具有下述特点;1. 发光效率高。
光学测量的基本知识一.典型的光学测试装置-----光具座光具座的类型一般以其上的平行光管EFL的长短来区分,例如: GXY---08A型之EFL=1200mm.我们的光具座:MSFC---Ⅳ型有3个准直镜头,EFL1=550mm,F/NO=10EFL2=200.61mm,F/NO=4EFL3=51.84mm,F/NO=4 其组成如下:1.平行光管. 2.透镜夹持器. 3.V型座. 4测量显微镜.5.导轨底座.6.光源.7. 光源变压器.8.光源调压器.9.附件.1.平行光管又称准直仪,它的作用是提供无限远的目标或给出平行光.其组成如下:物镜EFL=550mm 分划板分划板的形式有多种,例如(1)十字或十字刻度分划板,(2)分辨率板,(3)星点板,(4)玻罗板(PORRO).2.透镜夹持器用来夹持被测镜片或镜头,並保持光轴的一致性.-1-3.V型座用来放置EFL=200.61mm和EFL=51.84mm准直物镜, 並保持光轴一致性.4.测量显微镜是一个带有目镜测微器的显微镜. 用来进行各种测量. 目镜测微器有多种.最常用的是螺杆目镜测微器,其螺距为0.02mm,则每格值为0.002mm.5.导轨底座导轨很精密,用它把1.平行光管. 2.透镜夹持器. 3.V型座. 4测量显微镜等联在一起,称为光具座.6.附件:各种倍数和不同数值孔径的显微镜物镜,各种分划板.光具座主要测量(1)正,负透镜和照相物镜,望远物镜的焦距(EFL).(2)正,负透镜和照相物镜,望远物镜的截距(BFL)(3)检测照相物镜,望远物镜的分辨率.(4)检测照相物镜,望远物镜的星点.(5) 照相物镜,望远物镜的F/NO.(6)加上其它光学器件和机械装置,可以组成多种光学测量装置.-2-一.焦距(EFL)的测量光学系统和透镜的重要参数---焦距(EFL),迄今已有多种行之有效的测量方法.1.放大率法.2.自准直法.3.附加透镜法.4.精密测角法.5. 附加接筒法.6.固定共軛距离法.7. 附加已知焦距透镜法.8.反转法.9.光栅法.10.激光散斑法.11.莫尔条纹同向法.(一)放大率法测量原理是目前最常用的方法,主要用于测量望远物镜,照相物镜,目镜的焦距(EFL)和后截距(BFL).也可以用于生产中检验正,负透镜的焦距(EFL)和后截距(BFL).被测透镜或物镜位于平行光管前, 平行光管物镜焦面上分划板的一对刻线就成像在被测物镜的焦面上.这对刻线的间距y和它的像的间距y¹与平行光管物镜焦距f c和被测物镜的焦距f¹有如下关系:y¹/y = f¹/f¹c 或 f¹ = f¹c(y¹/y)必须指出,由于负透镜成虚像,用测量显微镜观测这个像时, 显微镜的工作距离必须大于负透镜的焦距.-3-(二)一种简易测量焦距的方法在没有光具座的情况下,可用下面简易方法,但精度差.方法:用两次测量不同物距上被测物镜的横向放大率求焦距.根据高斯公式: F*=βX=-X*/β可得F*=E/γ2-γ1γ1=1/β1=Y1/Y1 , γ2=1/β2=Y2/Y2*A. 这种方法存在理论误差,必须要加以修正. 修正系数为:√1+(H/F*)2,所以:F*实际=F*×√1+(H/F*)2B. 镜头的球差对测量有很大影响,所以测出的焦距值是近似值.C. 测量人员的技术和对E,Y1,Y2,Y1*,Y2*测量的准确性非常重要,否则测出的焦距值将远远偏离真正值,而不能相信和使用.D. 焦距的准确测量,必须在光具座上用其它方法进行.E. 为了用这种方法测量, 必须有以下设备:简易导轨,夹持器,白色屏幕,有毫米刻度的物,精度为0.01mm的长度量测仪器.F. 要多次重复量测,取平均值.二.星点检验(一)原理星点检验法是对光学系统进行像质检验的常用方法之一,在光学系统设计,制造及使用中,人们关心的是其像质,並希望将像质与各种影响因素联系起来,借以诊断问题,提出改进措施, 星点检验在一定程度上可胜任上述工作.光学系统对非相干照明物体或自发光物体成像时,可将物光强分布看成是无数多个具有不同强度的独立发光点的集合,每一个发光点经光学系统后,由于衍射和像差以及工艺庇病的影响,在像面处得到的星点像光强分布是一个弥散斑,即点扩散函数(PSF).像面光强分布是所有星点像光强的叠加结果.因此, 星点像光强分布规律决定了光学系统成像的清晰程度,也在一定程度上反映了光学系统成像质量.上述点基元观点是进行星点检验的依据.-4-按点基元观点,通过考察一个点光源(星点)经过光学系统所成像,以及像面前后不同截面衍射图形的光强变化及分布,定性地评价光学系统成像质量,即是星点检验法.上面图形是艾里斑光强分布.(二)星点检验装置1.平行光管,2.光源,3.星孔(星点板),4.观察显微镜.对平行光管的要求:物镜像质要好,通光孔径要大于被检镜头.并用聚光镜照明星孔.星孔直径应小于:D max=0.61λf¹/D其中D---被检镜头入瞳直径f¹---平行光管物镜焦距-5-对观察显微镜的要求: 数值孔径NA等于或大于被检镜头的像方孔径角. 显微镜总放大率应为:Γ=(250~500)D/f¹.D/f¹---被检镜头的相对孔径.星点检验能判定: (1)光学系统的共轴性(2)球差(3)位置色差(4)慧差(5)像散(6)其它工艺疪病-6--7-四.分辨率检测分辨率检测可给出像质的数字指标,容易测量与比较。
测量光的波长和频率光是我们生活中常见的一种电磁波,在日常生活中扮演着重要的角色。
然而,大多数人对于光的波长和频率了解甚少。
本文将深入探讨光的波长和频率的测量方法和应用。
首先,让我们来了解一下光的波长和频率的基本概念。
光的波长是指光波在单位时间内传播的距离,用λ表示,可以用纳米或者其他长度单位来表示。
频率则是指单位时间内光波振动的次数,用ν表示,常用赫兹(Hz)来表示。
测量光的波长和频率有多种方法,其中一种常用的方法是通过光栅光谱仪。
光栅光谱仪利用光栅的原理,可以将光分解成不同波长的光谱,然后通过光栅上的刻度来测量波长。
光栅光谱仪可以广泛应用于物理、化学、生物等领域的实验和研究中。
除了光栅光谱仪之外,还有其他一些测量光波长和频率的方法。
例如,通过干涉实验测量光的波长。
干涉实验利用光的波动性和干涉现象来测量波长,其中著名的实验是杨氏双缝干涉实验。
通过调整光源和双缝之间的距离,观察到干涉条纹的间距,并利用干涉条纹的公式来计算光波长。
除了测量波长,我们还可以通过光的频率来测量。
一种常见的方法是使用频谱分析仪。
频谱分析仪能够将复杂的光信号分解成其频率组成部分,并显示出频谱图。
从频谱图中可以读取出光的主要频率,并据此计算出光的波长。
测量光的波长和频率不仅在物理学和工程学方面有重要应用,还广泛应用于其他领域。
例如,在光通信领域,测量光波长和频率可以用于判断光纤传输的性能和信号的质量。
在医学领域,测量光的波长和频率可以用于光治疗、激光手术等生物医学应用。
此外,在光谱学和天文学中,测量光的波长和频率也被广泛应用于研究和探索宇宙。
总之,测量光的波长和频率是一项重要的技术,它不仅有助于我们对光的本质和性质有更深入的了解,还有广泛的应用前景。
通过光栅光谱仪、干涉实验和频谱分析仪等方法,我们可以准确测量光的波长和频率,并将这些数据应用于各个领域。
希望本文的阐述能让读者对测量光的波长和频率有更深入的认识,并为相关研究和应用提供帮助。
目录第一章基本光学测试技术 (2)第二章光学准直与自准直 (5)第三章光学测角技术 (9)第四章:光学干涉测试技术 (12)第六章:光学系统成像性能评测 (15)第一章 基本光学测试技术• 对准、调焦的定义、目的;对准又称横向对准,是指一个对准目标(?)与比较标志(?)在垂直瞄准轴(?)方向像的重合或置中。
例:打靶、长度度量人眼的对准与未对准:对准的目的:1.瞄准目标(打靶);2.精确定位、测量某些物理量(长度、角度度量)。
调焦又称纵向对准,是指一个目标像(?)与比较标志(?)在瞄准轴(?)方向的重合。
人眼调焦:调焦的目的 :1.使目标与基准标志位于垂直于瞄准轴方向的同一个面上,也就是使二者位于同一空间深度;2.使物体(目标)成像清晰;3.确定物面或其共轭像面的位置——定焦。
121'2'1'P 2'2''•人眼调焦的方法及其误差构成;常见的调焦方法有清晰度法和消视差法。
清晰度法是以目标与比较标志同样清晰为准。
调焦误差是由于存在几何焦深和物理焦深所造成的。
消视差法是以眼镜在垂直平面上左右摆动也看不出目标和标志有相对横移为准的。
误差来源于人眼的对准误差。
(消视差法特点:可将纵向调焦转变为横向对准;可通过选择误差小的对准方式来提高调焦精确度;不受焦深影响)•对准误差、调焦误差的表示方法;对准误差的表示法:人眼、望远系统用张角表示;显微系统用物方垂轴偏离量表示;调焦误差的表示法:人眼、望远系统用视度表示;显微系统用目标与标志轴向间距表示;•常用的对准方式;常见的对准方式有压线对准,游标对准,夹线对准,叉线对准,狭缝叉线对准或狭缝夹线对准。
•光学系统在对准、调焦中的作用;提高对准、调焦精度,减小对准、调焦误差。
•提高对准精度、调焦精度的途径;使用光学系统进行对准,调焦;光电自动对准、光电自动调焦;•光具座的主要构造;平行光管(准直仪);带回转工作台的自准直望远镜(前置镜);透镜夹持器;带目镜测微器的测量显微镜;底座•平行光管的用途、简图;作用是提供无限远的目标或给出一束平行光。
光学测量实验知识点总结一、光学测量原理1. 光的传播光是一种电磁波,其传播遵循光的直线传播原理。
在光学测量中,我们通常利用光的传播特性来实现测量。
2. 光的反射和折射光在与物体表面接触时,会发生反射和折射现象。
根据反射和折射的规律,可以利用光的反射和折射来测量物体的形状、尺寸和表面特性。
3. 光的干涉和衍射光的干涉和衍射是光学测量中常用的原理。
通过干涉和衍射现象,可以实现高精度的光学测量。
4. 激光测量原理激光测量是一种利用激光光束进行测量的技术。
激光具有高度的方向性和相干性,可以实现高精度的测量。
二、常用的光学测量仪器1. 光学显微镜光学显微镜是一种常用的光学测量仪器,适用于微型结构和微小尺寸的测量。
2. 激光测距仪激光测距仪是一种利用激光测量距离的仪器,适用于远距离的测量和定位。
3. 光栅衍射仪光栅衍射仪通过衍射和干涉现象实现测量,适用于测量光学器件的特性和性能。
4. 光学投影仪光学投影仪是一种利用光学投射原理进行测量的仪器,适用于测量平面和曲面的形状和尺寸。
5. 光栅光谱仪光栅光谱仪是一种用于分析光谱的仪器,适用于测量光的波长、频率和能量等特性。
6. 放大镜放大镜是一种简单的光学测量仪器,适用于观察微小尺寸的物体和结构。
7. CCD 相机CCD 相机是一种利用 CCD 芯片进行成像的仪器,适用于高精度的光学测量和成像。
三、光学测量实验方法1. 对焦调节在光学测量实验中,保持仪器的成像清晰是很重要的。
通过对焦调节,可以获得清晰的成像。
2. 校准仪器在进行光学测量实验前,需要对仪器进行校准,以确保测量结果的准确性和可靠性。
3. 选取合适的测量方法根据测量对象的特性和要求,选取合适的测量方法,可以提高测量的效率和准确性。
4. 控制环境条件光学测量受环境条件的影响较大,需要在实验过程中严格控制环境条件,以确保测量结果的可靠性。
5. 数据处理和分析对获得的测量数据进行处理和分析,可以得到更加准确和有意义的结果。
光学基本测量实验报告一、实验目的本实验旨在通过对光学基本物理量的测量,深入理解光学的基本原理和实验方法,掌握相关仪器的使用技巧,提高实验操作能力和数据处理能力。
二、实验原理(一)薄透镜焦距的测量1、自准直法当物点位于凸透镜的焦平面上时,从物点发出的光线经过透镜后成为平行光。
若在透镜的另一侧放置一个与主光轴垂直的平面镜,反射光将沿原路返回,再次通过透镜后成像于物点处,此时物屏与透镜之间的距离即为透镜的焦距。
2、物距像距法根据凸透镜成像公式 1/u + 1/v = 1/f ,其中 u 为物距,v 为像距,f 为焦距。
通过测量物距和像距,即可计算出焦距。
(二)分光计的调节与使用分光计是一种用于测量角度的精密光学仪器。
其主要原理是利用自准直望远镜将光线反射回望远镜,通过调节望远镜和平行光管的光轴与分光计的中心转轴垂直,从而实现精确测量角度。
(三)光栅衍射光栅衍射是指光通过光栅时发生的衍射现象。
根据光栅方程dsinθ=kλ ,其中 d 为光栅常数,θ 为衍射角,k 为衍射级数,λ 为入射光波长。
通过测量衍射角,可以计算出入射光的波长。
三、实验仪器凸透镜、平面镜、光具座、光源、光屏、分光计、光栅、汞灯等。
四、实验步骤(一)薄透镜焦距的测量1、自准直法(1)将凸透镜固定在光具座上,在透镜的一侧放置光源,在另一侧放置平面镜,并调整平面镜与透镜的距离,使光源通过透镜和平面镜后能够在物屏上成像。
(2)前后移动物屏,当像最清晰时,记录物屏与透镜之间的距离,即为透镜的焦距。
(3)重复测量多次,取平均值。
2、物距像距法(1)将光源、凸透镜和光屏依次放置在光具座上,调整它们的高度和位置,使三者的中心在同一水平线上。
(2)移动光屏,直到在光屏上得到清晰的像。
记录此时的物距 u 和像距 v 。
(3)改变物距,再次测量像距,重复多次,根据公式计算焦距并取平均值。
(二)分光计的调节与使用1、粗调(1)调节望远镜和平行光管的高度,使其大致与分光计的中心转轴平行。
光电检测与技术知识点总结一、光电检测基础知识1. 光电效应:光子射入物质时,将能量传递给物质,或者将物质中的粒子激发出来。
前者称为光吸收,后者称为光发射。
2. 光电效应分类:外光电效应、内光电效应和光热效应。
3. 光电效应的应用:光电管、光电倍增管、光电摄像管等。
二、光电检测技术基础1. 光电检测器的分类:根据工作原理,可分为外光电效应检测器、内光电效应检测器和光热效应检测器。
2. 光电检测器的工作特性:光谱响应、频率响应、线性范围、探测率和噪声等。
3. 常用光电检测器:光电二极管、光电晶体管、光电池、光电倍增管等。
三、光电检测系统1. 光电检测系统的基本组成:光源、被测物、光电检测器、信号处理电路和显示设备。
2. 光电检测系统的应用:测量长度、测量角度、测量速度、测量温度等。
3. 光电检测系统的误差来源:光源的不稳定性、光学系统的误差、探测器噪声和信号处理电路的误差等。
四、常用光电检测技术1. 红外线检测技术:利用红外线的热效应,可以测量物体的温度和辐射功率。
红外线传感器有热敏电阻、热电偶等。
2. 激光雷达技术:利用激光的反射和散射,可以测量物体的距离和形状。
常用的激光雷达有脉冲式和连续波式两种。
3. 光纤传感器技术:利用光纤的传光特性,可以测量物体的位移、压力和温度等物理量。
光纤传感器有折射率型、光强调制型和光相位调制型等。
4. 图像传感器技术:利用图像传感器将光学图像转换为电信号,可以测量物体的尺寸和形状。
常用的图像传感器有CCD和CMOS两种。
5. 色彩传感器技术:利用色彩传感器测量物体的颜色和色差,可以应用于颜色识别和颜色检测等方面。
常用的色彩传感器有RGB和CMYK两种。
光学测量的基本知识一.典型的光学测试装置-----光具座光具座的类型一般以其上的平行光管EFL的长短来区分,例如: GXY---08A型之EFL=1200mm.我们的光具座:MSFC---Ⅳ型有3个准直镜头,EFL1=550mm,F/NO=10EFL2=200.61mm,F/NO=4EFL3=51.84mm,F/NO=4 其组成如下:1.平行光管. 2.透镜夹持器. 3.V型座. 4测量显微镜.5.导轨底座.6.光源.7. 光源变压器.8.光源调压器.9.附件.1.平行光管又称准直仪,它的作用是提供无限远的目标或给出平行光.其组成如下:物镜EFL=550mm 分划板分划板的形式有多种,例如(1)十字或十字刻度分划板,(2)分辨率板,(3)星点板,(4)玻罗板(PORRO).2.透镜夹持器用来夹持被测镜片或镜头,並保持光轴的一致性.-1-3.V型座用来放置EFL=200.61mm和EFL=51.84mm准直物镜, 並保持光轴一致性.4.测量显微镜是一个带有目镜测微器的显微镜. 用来进行各种测量. 目镜测微器有多种.最常用的是螺杆目镜测微器,其螺距为0.02mm,则每格值为0.002mm.5.导轨底座导轨很精密,用它把1.平行光管. 2.透镜夹持器. 3.V型座. 4测量显微镜等联在一起,称为光具座.6.附件:各种倍数和不同数值孔径的显微镜物镜,各种分划板.光具座主要测量(1)正,负透镜和照相物镜,望远物镜的焦距(EFL).(2)正,负透镜和照相物镜,望远物镜的截距(BFL)(3)检测照相物镜,望远物镜的分辨率.(4)检测照相物镜,望远物镜的星点.(5) 照相物镜,望远物镜的F/NO.(6)加上其它光学器件和机械装置,可以组成多种光学测量装置.-2-一.焦距(EFL)的测量光学系统和透镜的重要参数---焦距(EFL),迄今已有多种行之有效的测量方法.1.放大率法.2.自准直法.3.附加透镜法.4.精密测角法.5. 附加接筒法.6.固定共軛距离法.7. 附加已知焦距透镜法.8.反转法.9.光栅法.10.激光散斑法.11.莫尔条纹同向法.(一)放大率法测量原理是目前最常用的方法,主要用于测量望远物镜,照相物镜,目镜的焦距(EFL)和后截距(BFL).也可以用于生产中检验正,负透镜的焦距(EFL)和后截距(BFL).被测透镜或物镜位于平行光管前, 平行光管物镜焦面上分划板的一对刻线就成像在被测物镜的焦面上.这对刻线的间距y和它的像的间距y¹与平行光管物镜焦距f c和被测物镜的焦距f¹有如下关系:y¹/y = f¹/f¹c 或 f¹ = f¹c(y¹/y)必须指出,由于负透镜成虚像,用测量显微镜观测这个像时, 显微镜的工作距离必须大于负透镜的焦距.-3-(二)一种简易测量焦距的方法在没有光具座的情况下,可用下面简易方法,但精度差.方法:用两次测量不同物距上被测物镜的横向放大率求焦距.根据高斯公式: F*=βX=-X*/β可得F*=E/γ2-γ1γ1=1/β1=Y1/Y1 , γ2=1/β2=Y2/Y2*A. 这种方法存在理论误差,必须要加以修正. 修正系数为:√1+(H/F*)2,所以:F*实际=F*×√1+(H/F*)2B. 镜头的球差对测量有很大影响,所以测出的焦距值是近似值.C. 测量人员的技术和对E,Y1,Y2,Y1*,Y2*测量的准确性非常重要,否则测出的焦距值将远远偏离真正值,而不能相信和使用.D. 焦距的准确测量,必须在光具座上用其它方法进行.E. 为了用这种方法测量, 必须有以下设备:简易导轨,夹持器,白色屏幕,有毫米刻度的物,精度为0.01mm的长度量测仪器.F. 要多次重复量测,取平均值.二.星点检验(一)原理星点检验法是对光学系统进行像质检验的常用方法之一,在光学系统设计,制造及使用中,人们关心的是其像质,並希望将像质与各种影响因素联系起来,借以诊断问题,提出改进措施, 星点检验在一定程度上可胜任上述工作.光学系统对非相干照明物体或自发光物体成像时,可将物光强分布看成是无数多个具有不同强度的独立发光点的集合,每一个发光点经光学系统后,由于衍射和像差以及工艺庇病的影响,在像面处得到的星点像光强分布是一个弥散斑,即点扩散函数(PSF).像面光强分布是所有星点像光强的叠加结果.因此, 星点像光强分布规律决定了光学系统成像的清晰程度,也在一定程度上反映了光学系统成像质量.上述点基元观点是进行星点检验的依据.-4-按点基元观点,通过考察一个点光源(星点)经过光学系统所成像,以及像面前后不同截面衍射图形的光强变化及分布,定性地评价光学系统成像质量,即是星点检验法.上面图形是艾里斑光强分布.(二)星点检验装置1.平行光管,2.光源,3.星孔(星点板),4.观察显微镜.对平行光管的要求:物镜像质要好,通光孔径要大于被检镜头.并用聚光镜照明星孔.星孔直径应小于:D max=0.61λf¹/D其中D---被检镜头入瞳直径f¹---平行光管物镜焦距-5-对观察显微镜的要求: 数值孔径NA等于或大于被检镜头的像方孔径角. 显微镜总放大率应为:Γ=(250~500)D/f¹.D/f¹---被检镜头的相对孔径.星点检验能判定: (1)光学系统的共轴性(2)球差(3)位置色差(4)慧差(5)像散(6)其它工艺疪病-6--7-四.分辨率检测分辨率检测可给出像质的数字指标,容易测量与比较。
光电测距的基本原理
光电测距是一种利用光电传感器测量距离的技术,其基本原理是利用光的传播速度和反射原理来测量距离。
下面将从以下几个方面详细介绍光电测距的基本原理。
一、光的传播速度
光在真空中的传播速度是恒定的,约为3×10^8m/s。
在介质中的传播速度会因介质折射率的不同而发生变化,但变化不大。
利用光的传播速度,可以通过测量光的传播时间来计算出被测物体与光电传感器之间的距离。
二、反射原理
光在遇到界面时会发生反射和折射。
当光线垂直入射到平面镜或其他反射面上时,光线的入射角等于反射角,即反射角等于入射角。
利用这个原理,可以通过测量光线的入射角和反射角来计算出被测物体与光电传感器之间的距离。
三、工作原理
光电测距的工作原理是将发射光源发出的光束照射到被测物体上,然后通过光电传感器接收反射回来的光线,测量光线的传播时间或入射角和反射角,从而计算出被测物体与光电传感器之间的距离。
四、应用领域
光电测距技术广泛应用于工业自动化、机器人、测量仪器、航空航天等领域。
例如,机器人在进行定位和导航时需要测量自身与周围环境的距离,光电测距技术可以满足这一需求。
在航空航天领域,光电测距技术可以用于测量卫星与地面站之间的距离,以及测量飞机与地面之间的高度等。
总之,光电测距技术是一种基于光的传播速度和反射原理来测量距离的技术,其应用范围广泛,可以满足工业自动化、机器人、测量仪器、航空航天等领域的需求。
光学基本测量实验报告一、实验目的本次光学基本测量实验旨在让我们深入了解光学测量的基本原理和方法,掌握常见光学仪器的使用,培养我们的实验操作能力和数据处理能力,以及提高我们对光学现象的观察和分析能力。
二、实验原理(一)薄透镜焦距的测量1、自准直法当物位于凸透镜的焦平面上时,发出的光线经透镜折射后成为平行光,若在透镜后面垂直光轴放置一平面镜,平行光被反射后再次通过透镜,仍会聚于焦平面上,形成一个与原物等大倒立的实像。
此时,物与透镜之间的距离即为透镜的焦距。
2、物距像距法根据凸透镜成像公式 1/u + 1/v = 1/f ,其中 u 为物距,v 为像距,f 为焦距。
通过测量物距和像距,即可计算出焦距。
(二)分光计的调节与使用分光计是一种精确测量角度的仪器。
其原理是利用自准直望远镜产生平行光,通过望远镜观察反射回来的像,调节分光计的各部分,使望远镜光轴、平行光管光轴以及载物台平面均与分光计中心轴垂直。
(三)光栅衍射光栅是由大量等宽等间距的平行狭缝组成的光学元件。
当一束平行光垂直照射在光栅上时,会产生衍射现象。
根据光栅方程dsinθ =kλ (其中d 为光栅常数,θ 为衍射角,k 为衍射级数,λ 为入射光波长),通过测量衍射角和已知的波长,可以计算出光栅常数。
三、实验仪器1、光学平台2、凸透镜3、光具座4、光源5、光屏6、平面镜7、分光计8、光栅9、游标卡尺10、毫米刻度尺四、实验内容及步骤(一)薄透镜焦距的测量1、自准直法(1)将凸透镜固定在光具座上,在透镜前放置一发光物(如小灯泡),在透镜后放置一平面镜。
(2)移动光屏,直到在光屏上看到清晰的与物等大倒立的实像。
(3)记录此时物与透镜之间的距离,即为透镜的焦距 f1 。
(4)重复测量三次,取平均值。
2、物距像距法(1)在光具座上依次放置光源、凸透镜和光屏,使三者的中心大致在同一高度。
(2)移动凸透镜,在光屏上得到清晰的实像,记录此时的物距 u 和像距 v 。