初中数学:二次函数的性质练习(含答案)
- 格式:doc
- 大小:393.50 KB
- 文档页数:12
人教版初中数学九年级上册第22二次函数练习题一、选择题221axx a++-)提示:对于122-++=axaxy的图象,对称轴是直线ax21-=,当0>a时,021<-a,则抛物线的对称轴在y轴左侧,A、B、C、D四个选项均不符合;当0<a时,021>-a,则抛物线的对称轴在y轴右侧,只有B项图象符合,故选B2.抛物线247y x x=--的顶点坐标是()A.(211)-,B.(27)-,C.(211),D.(23)-,提示:11)2(114474222--=-+-=--=xxxxxy所以顶点坐标为(211)-,选A3.二次函数y=ax2+bx+c图象如图1所示,则点A(ac,bc)在().A、第一象限B、第二象限C、第三象限D、第四象限提示:由二次函数y=ax2+bx+c图象可知:0,0><ca,∵对称轴0>x,在y轴右侧,即02>-ab,所以0>b,∴0,0><bcac,即点A(ac,bc)在第二象限选B4.把抛物线22y x=-向上平移1个单位,得到的抛物线是()A.22(1)y x=-+B.22(1)y x=--C.221y x=-+D.221y x=--提示:备选答案A是向左移,备选答案B是向右移,备选答案D是向下移,所以选D5.已知二次函数)0(2≠++=acbxaxy的图象如图2所示,有下列5个结论:①0>abc;②cab+<;③024>++cba;④bc32<;⑤)(bammba+>+,(1≠m的实数)其中正确的结论有()A. 2个B. 3个C. 4个D. 5个A B C D图2提示:由图象可知:12,0,0=-><a b c a ,即b a 21-= ∴0>b 故①不正确;由1-=x 时,0<y 得0<+-c b a ,∴c a b +>,所以②不正确;由2=x 时,0>y ,即024>++c b a ,所以③正确;由b a 21-=及0<+-c b a 得④也正确;由1=x 时y 取最大值,故⑤正确,所以选B6.已知一次函数y = ax + b 的图象过点(-2,1),则关于抛物线y = ax 2-bx + 3的三条叙述: ① 过定点(2,1), ② 对称轴可以是x = 1,③ 当a <0时,其顶点的纵坐标的最小值为3.其中所有正确叙述的个数是( )A .0B .1C .2D .3提示:把(-2,1)代入b ax y +=得b a +-=21 把(-2,1)代入32+-=bx ax y 得3241++=b a ,上述两个同解,所以①成立,由对称轴1=x 得12=ab,得a b 2=,与b a +-=21矛盾,所以②不成立;由于y = ax 2-bx + 3与y 轴交于点(0,3),所以抛物线的顶点最小值为3,③成立 ,所以选C二、填空题72+bx +c 中,函数y 与自变量x 的部分对应值如下表:则m 的值为__________.提示:选择两组y x ,的值代入c bx x y ++=2得⎩⎨⎧++=-++=-c b c 12001 解得⎩⎨⎧-=-=12c b ∴122--=x x y 把2=x 代入122--=x x y 得 1144-=--=y 即1-=m8.抛物线y =ax 2+2ax +a 2+2的一部分如图3所示,那么该抛物线在y 轴右侧与x 轴交点的坐标是_________ 提示:抛物线y =ax 2+2ax +a 2+2的对称轴为122-=-=aax 由图象可知抛物线与x 轴的一个交点为(-3,0),到直线1-=x 的距离为2,∴另一个交点为(1,0)9.将抛物线22(1)3y x =+-向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为 .提示:将抛物线22(1)3y x =+-向右平移1个单位为322-=x y ,再向上平移3个单位得到3322+-=x y 即22x y =图310.已知二次函数22y x x m =-++的部分图象如图4所示,则关于x 的一元二次方程220x x m -++=的解为 .提示:由图象可知抛物线对称轴为1=x ,与x 轴交点(3,0),可知另一交点为(-1,以一元二次方程220x x m -++=的解为11x =-,23x =;11.已知二次函数2y ax bx c =++的图象如图5所示,则点()P a bc ,在第 象限. 提示:由图象可知02,0,0<-><abc a ,所以0,0<<bc b 所以点()P a bc ,在第三象限12.如图6所示的抛物线是二次函数2231y ax x a =-+- 的图象,那么a 的值是 .提示:∵抛物线过原点O (0,0),∴012=-a∴1±=a ,又∵抛物线开口向下,∴0<a ∴1-=a13.如图7是一种带有黑白双色、边长是20cm 的正方形装饰瓷砖,用这样的四块瓷砖可以拼成如图8的图案.已知制作图7这样的瓷砖,其黑、白两部分所用材料的成本分别为0.02元/2cm 和0.01元/2cm ,那么制作这样一块瓷砖所用黑白材料的最低成本是元(π取3.14,结果精确到0.01元).图7 图8提示:设41圆半径为x ,阴影部分面积为40020441)20(2022+-=+-⨯=x x x x S ππ 因为阴影部分成本高,所以S 取最小值π400400-=最小S ,π400=白S图4图5图6所以最低成本=73.68840001.040040002.0≈-⨯+-⨯πππ=)((元)三、解答题14.已知一抛物线与x 轴的交点是)0,2(-A 、B (1,0),且经过点C (2,8)。
初中数学二次函数的图象与性质基础练习题1(附答案详解)1.将二次函数2y x 的图像向上平移1个单位,则所得的二次函数表达式为( ) A .2(1)y x =- B .21y x =+ C .2(1)y x =+ D .21y x =-2.如图,二次函数243y x x =-+的图象交x 轴于A ,B 两点,交y 轴于C ,则ABC的面积为( )A .6B .4C .3D .13.在平面直角坐标系中,二次函数y=2(x ﹣1)2+3的顶点坐标是( )A .(1,3)B .(1,﹣3)C .(﹣1,3)D .(﹣1,﹣3) 4.将二次函数y=x 2-4x+2化为顶点式,正确的是( )A .2y (x 2)2=--B .2y (x 2)3=-+C .2y (x 2)2=+-D .2y (x 2)2=-+5.二次函数2y 3x 4=-的图象是一条抛物线,下列关于该抛物线的说法正确的是( ) A .抛物线开口向下B .抛物线经过点()3,4C .抛物线的对称轴是直线x 1=D .抛物线与x 轴有两个交点6.抛物线y =-2x 2经过平移后得到抛物线y =-2x 2-4x -5,平移方法是( )A .向左平移1个单位,再向下平移3个单位B .向左平移1个单位,再向上平移3个单位C .向右平移1个单位,再向下平移3个单位D .向右平移1个单位,再向上平移3个单位7.二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =ax +b 与反比例函数y =c x的大致图象是( ) A . B . C . D .8.若点()111,P y -,()222,P y -,()331,P y ,都在函数223y x x =-+的图象上,则( )A .213y y y << B .123y y y << C .213y y y >>D .123y y y >>9.已知二次函数y=x 2﹣bx+2(﹣2≤b≤2),当b 从﹣2逐渐增加到2的过程中,它所对应的抛物线的位置也随之变动,下列关于抛物线的移动方向的描述中,正确的是( ) A .先往左上方移动,再往左下方移动B .先往左下方移动,再往左上方移动C .先往右上方移动,再往右下方移动D .先往右下方移动,再往右上方移动10.如图,抛物线与x 轴交于点()1,0-和()3,0,与y 轴交于点()0,3-则此抛物线对此函数的表达式为( )A .223y x x =++B .223y x x =--C .223y x x =-+D .223y x x =+- 11.在平面直角坐标系中,若将抛物线y=2x 2-4x+3先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是__________。
初中数学:二次函数y=ax2(a≠0)的图象及特征练习(含答案)一、选择题1.关于二次函数y=12x2的图象,下列说法中错误的是链接学习手册例1归纳总结( )A.它的形状是一条抛物线B.它的开口向上,且关于y轴对称C.它的顶点在原点处,坐标为(0,0)D.它的顶点是抛物线的最高点2.已知二次函数y=-2x2,则下列各点不在该函数图象上的是( ) A.(1,-2) B.(0,0)C.(-2,2) D.(2,-4 2)3.若抛物线y=(2m-1)x2的开口向下,则m的取值范围是( )A.m<0 B.m<1 2C.m>12D.m>-124.抛物线y=2x2,y=-2x2,y=12x2的共同特征是链接学习手册例1归纳总结( )A.开口向上B.对称轴是y轴C.都有最高点D.图象不是位于x轴上方就是位于x轴下方5.若抛物线y=ax2经过点P(1,-2),则它也经过点( )A.P1(-1,-2) B.P2(-1,2)C.P3(1,2) D.P4(2,1)6.在同一直角坐标系中,函数y=ax2(a≠0)与y=ax(a≠0)的大致图象可以是图K-2-1中的( )图K-2-17.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图K-2-2所示的平面直角坐标系,其函数表达式为y=-125x2,当水面离桥拱顶的高度DO是4 m时,这时水面宽度AB为( )图K-2-2A.-20 m B.10 mC.20 m D.-10 m二、填空题8.抛物线y=4x2的开口方向________,顶点坐标是________,对称轴是________;抛物线y=-14x2的开口方向________,顶点坐标是________,对称轴是________.9.若抛物线y=ax2与y=2x2的形状相同,则a=________.10.二次函数y=(k+1)x2的图象如图K-2-3所示,则k的取值范围为________.图K-2-311.请写出与二次函数y=-5x2的图象关于x轴对称的图象的函数表达式:________.12.已知二次函数y=13x2的图象如图K-2-4所示,线段AB∥x轴,交抛物线于A,B两点,且点A的横坐标为2,则△AOB的面积为________.图K-2-413.如图K-2-5,边长为2的正方形ABCD的中心在直角坐标系的原点O处,AD∥x轴,以O为顶点且过A,D两点的抛物线与以O为顶点且过B,C两点的抛物线将正方形分割成几部分.则图中阴影部分的面积是________.图K -2-514.如图K -2-6,垂直于x 轴的直线AB 分别与抛物线C 1:y =x 2(x ≥0)和抛物线C 2:y =x 24(x ≥0)交于A ,B 两点,过点A 作CD ∥x 轴分别与y 轴和抛物线C 2交于点C ,D ,过点B 作EF ∥x 轴分别与y 轴和抛物线C 1交于点E ,F ,则S △OFB S △EAD=________.图K -2-6三、解答题15.已知二次函数y =ax 2(a ≠0)的图象经过点(-2,4). (1)求a 的值,并写出这个二次函数的表达式;(2)画出这个二次函数的图象,并直接写出它的顶点坐标、对称轴、开口方向和图象的位置.16.已知一个正方形的周长为C cm,面积为S cm2.(1)求S与C之间的函数表达式;(2)画出所求函数的图象;(3)求当S=4时该正方形的周长.17.某涵洞是抛物线形,它的横断面如图K-2-7所示.现测得水面宽AB=1.6 m,涵洞顶点O到水面的距离为2.4 m.(1)在图中直角坐标系内,求涵洞所在抛物线的函数表达式;(2)有一艘宽为1 m,高为1 m的小舟,问该小舟能否通过这个涵洞?请通过计算说明理由.图K-2-7综合探究如图K-2-8,在平面直角坐标系中,A是抛物线y=12x2上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B的坐标为(0,2),直线AB交x轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为m,△BDE的面积为S.(1)当m=2时,求S的值.(2)求S关于m(m≠2)的函数表达式.(3)①若S=3时,求AFBF的值;②当m>2时,设AFBF=k,猜想k与m的数量关系并证明.图K-2-8[课堂达标]1.[解析] D ∵抛物线y=12x2中二次项系数为12,∴此抛物线开口向上,顶点坐标为(0,0),它的顶点是抛物线的最低点.2.[解析] C 分别把四个选项中的坐标代入函数表达式检验.3.[解析] B ∵抛物线的开口向下,∴2m-1<0,∴m<1 2 .4.[答案] B5.[答案] A6.[全品导学号:63422188][解析] C 在同一直角坐标系中,a值的正、负情况应保持一致.根据图象知:A中直线不是y=ax的图象,B和D中两个函数的a的符号不一致,故不正确.只有C中两个函数的a值相同,都为负数.故选C.7.[解析] C 根据题意知点B的纵坐标为-4.把y=-4代入y=-125x2,得x=±10,∴A(-10,-4),B(10,-4),∴AB=20.即水面宽度AB为20 m.故选C.8.[答案] 向上(0,0) y轴向下(0,0) y轴9.[答案] 2或-210.[答案] k>-1[解析] 由抛物线的开口方向向上,可得k+1>0,解得k>-1.故答案是k>-1. 11.[答案] y=5x212.[答案] 8 3[解析] 由抛物线的对称性可知AB=4,令x=2,则y=13×22=43,所以S△AOB=12×4×43=83.13.答案] 2[解析] 根据抛物线的轴对称性可知图中阴影部分的面积=12×2×2=2.14.[答案] 1 6[解析] 设点A,B的横坐标为a,则点A的纵坐标为a2,点B的纵坐标为a2 4.∵BE∥x轴,∴点F的纵坐标为a2 4.∵F是抛物线y=x2(x≥0)上的点,∴点F的横坐标为x=y=12 a.∵CD∥x轴,∴点D的纵坐标为a2.∵D是抛物线y=x24(x≥0)上的点,∴点D的横坐标为x=4y=2a,∴AD=a,BF=12a,CE=34a2,OE=14a2,∴S △OFBS △EAD =12BF·OE 12AD·CE=18×43=16.15.解:(1)把(-2,4)代入y =ax 2,得4=(-2)2·a, ∴a =1.∴这个二次函数的表达式为y =x 2.(2)画图略,这个二次函数图象的顶点坐标为(0,0),对称轴为y 轴,开口方向向上,除顶点外图象位于x 轴的上方.16.[解析] (1)由该正方形的周长求出其边长,然后求出其面积的表达式;(2)根据函数表达式画出图象;(3)当S =4时,根据函数表达式求出该正方形的周长,从而得解.解:(1)S =⎝ ⎛⎭⎪⎫C 42=116C 2.(2)如图所示.(3)当S =4时,由S =116C 2,得4=116C 2,解得C =8或C =-8(不合题意,舍去),∴C =8, ∴该正方形的周长为8 cm.17.[解析] 由于抛物线的顶点为原点,可设抛物线的函数表达式为y =ax 2.由于水面宽AB =1.6 m,涵洞顶点O 到水面的距离为2.4 m,因此A(-0.8,-2.4),B(0.8,-2.4),把其中一个点的坐标代入,可求得a 的值,即得函数表达式.解:(1)∵抛物线的顶点为原点,∴可设抛物线的函数表达式为y =ax 2.∵水面宽AB =1.6 m,涵洞顶点O 到水面的距离为2.4 m, ∴A(-0.8,-2.4),B(0.8,-2.4).将点A 或点B 的坐标代入函数表达式,得-2.4=0.82a,解得a =-154,∴抛物线的函数表达式为y =-154x 2.(2)当x =0.5时,y =-1516.∵2.4-1516=11780(m)>1 m,∴该小舟能通过这个涵洞.[素养提升]解:(1)∵点A 在抛物线y =12x 2上,AE ⊥y 轴且AE =m,∴A ⎝ ⎛⎭⎪⎫m ,12m 2.当m =2时,A(2,1).又B(0,2),∴直线AB 的函数表达式为y =-22x +2, ∴C(22,0),∴OC =2 2.∵点D 与点C 关于y 轴对称,∴OD =OC =22,∴S =12BE·OD= 2.(2)(Ⅰ)当0<m<2时(如图①),同(1)得过点A ⎝ ⎛⎭⎪⎫m ,12m 2,B(0,2)的直线的函数表达式为y =m 2-42m x +2,∴OC =4m4-m 2=OD,∴S =12BE·OD=12⎝ ⎛⎭⎪⎫2-12m 2·4m4-m 2=m ;(Ⅱ)当m>2时(如图②),同(Ⅰ)得S =12BE·OD=12⎝ ⎛⎭⎪⎫12m 2-2·4mm 2-4=m.由(Ⅰ)(Ⅱ)得S =m(m>0,m≠2).(3)①连结AD,如图③.∵S =3=m,∴A ⎝ ⎛⎭⎪⎫3,32. 设S△ADF S △BDF =S△AEF S △BEF=AFBF =k,∴S △ADF =kS △BDF ,S △AEF =kS △BEF , ∴S △ADE S △BDE =S△ADF -S △AEF S △BDF -S △BEF =k (S △BDF -S△BEF )S △BDF -S △BEF=k,∴AFBF=k=S△ADES△BDE=12×3×323=34.②k与m之间的数量关系为k=14m2.证明:连结AD,如图④.∵S△ADF S△BDF =S△AEFS△BEF=AFBF=k,∴S△ADF =kS△BDF,S△AEF=kS△BEF,∴S△ADE S△BDE =S△ADF+S△AEFS△BDF+S△BEF=k(S△BDF+S△BEF)S△BDF+S△BEF=k,∴k=S△ADES△BDE =12m·12m2m=14m2.。
初中数学:二次函数的性质练习(含答案)知识点1 二次函数的最大(小)值1.当x=________时,二次函数y=x2-2x+6有最小值________.2.函数y=(x-2)(3-x)取得最大值时,x=________.3.求下列函数的最大值(或最小值)以及对应的自变量的值:(1)y=2x2-3x-5;(2)y=-x2+2x+3;(3)y=x2-4x-5.知识点2 二次函数图象与坐标轴的交点4.二次函数y=x2-2x+1的图象与x轴的交点情况是( )A.有一个交点 B.有两个交点C.没有交点 D.无法确定5.抛物线y=x2-5x-6与x轴的两个交点坐标分别为________________.6.已知二次函数的图象经过点(-1,-8),顶点为(2,1).(1)求这个二次函数的表达式;(2)分别求这个二次函数图象与x轴、y轴的交点坐标.7.将抛物线y=x2-4x+4沿y轴向下平移9个单位,所得新抛物线与x轴正半轴交于点B,与y轴交于点C,顶点为D.求:(1)点B,C,D的坐标;(2)△BCD的面积.知识点3 抛物线的对称性及增减性8.对于二次函数y=12(x-2)2,当x________时,函数值y随x的增大而减小;当x________时,函数值y随x的增大而增大;当x=________时,函数取得最________值为________.9.已知抛物线y=ax2(a>0)过A(-2,y1),B(-1,y2)两点,则下列关系式一定正确的是( )A.y1>0>y2 B.y2>0>y1C.y1>y2>0 D.y2>y1>010.二次函数图象上部分点的坐标对应值列表如下:x …-3-2-101…y …-3-2-3-6-11…则该函数图象的对称轴是( )A.直线x=-3 B.直线x=-2C.直线x=-1 D.直线x=011.已知二次函数y=x2+(m-1)x+1,当x>1时,y随x的增大而增大,则m的取值范围是________.图1-3-112.某广场有一喷水池,水从地面喷出(如图1-3-1所示),以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-12x 2+2x 的一部分,则水喷出的最大高度是( )A .4米B .3米C .2米D .1米13.点P 1(-1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y =-x 2+2x +c 的图象上,则y 1,y 2,y 3的大小关系是( )A .y 3>y 2>y 1B .y 3>y 1=y 2C .y 1>y 2>y 3D .y 1=y 2>y 314.若一次函数y =(a +1)x +a 的图象过第一、三、四象限,则二次函数y =ax 2-ax ( )A .有最大值a 4B .有最大值-a4C .有最小值a 4D .有最小值-a415.已知a ,b ,c 为实数,点A (a +1,b ),B (a +2,c )在二次函数y =x 2-2ax +3的图象上,则b ,c 的大小关系是b ________c (用“>”或“<”填空).16.如图1-3-2所示,已知函数y =-12x 2+bx +c 的图象经过A (2,0),B (0,-6)两点.(1)设该二次函数的图象的对称轴与x 轴交于点C ,连结BA ,BC ,求△ABC 的面积; (2)若该函数自变量的取值范围是-1≤x ≤8,求函数的最大值和最小值.图1-3-217.已知抛物线y 1=ax 2+bx +c (a ≠0)与x 轴相交于点A ,B (点A ,B 在原点O 两侧),与y 轴相交于点C ,且点A ,C 在一次函数y 2=43x +n 的图象上,线段AB 长为16,线段OC 长为8,当y 1随着x 的增大而减小时,求自变量x 的取值范围.18.已知二次函数y =x 2+px +q 图象的顶点M 为直线y =12x +12与y =-x +m -1的交点.(1)用含m 的代数式来表示顶点M 的坐标(直接写出答案);(2)当x ≥2时,二次函数y =x 2+px +q 与y =12x +12的值均随x 的增大而增大,求m 的取值范围;(3)若m =6,当x 取值为t -1≤x ≤t +3时,二次函数的最小值为2,求t 的取值范围.详解详析1.1 5 [解析] ∵y =x 2-2x +6=(x -1)2+5,∴当x =1时, y 最小值=5. 2.523.解:(1)二次函数y =2x 2-3x -5中的二次项系数2>0,因此抛物线y =2x 2-3x -5有最低点,即函数有最小值.∵y =2x 2-3x -5=2⎝⎛⎭⎪⎫x -342-498,∴当x =34时,函数y =2x 2-3x -5取得最小值-498.(2)∵y =-x 2+2x +3=-(x -1)2+4,-1<0, ∴当x =1时,函数y =-x 2+2x +3取得最大值4. (3)∵y =x 2-4x -5=(x -2)2-9,1>0,∴当x =2时,函数y =x 2-4x -5取得最小值-9. 4.A [解析] 二次函数y =x 2-2x +1, ∵b 2-4ac =4-4=0,∴二次函数图象与x 轴有一个交点. 故选A.5.(-1,0),(6,0)6.解:(1)设y =a (x -2)2+1, 把(-1,-8)代入,得-8=9a +1,解得a=-1,所以这个二次函数的表达式为y=-(x-2)2+1.(2)令y=0,则-(x-2)2+1=0,解得x1=3,x2=1,所以这个二次函数图象与x轴的交点坐标是(1,0),(3,0).令x=0,则y=-3.所以这个二次函数图象与y轴的交点坐标是(0,-3).7.解:(1)抛物线y=x2-4x+4沿y轴向下平移9个单位后所得抛物线的函数表达式是y =x2-4x+4-9,即y=x2-4x-5.y=x2-4x-5=(x-2)2-9,则点D的坐标是(2,-9).在y=x2-4x-5中,令x=0,则y=-5,则点C的坐标是(0,-5),令y=0,则x2-4x-5=0,解得x=-1或5,则点B的坐标是(5,0).(2)如图,过点D作DA⊥y轴于点A.则S △BCD =S 梯形AOBD -S △BOC -S △ADC =12×(2+5)×9-12×5×5-12×2×4=15.8.≤2 ≥2 2 小 09.C [解析] ∵y =ax 2(a >0),∴抛物线的开口向上,对称轴为y 轴,在对称轴左侧,y 随x 的增大而减小.∵-2<-1,∴y 1>y 2>0,因此选择C 选项.10.B11.m ≥-1 [解析] 抛物线的对称轴为直线x =-m -12=1-m 2,∵当x >1时,y 的值随x 值的增大而增大, ∴1-m2≤1,解得m ≥-1.12.C [解析] ∵水在空中划出的曲线是抛物线y =-12x 2+2x 的一部分,∴喷水的最大高度就是水在空中划出的抛物线y =-12x 2+2x 的顶点的纵坐标.∵y =-12x 2+2x =-12(x -2)2+2,∴抛物线的顶点坐标为(2,2),故喷水的最大高度为2米.13.D [解析] 抛物线的对称轴是直线x =1,开口向下,根据“点到对称轴的水平距离越近,函数值越大”的原则,应选D.14.B [解析] 因为一次函数y =(a +1)x +a 的图象过第一、三、四象限,所以⎩⎨⎧a +1>0,a <0,因此-1<a <0,而y =ax 2-ax =a ⎝⎛⎭⎪⎫x -122-14a ,所以二次函数有最大值-a 4. 15.< [解析] ∵对称轴为直线x =a , ∴A (a +1,b ),B (a +2,c )在对称轴右侧. ∵1>0,∴抛物线开口向上,∴在对称轴右侧,y 随x 的增大而增大, ∴b <c .16.解:(1)将点A (2,0),B (0,-6)代入y =-12x 2+bx +c ,得⎩⎨⎧0=-12×4+2b +c ,c =-6.解得⎩⎨⎧b =4,c =-6.∴对称轴是直线x =4,∴AC =2,BO =6, ∴△ABC 的面积为12×2×6=6.(2)由(1)知函数表达式为y =-12x 2+4x -6.当x =-1时,y =-10.5; 当x =8时,y =-6.又由(1)知函数图象的顶点坐标为(4,2),∴当x =4时,函数取得最大值2;当x =-1时,函数取得最小值-10.5. 17.解:根据OC 长为8可得一次函数中的n 的值为8或-8. 分类讨论:(1)当n =8时,易得A (-6,0).∵抛物线经过点A ,C ,且与x 轴的交点A ,B 在原点的两侧,∴抛物线开口向下,则a <0,如图①.∵AB =16,且A (-6,0),∴B (10,0),而点A ,B 关于对称轴对称,∴对称轴为直线x =-6+102=2.要使y 1随着x 的增大而减小,∴x ≥2;(2)当n =-8时,易得A (6,0).∵抛物线过A ,C 两点,且与x 轴的交点A ,B 在原点两侧,∴抛物线开口向上,则a >0,如图②.∵AB =16,且A (6,0),∴B (-10,0),而点A ,B 关于对称轴对称,∴对称轴为直线x =6-102=-2.要使y 1随着x 的增大而减小,∴x ≤-2.综上所述,自变量x 的取值范围为x ≥2或x ≤-2.18.解:(1)由⎩⎨⎧y =12x +12,y =-x +m -1,解得⎩⎪⎨⎪⎧x =2m -33,y =m 3,即交点M 的坐标为⎝ ⎛⎭⎪⎫2m -33,m 3. (2)∵二次函数y =x 2+px +q 图象的顶点M 为直线y =12x +12与y =-x +m -1的交点,坐标为⎝ ⎛⎭⎪⎫2m -33,m 3,且当x ≥2时,二次函数y =x 2+px +q 与y =12x +12的值均随x 的增大而增大, ∴2m -33≤2,解得m ≤92.(3)∵m =6,∴顶点M 的坐标为(3,2),∴二次函数的表达式为y =(x -3)2+2,∴函数y 有最小值为2.∵当x 取值为t -1≤x ≤t +3时,二次函数的最小值为2,∴t -1≤3,t +3≥3,解得0≤t ≤4.。
2013年中考数学专题复习 二次函数的图象和性质【基础知识回顾】一、 二次函数的定义:一般地如果y= (a 、b 、c 是常数a ≠0)那么y 叫做x 的二次函数名师提醒: 二次函数y=kx 2+bx+c(a ≠0)的结构特征是:1、等号左边是函数,右边是 关 于 自 变 量x 的 二 次 式,x 的 最 高 次 数 是 , 按 一次排列2、强调二次项系数a 0二、二次函数的同象和性质:1、二次函数y=kx 2+bx+c(a ≠0)的同象是一条 ,其定点坐标为 对称轴式2、在抛物y=kx 2+bx+c(a ≠0)中:(1)当a>0时,y 口向 ,当x<-2ba 时,y 随x 的增大而 ,当x 时,y 随x 的增大而增大,(2)当a<0时,开口向 当x<-2ba时,y 随x 增大而增大,当x 时,y 随x 增大而减小.名师提醒:注意几个特殊形式的抛物线的特点1、y=ax 2 ,对称轴 定点坐标2、y= ax 2+k ,对称轴 定点坐标 3、y=a(x-h) 2对称轴 定点坐标4、y=a(x-h) 2 +k 对称轴 定点坐标三、二次函数同象的平移名师提醒:二次函数的平移本质可看作是定点问题的平移,固然要掌握整抛物线的平移,只要关键的顶点平移即可四、二次函数y= ax 2+bx+c 的同象与字母系数之间的关系:a:开口方向 向上则a 0,向下则a 0 |a |越大,开口越 b:对称轴位置,与a 联系一起,用 判断b=0时,对称轴是 c:与y 轴的交点:交点在y 轴正半轴上,则c 0负半轴上则c 0,当c=0时,抛物点过 点名师提醒:在抛物线y= ax 2+bx+c 中,当x=1时,y= 当x=-1时y= ,经常根据对应的函数值判考a+b+c 和a-b+c 的符号【重点考点例析】考点一:二次函数图象上点的坐标特点例1 (2012•常州)已知二次函数y=a (x-2)2+c (a >0),当自变量x3、0时,对应的函数值分别:y1,y2,y3,,则y1,y2,y3的大小关系正确的是()A.y3<y2<y1B.y1<y2<y3C.y2<y1<y3D.y3<y1<y2对应训练1.(2012•衢州)已知二次函数y=12-x2-7x+152,若自变量x分别取x1,x2,x 3,且0<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系正确的是()A.y1>y2>y3B.y1<y2<y3C.y2>y3>y1D.y2<y3<y1考点二:二次函数的图象和性质例2 (2012•咸宁)对于二次函数y=x2-2mx-3,有下列说法:①它的图象与x轴有两个公共点;②如果当x≤1时y随x的增大而减小,则m=1;③如果将它的图象向左平移3个单位后过原点,则m=-1;④如果当x=4时的函数值与x=2008时的函数值相等,则当x=2012时的函数值为-3.其中正确的说法是.(把你认为正确说法的序号都填上)考点:二次函数的性质;二次函数图象与几何变换;抛物线与x轴的交点.对应训练2.(2012•河北)如图,抛物线y1=a(x+2)2-3与y2=12(x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2-y1=4;④2AB=3AC;其中正确结论是()A.①② B.②③ C.③④ D.①④考点三:抛物线的特征与a、b、c的关系例3 (2012•玉林)二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,有如下结论:①c<1;②2a+b=0;③b2<4ac;④若方程ax2+bx+c=0的两根为x1,x2,则x1+x2=2,则正确的结论是()A.①② B.①③ C.②④ D.③④对应训练3.(2012•重庆)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示对称轴为x=12-.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b考点四:抛物线的平移例4 (2012•桂林)如图,把抛物线y=x2沿直线y=x平移2个单位后,其顶点在直线上的A处,则平移后的抛物线解析式是()A.y=(x+1)2-1 B.y=(x+1)2+1C.y=(x-1)2+1 D.y=(x-1)2-1对应训练4.(2012•南京)已知下列函数①y=x2;②y=-x2;③y=(x-1)2+2.其中,图象通过平移可以得到函数y=x2+2x-3的图象的有(填写所有正确选项的序号).【聚焦中考】1.(2012•泰安)二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限2.(2012•济南)如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是()A.y的最大值小于0 B.当x=0时,y的值大于1C.当x=-1时,y的值大于1 D.当x=-3时,y的值小于03.(2012•菏泽)已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+c和反比例函数ayx在同一平面直角坐标系中的图象大致是A. B. C. D.4.(2012•泰安)设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y25.(2012•烟台)已知二次函数y=2(x-3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=-3;③其图象顶点坐标为(3,-1);④当x<3时,y随x的增大而减小.则其中说法正确的有()A.1个 B.2个 C.3个 D.4个6.(2012•日照)二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:①b2-4ac>0;②2a+b<0;③4a-2b+c=0;④a:b:c=-1:2:3.其中正确的是()A.①② B.②③ C.③④ D.①④7.(2012•泰安)将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A.y=3(x+2)2+3 B.y=3(x-2)2+3 C.y=3(x+2)2-3 D.y=3(x-2)2-38.(2012•潍坊)许多家庭以燃气作为烧水做饭的燃料,节约用气是我们日常生活中非常现实的问题.某款燃气灶旋转位置从0度到90度(如图),燃气关闭时,燃气灶旋转的位置为0度,旋转角度越大,燃气流量越大,燃气开到最大时,旋转角度为90度.为测试燃气灶旋转在不同位置上的燃气用量,在相同条件下,选择燃气灶旋钮的5个不同位置上分别烧开一壶水(当旋钮角度太小时,其火力不能够将水烧开,故选择旋钮角度x度的范围是18≤x≤90),记录相关数据得到下表:旋钮角度(度)20 50 70 80 90所用燃气量(升)73 67 83 97 115(1)请你从所学习过的一次函数、反比例函数和二次函数中确定哪种函数能表示所用燃气量y 升与旋钮角度x度的变化规律?说明确定是这种函数而不是其它函数的理由,并求出它的解析式;(2)当旋钮角度为多少时,烧开一壶水所用燃气量最少?最少是多少?(3)某家庭使用此款燃气灶,以前习惯把燃气开到最大,现采用最节省燃气的旋钮角度,每月平均能节约燃气10立方米,求该家庭以前每月的平均燃气量.【备考真题过关】一、选择题1.(2012•白银)二次函数y=ax2+bx+c的图象如图所示,则函数值y<0时x的取值范围是()A.x<-1 B.x>3 C.-1<x<3 D.x<-1或x>32.(2012•兰州)二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是()A.k<-3 B.k>-3 C.k<3 D.k>33.(2012•德阳)设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是()A.c=3 B.c≥3 C.1≤c≤3 D.c≤34.(2012•北海)已知二次函数y=x2-4x+5的顶点坐标为()A.(-2,-1) B.(2,1)C.(2,-1) D.(-2,1)5.(2012•广元)若二次函数y=ax2+bx+a2-2(a、b为常数)的图象如图,则a的值为()A.1 B.2 C.-2 D.-26.(2012•西宁)如同,二次函数y=ax2+bx+c的图象过(﹣1,1)、(2,﹣1)两点,下列关于这个二次函数的叙述正确的是()A.当x=0时,y的值大于1B.当x=3时,y的值小于0C.当x=1时,y的值大于1D.y的最大值小于06.(2012•巴中)对于二次函数y=2(x+1)(x-3),下列说法正确的是()A.图象的开口向下 B.当x>1时,y随x的增大而减小C.当x<1时,y随x的增大而减小 D.图象的对称轴是直线x=-17.(2012•天门)已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(-1,0),(3,0).对于下列命题:①b-2a=0;②abc<0;③a-2b+4c <0;④8a+c>0.其中正确的有()A.3个 B.2个 C.1个 D.0个8.(2012•乐山)二次函数y=ax2+bx+1(a≠0)的图象的顶点在第一象限,且过点(-1,0).设t=a+b+1,则t值的变化范围是()A.0<t<1 B.0<t<2 C.1<t<2 D.-1<t<19.(2012•扬州)将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是()A.y=(x+2)2+2 B.y=(x+2)2-2C.y=(x-2)2+2 D.y=(x-2)2-210.(2012•宿迁)在平面直角坐标系中,若将抛物线y=2x2-4x+3先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是()A.(-2,3) B.(-1,4) C.(1,4) D.(4,3)11.(2012•陕西)在平面直角坐标系中,将抛物线y=x2-x-6向上(下)或向左(右)平移m个单位,使平移后的抛物线恰好经过原点,则|m|的最小值为()A.1 B.2 C.3 D.6二、填空题12.(2012•玉林)二次函数y=-(x-2)2+94的图象与x轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有个(提示:必要时可利用下面的备用图画出图象来分析).13.(2012•长春)在平面直角坐标系中,点A是抛物线y=a(x-3)2+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为.14.(2012•孝感)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法:①abc<0;②a-b+c<0;③3a+c<0;④当-1<x<3时,y>0.其中正确的是(把正确的序号都填上).15.(2012•苏州)已知点A(x1,y1)、B(x2,y2)在二次函数y=(x-1)2+1的图象上,若x1>x2>1,则y1y2(填“>”、“<”或“=”).16.(2012•成都)有七张正面分别标有数字-3,-2,-1,0,l,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2-2(a-1)x+a (a-3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2-(a2+1)x-a+2的图象不经过点(1,0)的概率是.17.(2012•上海)将抛物线y=x2+x向下平移2个单位,所得抛物线的表达式是.18.(2012•宁波)把二次函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的解析式为.19.(2012•贵港)若直线y=m (m为常数)与函数y=的图象恒有三个不同的交点,则常数m的取值范围是.19.(2012•广安)如图,把抛物线y=12x2平移得到抛物线m,抛物线m经过点A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q,则图中阴影部分的面积为.三、解答题20.(2012•柳州)已知:抛物线y=34(x-1)2-3.(1)写出抛物线的开口方向、对称轴;(2)函数y有最大值还是最小值?并求出这个最大(小)值;(3)设抛物线与y轴的交点为P,与x轴的交点为Q,求直线PQ的函数解析式.21.(2012•佛山)规律是数学研究的重要内容之一.初中数学中研究的规律主要有一些特定的规则、符号(数)及其运算规律、图形的数值特征和位置关系特征等方面.请你解决以下与数的表示和运算相关的问题:(1)写出奇数a用整数n表示的式子;(2)写出有理数b用整数m和整数n表示的式子;(3)函数的研究中,应关注y随x变化而变化的数值规律(课本里研究函数图象的特征实际上也是为了说明函数的数值规律).下面对函数y=x2的某种数值变化规律进行初步研究:xi0 1 2 3 4 5 …yi0 1 4 9 16 25 …y i+1﹣yi1 3 5 7 9 11 …由表看出,当x的取值从0开始每增加1个单位时,y的值依次增加1,3,5…请回答:①当x的取值从0开始每增加个单位时,y的值变化规律是什么?②当x的取值从0开始每增加个单位时,y的值变化规律是什么?【重点考点例析】考点一:二次函数图象上点的坐标特点例1 解:∵二次函数y=a(x-2)2+c(a>0),∴该抛物线的开口向上,且对称轴是x=2.∴抛物线上的点离对称轴越远,对应的函数值就越大,∵x取0时所对应的点离对称轴最远,x取2时所对应的点离对称轴最近,∴y3>y2>y1.故选B.1.(2012•衢州)解:∵二次函数y=12-x2-7x+152,∴此函数的对称轴为:x=2ba-=7712()2--=-⨯-,∵0<x1<x2<x3,三点都在对称轴右侧,a<0,∴对称轴右侧y随x的增大而减小,∴y1>y2>y3.故选:A.考点二:二次函数的图象和性质例2 (2012•咸宁)解:①∵△=4m2-4×(-3)=4m2+12>0,∴它的图象与x轴有两个公共点,故本选项正确;②∵当x≤1时y随x 的增大而减小,∴函数的对称轴x=-22m --≥1在直线x=1的右侧(包括与直线x=1重合),则22m--≥1,即m ≥1,故本选项错误;③将m=-1代入解析式,得y=x 2+2x-3,当y=0时,得x 2+2x-3=0,即(x-1)(x+3)=0,解得,x 1=1,x 2=-3,将图象向左平移3个单位后不过原点,故本选项错误;④∵当x=4时的函数值与x=2008时的函数值相等,∴对称轴为x=420082+=1006,则22m--=1006,m=1006,原函数可化为y=x 2-2012x-3,当x=2012时,y=20122-2012×2012-3=-3,故本选项正确.故答案为①④(多填、少填或错填均不给分). 对应训练2.(2012•河北)解:①∵抛物线y 2=12(x-3)2+1开口向上,顶点坐标在x 轴的上方,∴无论x 取何值,y 2的值总是正数,故本小题正确;②把A (1,3)代入,抛物线y 1=a (x+2)2-3得,3=a (1+2)2-3,解得a=23,故本小题错误;③由两函数图象可知,抛物线y 1=a (x+2)2-3过原点,当x=0时,y 2=12(0-3)2+1=112,故y 2-y 1=112,故本小题错误;④∵物线y 1=a (x+2)2-3与y 2=12(x-3)2+1交于点A (1,3),∴y 1的对称轴为x=-2,y 2的对称轴为x=3,∴B (-5,3),C (5,3)∴AB=6,AC=4,∴2AB=3AC ,故本小题正确.故选D . 考点三:抛物线的特征与a 、b 、c 的关系例3 (2012•玉林)解:由抛物线与y 轴的交点位置得到:c >1,选项①错误;∵抛物线的对称轴为x=2ba-=1,∴2a+b=0,选项②正确;由抛物线与x 轴有两个交点,得到b 2-4ac >0,即b2>4ac ,选项③错误;令抛物线解析式中y=0,得到ax 2+bx+c=0,∵方程的两根为x 1,x 2,且2b a -=1,及b a -=2,∴x 1+x 2=ba-=2,选项④正确,综上,正确的结论有②④.故选C 对应训练3.(2012•重庆)解:A 、∵开口向上,∴a >0,∵与y 轴交与负半轴,∴c <0,∵对称轴在y 轴左侧,∴2ba-<0,∴b >0,∴abc <0,故本选项错误;B 、∵对称轴:x=2b a -=12-,∴a=b ,故本选项错误;C 、当x=1时,a+b+c=2b+c <0,故本选项错误;D 、∵对称轴为x=12-,与x 轴的一个交点的取值范围为x1>1,∴与x 轴的另一个交点的取值范围为x 2<-2,∴当x=-2时,4a-2b+c <0,即4a+c <2b ,故本选项正确.故选D . 考点四:抛物线的平移例4 (2012•桂林)解:∵A 在直线y=x 上,∴设A (m ,m ),∵OA=2,∴m 2+m 2=(2)2,解得:m=±1(m=-1舍去),m=1,∴A (1,1),∴抛物线解析式为:y=(x-1)2+1,故选:C . 对应训练4.(2012•南京)解:原式可化为:y=(x+1)2-4,由函数图象平移的法则可知,将函数y=x 2的图象先向左平移1个单位,再向下平移4个单位即可得到函数y=(x+1)2-4,的图象,故①正确;函数y=(x+1)2-4的图象开口向上,函数y=-x 2;的图象开口向下,故不能通过平移得到,故②错误;将y=(x-1)2+2的图象向左平移2个单位,再向下平移6个单位即可得到函数y=(x+1)2-4的图象,故③正确.故答案为:①③.【聚焦中考】1.解:∵抛物线的顶点在第四象限,∴-m >0,n <0,∴m <0,∴一次函数y=mx+n 的图象经过二、三、四象限,故选C . 2.解:A 、由图象知,点(1,1)在图象的对称轴的左边,所以y 的最大值大于1,不小于0;故本选项错误;B 、由图象知,当x=0时,y 的值就是函数图象与y 轴的交点,而图象与y 轴的交点在(1,1)点的左边,故y <1;故本选项错误;C 、对称轴在(1,1)的右边,在对称轴的左边y 随x 的增大而增大,∵-1<1,∴x=-1时,y 的值小于x=-1时,y 的值1,即当x=-1时,y 的值小于1;故本选项错误;D 、当x=-3时,函数图象上的点在点(-2,-1)的左边,所以y 的值小于0;故本选项正确.故选D . 3.解:∵二次函数图象开口向下,∴a <0,∵对称轴x=2ba-<0,∴b <0,∵二次函数图象经过坐标原点,∴c=0,∴一次函数y=bx+c 过第二四象限且经过原点,反比例函数ay x=位于第二四象限,纵观各选项,只有C 选项符合.故选C . 4.解:∵函数的解析式是y=-(x+1)2+a ,如右图,∴对称轴是x=-1,∴点A 关于对称轴的点A ′是(0,y 1),那么点A ′、B 、C 都在对称轴的右边,而对称轴右边y 随x 的增大而减小,于是y 1>y 2>y 3.故选A .5.解:①∵2>0,∴图象的开口向上,故本小题错误;②图象的对称轴为直线x=3,故本小题错误;③其图象顶点坐标为(3,1),故本小题错误;④当x <3时,y 随x 的增大而减小,正确;综上所述,说法正确的有④共1个.故选A . 6.解:由二次函数图象与x 轴有两个交点,∴b 2-4ac >0,选项①正确;又对称轴为直线x=1,即2ba-=1,可得2a+b=0(i ),选项②错误;∵-2对应的函数值为负数,∴当x=-2时,y=4a-2b+c <0,选项③错误;∵-1对应的函数值为0,∴当x=-1时,y=a-b+c=0(ii ),联立(i )(ii )可得:b=-2a ,c=-3a ,∴a :b :c=a :(-2a ):(-3a )=-1:2:3,选项④正确,则正确的选项有:①④.故选D . 7.A8.解:(1)若设y=kx+b (k ≠0),由7320 6750k b k b =+⎧⎨=+⎩,解得1577k b ⎧=-⎪⎨⎪=⎩,所以y=15-x+77,把x=70代入得y=65≠83,所以不符合;若设k y x =(k ≠0),由73=20k ,解得k=1460,所以y=1460x,把x=50代入得y=29.2≠67,所以不符合;若设y=ax 2+bx+c , 则由7340020 67250050 83490070a b c a b c a b c =++⎧⎪=++⎨⎪=++⎩,解得1 508 597a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,所以y=150x 2-85x+97(18≤x ≤90),把x=80代入得y=97,把x=90代入得y=115,符合题意.所以二次函数能表示所用燃气量y 升与旋钮角度x 度的变化规律; (2)由(1)得:y=150x 2-85x+97=150(x-40)2+65,所以当x=40时,y 取得最小值65.即当旋钮角度为40°时,烧开一壶水所用燃气量最少,最少为65升;(3)由(2)及表格知,采用最节省燃气的旋钮角度40度比把燃气开到最大时烧开一壶水节约用气115-65=50(升) 设该家庭以前每月平均用气量为a 立方米,则由题意得:50115a=10,解得a=23(立方米),即该家庭以前每月平均用气量为23立方米.【备考真题过关】1.C 2.D 解:根据题意得:y=|ax 2+bx+c|的图象如右图:所以若|ax 2+bx+c|=k (k ≠0)有两个不相等的实数根,则k >3,故选D .3.B 解:∵当x ≤1时,总有y ≥0,当1≤x ≤3时,总有y ≤0,∴函数图象过(1,0)点,即1+b+c=0①,∵当1≤x ≤3时,总有y ≤0,∴当x=3时,y=9+3b+c ≤0②,①②联立解得:c ≥3,故选B . 4.B 5.C6.解:由图可知,当x >﹣1时,函数值y 随x 的增大而减小,A 、当x=0时,y 的值小于1,故本选项错误;B 、当x=3时,y 的值小于0,故本选项正确;C 、当x=1时,y 的值小于1,故本选项错误;D 、y 的最大值不小于1,故本选项错误.6.C 解:二次函数y=2(x+1)(x-3)可化为y=2(x-1)2-8的形式,A 、∵此二次函数中a=2>0,∴抛物线开口向上,故本选项错误;B 、∵由二次函数的解析式可知,此抛物线开口向上,对称轴为x=1,∴当x >1时,y 随x 的增大而增大,故本选项错误;C 、∵由二次函数的解析式可知,此抛物线开口向上,对称轴为x=1,∴当x <1时,y 随x 的增大而减小,故本选项正确; D 、由二次函数的解析式可知抛物线对称轴为x=1,故本选项错误.故选C . 7.B 解:根据图象可得:a >0,c <0,对称轴:2bx a=->0,①∵它与x 轴的两个交点分别为(-1,0),(3,0),∴对称轴是x=1,∴2ba-=1,∴b+2a=0,故①错误;②∵a >0,∴b <0,∵c <0,∴abc >0,故②错误;③∵a-b+c=0,∴c=b-a ,∴a-2b+4c=a-2b+4(b-a )=2b-3a ,又由①得b=-2a ,∴a-2b+4c=-7a <0,故此选项正确;④根据图示知,当x=4时,y >0,∴16a+4b+c >0,由①知,b=-2a ,∴8a+c >0;故④正确;故正确为:③④两个.8.B 解:∵二次函数y=ax 2+bx+1的顶点在第一象限,且经过点(-1,0),∴易得:a-b+1=0,a <0,b >0,由a=b-1<0得到b <1,结合上面b >0,所以0<b <1①,由b=a+1>0得到a >-1,结合上面a <0,所以-1<a <0②,∴由①②得:-1<a+b <1,且c=1,得到0<a+b+1<2,∴0<t <2.故选:B . 9.B 10.D 11.B 解:当x=0时,y=-6,故函数与y 轴交于C (0,-6),当y=0时,x 2-x-6=0,即(x+2)(x-3)=0,解得x=-2或x=3,即A (-2,0),B (3,0);由图可知,函数图象至少向右平移2个单位恰好过原点,故|m|的最小值为2. 二、填空题12.7 解:∵二次项系数为-1,∴函数图象开口向下,顶点坐标为(2,94),当y=0时,-(x-2)2+94=0,解得x 1=12,得x 2=72.可画出草图为:(右图)图象与x 轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有7个,为(2,0),(2,1),(2,2),(1,0),(1,1),(3,0),(3,1).13.解:∵抛物线y=a (x-3)2+k 的对称轴为x=3,且AB ∥x 轴,∴AB=2×3=6,∴等边△ABC 的周长=3×6=18.故答案为:18. 14.①②③ 解:根据图象可得:a <0,c >0,对称轴:x=2b a -=1,2b a=-1,b=-2a ,∵a <0, ∴b >0,∴abc <0,故①正确;把x=-1代入函数关系式y=ax 2+bx+c 中得:y=a-b+c ,由图象可以看出当x=-1时,y <0,∴a-b+c <0,故②正确;∵b=-2a ,∴a-(-2a )+c <0,即:3a+c <0,故③正确;由图形可以直接看出④错误.故答案为:①②③. 15.y 1>y 2 解:由二次函数y=(x-1)2+1可,其对称轴为x=1,∵x1>x2>1,∴两点均在对称轴的右侧,∵此函数图象开口向上,∴在对称轴的右侧y 随x 的增大而增大∵x1>x2>1,∴y1>y2.故答案为:>. 16.37解:∵x 2-2(a-1)x+a (a-3)=0有两个不相等的实数根,∴△>0,∴[-2(a-1)]2-4a (a-3)>0,∴a >-1,将(1,0)代入y=x 2-(a 2+1)x-a+2得,a 2+a-2=0,解得(a-1)(a+2)=0,a 1=1,a 2=-2.可见,符合要求的点为0,2,3.∴P=3 7 .故答案为37. 17.y=x 2+x-2 18.y=-(x+1)2-2 解:二次函数y=(x-1)2+2顶点坐标为(1,2),绕原点旋转180°后得到的二次函数图象的顶点坐标为(-1,-2),所以,旋转后的新函数图象的解析式为y=-(x+1)2-2.故答案为:y=-(x+1)2-2.18 解:分段函数y=的图象如图:故要使直线y=m (m 为常数)与函数y=的图象恒有三个不同的交点,常数m 的取值范围为0<m <2,故答案为:0<m <2.19.272解:如图,过点P 作PM ⊥y 轴于点M ,∵抛物线平移后经过原点O 和点A (-6,0),∴平移后的抛物线对称轴为x=-3,得出二次函数解析式为:y=12(x+3)2+h ,将(-6,0)代入得出:0=12(-6+3)2+h ,解得:h=92-,∴点P 的坐标是(-3,92-),根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO 的面积,∴S=|-3|×|92-|=272.故答案为:272.三、解答题20.解:(1)抛物线y=34(x-1)2-3,∵a=34>0,∴抛物线的开口向上,对称轴为x=1; (2)∵a=34>0,∴函数y 有最小值,最小值为-3; (3)令x=0,则y=34(0-1)2-3=94-,所以,点P 的坐标为(0,94-),令y=0,则34(x-1)2-3=0,解得x 1=-1,x 2=3,所以,点Q 的坐标为(-1,0)或(3,0),当点P (0,94-),Q (-1,0)时,设直线PQ 的解析式为y=kx+b ,则940b k b ⎧=-⎪⎨⎪-+=⎩,解得9494kb⎧=-⎪⎪⎨⎪=-⎪⎩,所以直线PQ的解析式为y=94-x94-,当P(0,94-),Q(3,0)时,设直线PQ的解析式为y=mx+n ,则9430nm n⎧=-⎪⎨⎪+=⎩,解得3494mn⎧=⎪⎪⎨⎪=-⎪⎩,所以,直线PQ的解析式为y=34x94-,综上所述,直线PQ的解析式为y=94-x94-或y=34x94-.3.(2012•佛山)解:(1)n是任意整数,则表示任意一个奇数的式子是:2n+1;(2)有理数b=(n≠0);(3)①当x=0时,y=0,当x=时,y=,当x=1时,y=1,当x=时,y=.故当x的取值从0开始每增加个单位时,y的值依次增加、、…②当x=0时,y=0,当x=时,y=,当x=时,y=,当x=时,y=,故当x的取值从0开始每增加个单位时,y的值依次增加、、…。
一、选择题1.已知函数221y x x =--,下列结论正确的是( )A .函数图象过点()1,1-B .函数图象与x 轴无交点C .当1≥x 时, y 随x 的增大而减小D .当1x ≤时, y 随x 的增大而减小D解析:D 【分析】根据二次函数的性质进行判断即可. 【详解】解:A 、当x=-1时,221y x x =--=1+2﹣1=2,函数图象过点(-1,2),此选项错误;B 、∵△=(﹣2)2﹣4×1×(﹣1)=8>0, ∴函数图象与x 轴有两个交点, 故此选项错误;C 、∵221y x x =--=(x ﹣1)2﹣2,且1>0,∴当x≥1时,y 随x 的增大而增大, 故此选项错误;D 、当x≤1,时,y 随x 的增大而减小,此选项正确, 故选:D . 【点睛】本题考查二次函数的性质、抛物线与x 轴的交点问题,熟练掌握二次函数的性质是解答的关键.2.将抛物线22y x =平移,得到抛物线22(4)1y x =-+,下列平移方法正确的是( ) A .先向左平移4个单位,在向上平移1个单位 B .先向左平移4个单位,在向下平移1个单位 C .先向右平移4个单位,在向上平移1个单位 D .先向右平移4个单位,在向下平移1个单位C 解析:C 【分析】先利用顶点式得到两抛物线的顶点式,然后通过点平移的规律得到抛物线平移的情况. 【详解】解:抛物线y=2x 2的顶点坐标为(0,0),抛物线y=2(x-4)2+1的顶点坐标为(4,1),而点(0,0)先向右平移4个单位,再向上平移1个单位可得到点(4,1),所以抛物线y=2x 2先向右平移4个单位,再向上平移1个单位得到抛物线y=2(x+4)2+1. 故选:C . 【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.3.如图,在ABC 中,∠B =90°,AB =3cm ,BC =6cm ,动点P 从点A 开始沿AB 向点B 以1cm /s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm /s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则PBQ △的面积S 随出发时间t 的函数图象大致是( )A .B .C .D .D解析:D 【分析】先根据运动速度和AB 、BC 的长可得t 的取值范围,再根据运动速度可得,2AP tcm BQ tcm ==,然后利用直角三角形的面积公式可得S 与t 之间的函数关系式,最后根据二次函数的图象特点即可得. 【详解】 设运动时间为ts ,点P 到达点B 所需时间为31AB s =,点Q 到达点C 所需时间为32BCs =, ∴点P 、Q 同时停止运动,且t 的取值范围为03t ≤≤,由题意,,2AP tcm BQ tcm ==,3AB cm =,()3BP AB AP t cm ∴=-=-,()21132322S BP BQ t t t t ∴=⋅=-⋅=-+, 则S 与t 之间的函数图象是抛物线在03t ≤≤的部分,且开口向下,观察四个选项可知,只有选项D 符合, 故选:D . 【点睛】本题考查了二次函数的图象,正确求出S 与t 之间的函数关系式是解题关键.4.若()14,A y -,()21,B y -,()30,C y 为二次函数2(2)3y x =-++的图象上的三点,则1y ,2y ,3y 的大小关系是( ) A .123y y y <= B .312y y y =<C .312 y y y <<D .123y y y =<B解析:B【分析】根据二次函数的解析式可得图象开口向下,对称轴为2x =-,故点()14,A y -与点()30,C y 关于对称轴对称,即13y y =,再根据点()21,B y -与点()30,C y 在对称轴右侧,y 随x 增大而减小即可得出结论. 【详解】解:二次函数2(2)3y x =-++的图象开口向下,对称轴为2x =-, ∴点()14,A y -与点()30,C y 关于对称轴对称, ∴13y y =,∵点()21,B y -与点()30,C y 在对称轴右侧,y 随x 增大而减小, ∴23y y >, ∴312y y y =<, 故选:B . 【点睛】本题考查二次函数的性质,根据二次函数解析式得到对称轴是解题的关键.5.已知二次函数22236y x ax a a =-+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是( ) A .2a < B .1a >- C .12a -<≤ D .12a -≤<D解析:D 【分析】根据判别式的意义得到△=(-2a )2-4(a 2-3a+6)<0,解得a <2,再求出抛物线的对称轴为直线x=a ,根据二次函数的性质得到a≥-1,从而得到实数a 的取值范围是-1≤a <2. 【详解】解∵抛物线22236y x ax a a =-+-+与x 轴没有公共点,∴△=(-2a )2-4(a 2-3a+6)<0,解得a <2,∵抛物线的对称轴为直线x=-22a-=a ,抛物线开口向上, 而当x <-1时,y 随x 的增大而减小, ∴a≥-1,∴实数a 的取值范围是-1≤a <2. 故选:D . 【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质. 6.下列各图象中有可能是函数()20y ax a a =+≠的图象( )A .B .C .D .B解析:B 【分析】从0a >和0a <两种情况进行分析图象的开口方向和顶点坐标,选出正确的答案. 【详解】解:当0a >时,开口向上,顶点在y 轴的正半轴; 当0a <时,开口向下,顶点在y 轴的负半轴, 故选:B . 【点睛】本题考查的是二次函数系数与图象的关系,熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标与系数的关系是解题的关键.7.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x =-+上的三点,1y ,2y ,3y 的大小关系为( ) A .123y y y >> B .132y y y >> C .321y y y >> D .312y y y >>A解析:A 【分析】根据二次函数的对称性、增减性即可得. 【详解】由二次函数的性质可知,当1x ≥-时,y 随x 的增大而减小, 抛物线2(1)y x =-+的对称轴为1x =-,∴0x =时的函数值与2x =-时的函数值相等,即为1y , ∴点()10y ,在此抛物线上,又点()21,B y ,()32,C y 在此抛物线上,且1012-<<<,123y y y ∴>>,故选:A . 【点睛】本题考查了二次函数的对称性、增减性,熟练掌握二次函数的性质是解题关键. 8.若二次的数2y ax bx c =++的x 与y 的部分对应值如下表: x 7-6- 5- 4-3-2-y27- 13-3-353A .5B .3-C .13-D .27-D解析:D 【分析】首先观察表格可得二次函数2y ax bx c =++过点(4,3)-与(2,3)-,则可求得此抛物线的对称轴,然后由对称性求得答案. 【详解】 解:二次函数2y ax bx c =++过点(4,3)-与(2,3)-,∴此抛物线的对称轴为:直线4(2)32x -+-==-, ∴横坐标为1x =的点的对称点的横坐标为7x =-, ∴当1x =时,27y =-.故选:D . 【点睛】此题考查了二次函数的对称性,根据表格中的数据找到对称轴是解题的关键. 9.已知一次函数y ax c =+与2y ax bx c =++,它们在同一坐标系内的大致图象是( )A .B .C .D .D解析:D 【分析】先根据各项中一次函数与二次函数的图象判断a 、c 的正负,二者一致的即为正确答案. 【详解】解:A 、由一次函数图象可得:a >0,c <0,由二次函数图象可得a <0,c >0,矛盾,故本选项不符合题意;B 、由一次函数图象可得:a >0,c >0,由二次函数图象可得a >0,c <0,矛盾,故本选项不符合题意;C 、由一次函数图象可得:a <0,c >0,由二次函数图象可得a >0,c >0,矛盾,故本选项不符合题意;D 、由一次函数图象可得:a <0,c >0,由二次函数图象可得a <0,c >0,故本选项符合题意; 故选:D . 【点睛】本题考查了一次函数与二次函数的图象与性质,属于常考题型,熟练掌握二者的图象是解题的关键.10.若关于x 的不等式组232x a x a ≥+⎧⎨<-⎩有解,则函数21(3)4y x x a =--+-图象与x 轴的交点个数为( )A .0个B .1个C .2个D .1或2个C解析:C 【分析】根据解不等式组的一般步骤得到a 的取值范围,然后求出函数21(3)4y x x a =--+-的判别式,根据根的判别式的正负即可得到图象与x 轴的交点个数. 【详解】解:∵关于x 的不等式组232x a x a ≥+⎧⎨<-⎩有解,∴3a-2>a+2, 即a >2, 令y=0,21(3)4x x a --+-=0, △=(-1)2-4×(a-3)×(-14)=a-2, ∵a >2, ∴a-2>0,∴函数图象与x 轴的交点个数为2. 故选:C . 【点睛】解答此题要熟知以下概念:(1)解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.(2)一元二次方程ax 2+bx+c=0(a≠0)的解与二次函数y=ax 2+bx+c 的关系.二、填空题11.抛物线y =﹣12(x +1)2+3的顶点坐标是_____.(﹣13)【分析】根据y =a (x ﹣h )2+k 的顶点是(hk )可得答案【详解】y =﹣(x+1)2+3的顶点坐标是(﹣13)故答案为:(﹣13)【点睛】本题考查了二次函数的性质熟记抛物线解析式的顶点式:解析:(﹣1,3) 【分析】根据y =a (x ﹣h )2+k 的顶点是(h ,k ),可得答案. 【详解】 y =﹣12(x+1)2+3的顶点坐标是(﹣1,3), 故答案为:(﹣1,3). 【点睛】本题考查了二次函数的性质.熟记抛物线解析式的顶点式:y =a (x−h )2+k ,顶点坐标为(h ,k )是解答此题的关键.12.已知二次函数2y ax bx c =++的图象过点(1,2)A ,(3,2)B ,(5,7)C .若点1(2,)M y ,2(1,)N y -,3(8,)K y 也在二次函数2y ax bx c =++的图象上,则1y ,2y ,2y 的从小到大的关系是___.【分析】根据点ABC 的坐标可得二次函数的对称轴和增减性由此即可得【详解】点在二次函数的图象上此二次函数的对称轴为点BC 的横坐标大小关系为纵坐标大小关系为当时y 随x 的增大而增大;当时y 随x 的增大而减小 解析:123y y y <<【分析】根据点A 、B 、C 的坐标可得二次函数的对称轴和增减性,由此即可得. 【详解】点(1,2)A ,(3,2)B ,(5,7)C 在二次函数2y ax bx c =++的图象上,∴此二次函数的对称轴为1322+=, 点B 、C 的横坐标大小关系为532>>,纵坐标大小关系为72,∴当2x ≥时,y 随x 的增大而增大;当2x <时,y 随x 的增大而减小,由二次函数的对称性得:1x =-时的函数值与5x =时的函数值相等,即为27y =, 又点1(2,)M y ,3(8,)K y 在二次函数2y ax bx c =++的图象上,且258,137y y ,即123y y y <<,故答案为:123y y y <<. 【点睛】本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键.13.二次函数2y ax bx c =++的部分对应值如下表:利用二次函数的图象可知,当函数值时,的取值范围是______.表格给出的信息可看出对称轴为直线x =1a >0开口向上与x 轴交于(−10)(30)两点则y>0时x 的取值范围即可求出【详解】根据表格中给出的二次函数图象的信息对称轴为直线x =1a >0开口向解析:1x <-或3x > 【分析】由表格给出的信息可看出,对称轴为直线x =1,a >0,开口向上,与x 轴交于(−1,0)、(3,0)两点,则y>0时,x 的取值范围即可求出. 【详解】根据表格中给出的二次函数图象的信息,对称轴为直线x =1,a >0,开口向上,与x 轴交于(−1,0)、(3,0)两点,则当函数值y>0时,x 的取值范围是x<-1或x>3. 故答案为:x<-1或x>3. 【点睛】本题考查了二次函数的图象及其性质,正确掌握才能灵活运用.14.已知函数223y x x =--,当函数值y 随x 的增大而减小时,x 的取值范围是______.【分析】先求出函数图像的对称轴然后根据二次函数的增减性即可解答【详解】解:∵函数图像的对称轴为x=1∴当数值随的增大而减小故答案为【点睛】本题考查了二次函数的增减性确定二次函数的对称轴是解答本题的关键解析:1x <【分析】先求出函数图像的对称轴,然后根据二次函数的增减性即可解答. 【详解】解:∵函数223y x x =--图像的对称轴为x=1∴当1x <,数值y 随x 的增大而减小. 故答案为1x <. 【点睛】本题考查了二次函数的增减性,确定二次函数的对称轴是解答本题的关键.15.写出一个开口向下的二次函数的表达式______.(答案不唯一)【分析】根据二次函数开口向下二次项系数为负可据此写出满足条件的函数解析式【详解】解:二次函数的图象开口向下则二次项系数为负即a <0满足条件的二次函数的表达式为y=-x2故答案为:y=-解析:2y x =-(答案不唯一) 【分析】根据二次函数开口向下,二次项系数为负,可据此写出满足条件的函数解析式. 【详解】解:二次函数的图象开口向下, 则二次项系数为负,即a <0, 满足条件的二次函数的表达式为y=-x 2. 故答案为:y=-x 2(答案不唯一). 【点睛】本题主要考查二次函数的性质,二次函数的图象开口向下,二次项系数为负,此题比较简单.16.已知二次函数()210y ax bx a =++≠的图象与x 轴只有一个交点.请写出 一组满足条件的,a b 的值:a =__________,b =_________________【分析】根据判别式的意义得到△=b2-4a=0然后a 取一个不为0的实数再确定对应的b 的值【详解】解:∵二次函数y=ax2+bx+1(a≠0)的图象与x 轴只有一个交点∴△=b2-4a=0若a=1则b 可 解析:12【分析】根据判别式的意义得到△=b 2-4a=0,然后a 取一个不为0的实数,再确定对应的b 的值. 【详解】解:∵二次函数y=ax 2+bx+1(a≠0)的图象与x 轴只有一个交点, ∴△=b 2-4a=0, 若a=1,则b 可取2.故答案为1,2(答案不唯一). 【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.17.二次函数2y ax bx c =++(a 、b 、c 为常数,0a ≠)中的x 与y 的部分对应值如下表:_______.(填序号即可)①0abc <;②若点()12,C y -,()2,D y π在该拋物线上,则12y y <;③4n a < ;④对于任意实数t ,总有()2496at bt a b +≤+.①②④【分析】根据表格数据求出二次函数的对称轴为直线x=然后根据二次函数的性质对各小题分析判断即可得解【详解】解:由图表知当x=0时y=3当x=3时y=3∴对称轴为且∴①∵∴异号故①正确;②对称轴为解析:①②④ 【分析】根据表格数据求出二次函数的对称轴为直线x=32,然后根据二次函数的性质对各小题分析判断即可得解. 【详解】解:由图表知,当x=0时,y=3,当x=3时,y=3 ∴对称轴为0+33=222b x a =-=,且3c =,3b a =- ∴23y ax bx =++ ①∵3b a =-,3c =∴a b ,异号,0abc <,故①正确;②对称轴为32x =,且当1x =-时,.y n = 将(1)n -,代入23y ax bx =++中得3a b n -+=, ∴3a b n -=- 又∵0n < ∴-0a b < 又∵a b ,异号, ∴0a <,0.b >∴23y ax bx =++的图象开口向下, ∵33|2|||22π-->- ∴12y y <,故②正确; ③∵3b a =-, 3.a b n -=- ∴(3)3a a n --=- ∴4 3.a n =-∴4.a n <,故③错误; ④当32x =时,y 有最大值, ∴最大值为3492a b c ++ ∴对任意实数t ,总有29342at bt c a b c ++≤++, ∴24()96at bt a b +≤+,故④正确, 故答案为:①②④. 【点睛】本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x 轴的交点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.18.抛物线y =x 2+2x-3与x 轴的交点坐标为____________________.【分析】要求抛物线与x 轴的交点即令y =0解方程即可【详解】令y =0则x2+2x ﹣3=0解得x1=﹣3x2=1则抛物线y =x2+2x ﹣3与x 轴的交点坐标是(﹣30)(10)故答案为:(﹣30)(10) 解析:()()3.0,1,0-【分析】要求抛物线与x 轴的交点,即令y =0,解方程即可. 【详解】令y =0,则x 2+2x ﹣3=0,解得x 1=﹣3,x 2=1.则抛物线y =x 2+2x ﹣3与x 轴的交点坐标是(﹣3,0),(1,0).故答案为:(﹣3,0),(1,0).【点睛】此题考察二次函数与一元二次方程的关系,一元二次方程的解即为二次函数图像与x 轴交点的横坐标.19.二次函数2y x bx c =++的图象如图所示,则一元二次方程28x bx c ++=-的根是____________.【分析】根据题目中的函数解析式可知当时从而可得到一元二次方程的根本题得以解决【详解】由图象可知当时即时∴一元二次方程的根是故答案为:【点睛】本题考查了二次函数与一元二次方程的关系解答本题的关键是明确解析:122x x ==-【分析】根据题目中的函数解析式可知,当8y =-时,2x =-,从而可得到一元二次方程28x bx c ++=-的根,本题得以解决.【详解】由图象可知,当8y =-时,2x =-,即2x =-时,28x bx c ++=-,∴一元二次方程28x bx c ++=-的根是122x x ==-,故答案为:122x x ==-.【点睛】本题考查了二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用数形结合的思想解答.20.如图,在平面直角坐标系中抛物线y =x 2﹣3x +2与x 轴交于A 、B 两点,与y 轴交于点C ,点D 是对称轴右侧抛物线上一点,且tan ∠DCB =3,则点D 的坐标为_____.()【分析】根据抛物线y=x2﹣3x+2与x轴交于AB两点与y轴交于点C得A(10)B(20)C(02)过点B作BM⊥BC 交CD延长线于点M过点M作MG⊥x轴于点G易证等腰直角三角形OCB∽等腰直角解析:(715 ,24)【分析】根据抛物线y=x2﹣3x+2与x轴交于A、B两点,与y轴交于点C,得A(1,0),B(2,0),C(0,2),过点B作BM⊥BC交CD延长线于点M,过点M作MG⊥x轴于点G,易证等腰直角三角形OCB∽等腰直角三角形GBM,可得M(8,6),再求得直线CM的解析式为y=12x+2,联立直线和抛物线,解方程组即可得点D的坐标.【详解】解:∵抛物线y=x2﹣3x+2与x轴交于A、B两点,与y轴交于点C,∴解得A(1,0),B(2,0),C(0,2),∴OB=OC∴∠OBC=45°,如图,过点B作BM⊥BC交CD延长线于点M,过点M作MG⊥x轴于点G,∴∠COB=∠MGB=90°∴∠CBO+∠MBG=90°∴∠MBG=45°∴MG=BG∴等腰直角三角形OCB∽等腰直角三角形GBM∴BC BM =OC BG ∵tan ∠DCB =MB BC =3 ∴123BG= ∴BG =6∴MG =6 ∴M (8,6)设直线CM 解析式为y =kx +b ,把C (0,2),M (8,6)代入,解得k =12,b =2 所以直线CM 的解析式为y =12x +2 联立212232y x y x x ⎧=+⎪⎨⎪=-+⎩ 解得1102x y =⎧⎨=⎩,2272154x y ⎧=⎪⎪⎨⎪=⎪⎩∴D (715,24) 故答案为(715,24). 【点睛】本题考查了抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征、解直角三角形,解决本题的关键是掌握二次函数的性质.三、解答题21.某超市销售一种牛奶,进价为每箱36元,规定售价不低于进价.现在的售价为每箱60元,每月可销售100箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x 元(x 为正整数),每月的销量为y 箱.(1)写出y 与x 之间的函数关系式和自变量x 的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?解析:(1)10010y x =+,1≤x ≤24,且x 为整数;(2)超市定价为53元时,才能使每月销售牛奶的利润最大,最大利润是2890元.【分析】(1)根据价格每降低1元,平均每月多销售10箱,由每箱降价x 元,多卖10x ,据此可以列出函数关系式;(2)由利润=(售价-成本)×销售量列出函数关系式,求出最大值.【详解】解:(1)根据题意,得:y =100+10x ,由60﹣x ≥36得x ≤24,∴1≤x ≤24,且x 为整数;(2)设所获利润为W ,则W =(60﹣x ﹣36)(10x +100)=﹣10x 2+140x +2400=﹣10(x ﹣7)2+2890,∵此二次函数的二次项系数小于0,∴函数开口向下,有最大值,∴当x =7时,W 取得最大值,最大值为2890,此时售价为60-7=53(元),答:超市定价为53元时,才能使每月销售牛奶的利润最大,最大利润是2890元.【点睛】本题主要考查二次函数应用,由利润=(售价-成本)×销售量列出函数关系式求最值,用二次函数解决实际问题是解题的关键.22.如图,二次函数2y x bx c =++的图象与x 轴交于A 、B 两点,与y 轴交于点C ,OB OC =.点D 在函数图象上,//CD x 轴,且2CD =,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值.(2)如图①,连接BE ,线段OC 上的点F 关于直线l 的对称点F '恰好在线段BE 上,求点F 的坐标.(3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与BC 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得PQN 与APM △的面积相等,且线段NQ 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.解析:(1)2b =-,3c =-;(2)点F 坐标为(0,2)-;(3)存在,Q 的坐标为115,24⎛⎫- ⎪⎝⎭和315,24⎛⎫- ⎪⎝⎭ 【分析】(1)由条件可求得抛物线对称轴,则可求得b 的值;由OB=OC ,可用c 表示出B 点坐标,代入抛物线解析式可求得c 的值;(2)可设F (0,m ),则可表示出F′的坐标,由B 、E 的坐标可求得直线BE 的解析式,把F′坐标代入直线BE 解析式可得到关于m 的方程,可求得F 点的坐标;(3)设点P 坐标为(n ,0),可表示出PA 、PB 、PN 的长,作QR ⊥PN ,垂足为R ,则可求得QR 的长,用n 可表示出Q 、R 、N 的坐标,在Rt △QRN 中,由勾股定理可得到关于n 的二次函数,利用二次函数的性质可知其取得最小值时n 的值,则可求得Q 点的坐标,【详解】解:(1)∵CD//x 轴,2CD =,∴抛物线对称轴为直线:1l x =, ∴12b -=,即2b =-, ∵OB OC =,(0,)C c ,∴B 点坐标为(,0)c -, ∴202c c c =++,解得3c =-或0c(舍去); ∴3c =-.(2)设点F 坐标为(0,)m ,∵对称轴是直线:1l x =,∴点F 关于直线l 的对称点F '的坐标为(2,)m ,由(1)可知抛物线解析式为y=x 2-2x-3=(x-1)2-4,∴E (1,-4),∵直线BE 经过点(3,0)B ,(1,4)E -,∴直线BE 的表达式为26y x =-,∵点F '在BE 上,∴2262m =⨯-=-,即点F 坐标为(0,2)-.(3)存在点Q 满足题意.设点P 坐标为(,0)n ,则1PA n =+,3PB PM n ==-,223PN n n =-++, 如解图,连接QN ,过点Q 作QR PN ⊥,垂足为R ,∵PQN APM SS =, ∴1(1)(3)2n n +- ()21232n n QR =-++⋅, ∴1QR =,①点Q 在直线PN 的左侧时,Q 点坐标为()21,4n n n --,R 点坐标为()2,4n n n -,N 点坐标为()2,23n n n --,∴()2242323RN n n n n n =----=-+∴在Rt QRN 中,221(23)NQ n =+-,∴当3n 2=时,NQ 取得最小值1, 此时Q 点坐标为115,24⎛⎫-⎪⎝⎭; ②点Q 在直线PN 的右侧时,Q 点坐标为()21,4n n +-,同理21RNn =-,221(21)NQ n =+-, ∴当12n =时,NQ 取得最小值1, 此时Q 点坐标为315,24⎛⎫-⎪⎝⎭, 综上所述:满足题意的点Q 的坐标为115,24⎛⎫- ⎪⎝⎭和315,24⎛⎫- ⎪⎝⎭.【点睛】本题为二次函数的综合应用,涉及待定系数法、轴对称、三角形的面积、勾股定理、二次函数的性质、方程思想及分类讨论思想等知识.在(1)中求得抛物线的对称轴是解题的关键,在(2)中用F 点的坐标表示出F′的坐标是解题的关键,在(3)中求得QR 的长,用勾股定理得到关于n 的二次函数是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.23.已知二次函数2(2)1y x =--,(1)确定抛物线开口方向、对称轴、顶点坐标;(2)如图,观察图象确定,x 取什么值时,①y >0,②y <0,③y =0.解析:(1)开口方向:向上,对称轴:直线x=2,顶点坐标:(2,-1);(2)①1x <或3x >时y>0,②13x <<时,y<0;③x=1或x=3时,y=0.【分析】(1)根据顶点式可直接推出抛物线开口方向、对称轴、顶点坐标;(2)令y=0,求出关于x 的方程的解,结合图象即可解答.【详解】解:(1)由于二次项系数为正数,则抛物线开口向上;根据顶点式可知,对称轴为x=2,顶点坐标为(2,-1).(2)令y=0,则原式可化为(x-2)2-1=0,移项得,(x-2)2=1,开方得,x-2=±1,解得x 1=1,x 2=3.则与x 轴的交点坐标为(1,0),(3,0).如图:①当x <1或x >3时,y >0;②当x=1或x=3时,y=0;③当1<x <3时,y <0.【点睛】本题考查了二次函数的性质,熟悉顶点式及正确画出图象,利用数形结合是解题的关键. 24.在“万众创业、大众创新”的新时代下,大学毕业生小张响应国家号召,开办了家饰品店,该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:售价每下降1元每月要多卖20件,为了获得更大的利润且让利给顾客,现将饰品售价降价x (元/件)(且x 为整数),每月饰品销量为y (件),月利润为w (元).(1)写出y 与x 之间的函数解析式;(2)如何确定销售价格才能使月利润最大?求最大月利润;(3)为了使每月利润等于6000元时,应如何确定销售价格.解析:(1)y =300+20x ;(2)当售价为57元时,利润最大,最大利润为6120元;(3)将销售价格为55元,才能使每月利润等于6000元.【分析】(1)由售价每下降1元每月要多卖20件,可得y 与x 之间的函数解析式;(2)由月利润=单件利润×数量,可得w 与x 的函数解析式,由二次函数的性质可求解; (3)将w=6000代入解析式,解方程可求解.【详解】(1)由题意可得:30020y x =+;(2)由题意可得:()()2203002020( 2.5)6125w x x x =-+=--+, 由题意可知x 应取整数,当2x =或3元时,w 有最大值,∵让利给顾客,∴3x =,即当售价为57元时,利润最大,∴最大利润为6120元;(3)由题意,令w=6000,即25600020()61252x =--+,解得10x =(舍去),25x =,故将销售价格为55元,才能使每月利润等于6000元.【点睛】本题考查了二次函数的应用,一元二次方程的应用,二次函数的性质,找出正确的函数关系式是本题的关键.25.若二次函数2y ax bx c =++的x 与y 的部份对应值如下表:(2)画出此函数图象(不用列表);(3)结合函数图象,当41x -≤<时,直接写出y 的取值范围.解析:(1)y =−x 2−2x +3;(2)见详解;(3)−5≤y≤4.【分析】(1)利用表中数据和抛物线的对称性可得到抛物线的顶点坐标为(−1,4),则可设顶点式y =a (x +1)2+4,然后把(0,3)代入求出a 的值即;(2)利用描点法画二次函数图象;(3)观察函数函数图象,当41x -≤<时,函数的最大值为4,于是可得到y 的取值范围为−5≤y≤4.【详解】解:(1)由表知,抛物线的顶点坐标为(−1,4),设y =a (x +1)2+4,把(0,3)代入得a (0+1)2+4=3,解得a =−1,∴抛物线的解析式为y =−(x +1)2+4,即y =−x 2−2x +3;(2)如图,(3)如图:当−4≤x <1时,−5≤y≤4.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.26.在平面直角坐标系xOy 中,抛物线2223y x nx n n =-++-与y 轴交于点C ,与x 轴交于点,A B ,点A 在B 的左边,x 轴正半轴上一点D ,满足.OD OA OB =+(1)①当2n =时,求点D 的坐标和抛物线的顶点坐标;②当2AB BD =时,求n 的值;(2)过点D 作x 轴的垂线交抛物线于P ,作射线CP ,若射线CP 与x 轴没有公共点,直接写出n 的取值范围.解析:(1)①()4,0D ,顶点为()2,1-;②2n =或0n =;(2)11322n n <<<-或 【分析】(1)①把n=2代入2223y x nx n n =-++-求得243y x x =-+经过配方即可求得顶点坐标;再令y=0,求出x 的值,可得A ,B 的坐标,根据OD OA OB =+可求出点D 的坐标;②设点A 的坐标为(x 1,0),点B 的坐标为(x 2,0),根据2AB BD =列式求解即可; (2)首先求出点P 的坐标,再根据抛物线与x 轴有两个交点以及点P 的纵坐标大于0求出n 的取值范围即可.【详解】(1)①把2n =代入2223y x nx n n =-++-,得243y x x =-+配方得,()221y x =--∴顶点为()2,1-令0y =,则()221=0x --解得,1x =或3,即点()()1,0,3,0,A B∴OA=1,OB=3∵.OD OA OB =+∴OD=4∴()4,0D②设点A 的坐标为(x 1,0),点B 的坐标为(x 2,0),则有, 12=2bx x n α+=,2123b x n n ax ==+-, 2222121212()24x x x x x x n +=++=,2222224226226x x n n n n n +=--+=-+22222121212()2226226124x x x x x x n n n n n -=+-=-+--+=-∴21AB x x =-=122OA OB x x n +=+=222BD OD OB n x n n n =-=-=-=∵2AB BD = ∴2(n =解得,n=2,n=-6当n=-6时,点D 在点B 的左侧,不合题意,舍去,∴n=2;当点A 在x 轴负半轴,B 在x 轴正半轴上时,2AB OA =即OB OA =所以,抛物线对称轴为y 轴,此时0n =综上所述,2n =或0n =(3)∵CP 与x 轴没有公共点,∴CP//x 轴或CP 斜向上,当x=0时,23y n n =+-∴点P 的纵坐标为23n n +-,代入2223y x nx n n =-++-得 220-=x nx ,解得,0x =(舍去),2x n =,∴2(2,3)P n n n +-∴23n n +->0, ∴2113()24n +>解得,122n +>或122n +<-,即,12n >或12n <- ∵抛物线2223y x nx n n =-++-与x 轴交于点,A B ,∴△=22(2)4(3)0n n n --+->,解得,3n <,∴n 3n n <<<或 【点睛】本题主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用函数图象,从而求出相关字母的取值. 27.地摊经济开放以来,小王以每个40元的价格购进一种玩具,计划以每个60元的价格销售,后来为了尽快回本决定降价销售.已知这种玩具销售量y (个)与每个降价x (元)(020x <<)之间满足一次函数关系,其图象如图所示.(1)求y 与x 之间的函数解析式.(2)该玩具每个降价多少元时,小王获利最大?最大利润是多少元?解析:(1)()10100020y x x =+<<;(2)每个降价5元时,获利最大,最大利润是2250元【分析】(1)由待定系数法可以得到解答;(2)由题意可以得到获利与降价之间的函数关系,根据所得函数的性质即可得到答案.【详解】解:(1)设y 与x 之间的函数解析式为y kx b =+,当1x =时,110y =;当4x =时,140y =,∴110,4140,k b k b +=⎧⎨+=⎩解得10,100,k b =⎧⎨=⎩ ∴y 与x 之间的函数解析式为()10100020y x x =+<<.(2)设该玩具每个降价x 元时,小王获利最大,最大利润是w 元.根据题意得()()2604010100101002000w x x x x =--+=-++, ∴()21052250w x =--+, 故该玩具每个降价5元时,小王获利最大,最大利润是2250元.【点睛】本题考查一次函数与二次函数的综合运用,由题意得到有关变量的函数解析式是解题关键.28.如图,已知二次函数21y ax bx =+-的图象经过点D (-1,0)和C (4,5). (1)求二次函数的解析式;(2)在同一坐标系中画出直线1y x =+,并写出当x 在什么范围内时,一次函数的值大于二次函数的值.。
初中数学二次函数的图象与性质基础过关测试题3(附答案详解)1.将抛物线24y x =+先向左平移2个单位,再向下平移1个单位,那么所得抛物线的函数关系式是( ) A .2(2)3y x =-- B .2(2)3y x =+- C .2(2)3y x =-+D .2(2)3y x =++2.如图,已知抛物线y =x 2+bx +c 与直线y =x 交于(1,1)和(3,3)两点,现有以下结论:①b 2﹣4c >0;②3b +c +6=0;③当x 2+bx +c >2x时,x >2;④当1<x <3时,x 2+(b ﹣1)x +c <0,其中正确的序号是( )A .①②④B .②③④C .②④D .③④3.二次函数y =2x 2-8x +9的图象可由y =2x 2的图象怎样平移得到( ) A .先向右平移2个单位再向上平移1个单位 B .先向右平移2个单位再向下平移1个单位 C .先向左平移2个单位再向上平移1个单位 D .先向左平移2个单位再向下平移1个单位4.若点(﹣2,y 1),(﹣1,y 2),(3,y 3)在二次函数y =﹣x 2+x ﹣3的图象上,则y 1,y 2,y 3的大小关系是( ) A .y 3=y 1<y 2B .y 3≤y 2≤y 1C .y 2<y 1=y 3D .y 1<y 2<y 35.对于每个自然数n ,抛物线()()221111n y x x n n n n +=-+++与x 轴交于n A 、n B ,两点,以n n A B 表示该两点间的距离,则1122A B A B ++⋅⋅⋅20152015A B +值为( ). A .20142015B .20162015C .20152014D .201520166.已知点A(-3,y 1),B(-1,y 2),C(2,y 3)在函数y=-x 2的图象上,则y 1,y 2,y 3的大小关系为( ) A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 2<y 1<y 37.抛物线y=﹣x 2经过平移得到抛物线y=﹣(x+2)2﹣3,平移的方法是( ) A .向左平移2个,再向下平移3个单位 B .向右平移2个,再向下平移3个单位 C .向左平移2个,再向上平移3个单位D .向右平移2个,再向上平移3个单位9.把抛物线y =ax 2+bx+c 图象先向左平移2个单位长度,再向下平移3个单位长度,所得的图象的解析式是y =x 2+5x+6,则a ﹣b+c 的值为( ) A .2B .3C .5D .1210.已知二次函数y =ax 2+bx +c +2的图象如图所示,顶点为(﹣1,0),下列结论:①abc >0;②b 2﹣4ac =0;③a >2;④ax 2+bx +c =﹣2的根为x 1=x 2=﹣1;⑤若点B (﹣14,y 1)、C (﹣12,y 2)为函数图象上的两点,则y 1>y 2.其中正确的个数是( )A .2B .3C .4D .511.将抛物线y =x 2﹣6x +5化成y =a (x ﹣h )2﹣k 的形式,则hk =_____. 12.如图,ABC ∆的顶点坐标分别为()()()0,4,2,0,4,2A B C ,若二次函数22y x bx =++的图象与阴影部分(含边界)一定有公共点,则实数b 的取值范围是__________.13.若抛物线y=x 2+bx(b>2)上存在关于直线y=x 成轴对称的两个点,则b 的取值范围是______.14.已知抛物线的顶点坐标为(1,8)--,且过点(0,6)-,则该抛物线的表达式为________.15.二次函数22(1)4y x =-+-图象的顶点坐标是______.16.抛物线2(0)y ax a =≠沿某条直线平移一段距离,我们把平移后得到的新抛物线叫做原抛物线的“同簇抛物线”.如果把抛物线2yx 沿直线y x =向上平移,平移距离2时,那么它的“同簇抛物线”的表达式是_____.17.在平面直角坐标系 xOy 中,函数 y = x 2 的图象经过点M (x 1 , y 1 ) ,N (x 2 , y 2 ) 两点,若- 4< x 1< -2, 0< x 2 <2 ,则 y 1 ____ y 2 . (用“ < ”,“=”或“>”号连接) 18.对于二次函数y=5x 2+bx+c ,甲、乙、丙、丁四位同学给出四个说法,甲:图象对称轴是x=1;乙:函数最小值为3;丙:当x=﹣1时,y=0;丁:点(2,8)在函数图象上.其中有且仅有一个说法是错误的,则哪位同学的说法是错误的_____. 19.已知抛物线y=2x 2-bx+3的对称轴经过点(2,—1),则b 的值为______.20.某同学利用描点法画二次函数y =ax 2+bx+c (a≠0)的图象时,列出的部分数据如下表:经检查,发现表格中恰好有一组数据计算错误,请你根据上述信息写出该二次函数的解析式:_____ x 0 1 2 3 4 y3﹣2321.已知二次函数y =﹣x 2﹣2x+3.(1)把函数关系式配成顶点式并求出图象的顶点坐标和对称轴.(2)若图象与x 轴交点为A .B ,与y 轴交点为C ,求A 、B 、C 三点的坐标; (3)在图中画出图象.并求出△ABC 面积.22.已知抛物线2y x bx c =++与y 轴交于点()C 0,6-与x 轴的一个交点坐标是()A 2,0-.()1求此抛物线的顶点D 的坐标;()2将此图象沿x 轴向左平移2个单位长度,直接写出当y 0<时x 的取值范围.23.已知二次函数y =x 2﹣6mx+9m 2+n (m ,n 为常数)(1)若n =﹣4,这个函数图象与x 轴交于A ,B 两点(点A ,B 分别在x 轴的正、负半轴),与y 轴交于点C ,试求△ABC 面积的最大值;(2)若n =4m+4,当x 轴上的动点Q 到抛物线的顶点P 的距离最小值为4时,求点Q 的坐标.24.在平面直角坐标系xOy 中,抛物线2:23c y ax ax =-+与直线:l y kx b =+交于A ,B 两点,且点A 在y 轴上,点B 在x 轴的正半轴上.(1)直接写出点A 的坐标; (2)若1a =-,求直线l 的解析式; (3)若31k -≤≤-,求a 的取值范围.25.如图,是一块三角形材料,∠A =30°,∠C =90°,AB =6.用这块材料剪出一个矩形DECF ,点D ,E ,F 分别在AB ,BC ,AC 上,要使剪出的矩形DECF 面积最大,点D 应该选在何处?26.如图,已知二次函数21:22(0)L y ax ax a a =++->和二次函数22:(2)2(0)=--+>L y a x a 图象的顶点分别为M 、N ,与x 轴分别相交于A 、B 两点(点A 在点B 的左边)和C 、D 两点(点C 在点D 的左边),(1))函数222(0)y ax ax a a =++->的顶点坐标为 ;当二次函数L 1 ,L 2 的y 值同时随着x 的增大而增大时,x 的取值范围是 ;(2)当AD=MN 时,求a 的值,并判断四边形AMDN 的形状(直接写出,不必证明); (3)当B ,C 是线段AD 的三等分点时,求a 的值.27.在如图的平面直角坐标系中,抛物线y =ax 2﹣2amx +am 2+1(a <0)与x 轴交于点A 和点B ,点A 在点B 的左侧,与y 轴交于点C ,顶点是D ,且∠DAB =45°. (1)填空:点C 的纵坐标是 (用含a 、m 的式子表示); (2)求a 的值;(3)点C 绕O 逆时针旋转90°得到点C ′,当﹣12≤m ≤52时,求BC ′的长度范围.28.如图,直线y =-x +4与x 轴,y 轴分别交于点B ,C ,点A 在x 轴负半轴上,且OA =12OB , 抛物线y =ax 2+bx +4经过A ,B ,C 三点.(1)求抛物线的解析式;(2)点P是第一象限内抛物线上的动点,设点P的横坐标为m,过点P作PD⊥BC,垂足为D,用含m的代数式表示线段PD的长,并求出线段PD的最大值;(3)设点E为抛物线对称轴与直线BC的交点,若A,B,E三点到同一直线的距离分别是d1,d2,d3,问是否存在直线l,使得d1= d2=12d3? 若存在,请直接写出d3的值,若不存在,请说明理由.参考答案1.D 【解析】 【分析】根据抛物线的平移规律“左加右减,上加下减”进行判断即可. 【详解】解:抛物线24y x =+先向左平移2个单位,再向下平移1个单位,所得抛物线的函数关系式是:2(2)3y x =++. 故选D. 【点睛】本题考查了抛物线的平移,属于基础题型,熟知抛物线的平移规律是解题的关键. 2.C 【解析】 【分析】由函数y =x 2+bx +c 与x 轴无交点,可得b 2﹣4c <0;当x =3时,y =9+3b +c =3,3b +c +6=0;利用抛物线和双曲线交点(2,1)得出x 的范围;当1<x <3时,二次函数值小于一次函数值,可得x 2+bx +c <x ,继而可求得答案. 【详解】∵函数y =x 2+bx +c 与x 轴无交点, ∴b 2﹣4ac <0; ∴b 2﹣4c <0 故①不正确;当x =3时,y =9+3b +c =3, 即3b +c +6=0; 故②正确;把(1,1)(3,3)代入y =x 2+bx +c ,得抛物线的解析式为y =x 2﹣3x +3, 当x =2时,y =x 2﹣3x +3=1,y =2x=1, 抛物线和双曲线的交点坐标为(2,1)第一象限内,当x>2时,x2+bx+c>2x;或第三象限内,当x<0时,x2+bx+c>2x;故③错误;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确;故选:C.【点睛】本题考查了图象与二次函数系数之间的关系,此题难度适中,注意掌握数形结合思想的应用.3.A【解析】【分析】先将二次函数y=2x2-8x+9变形为顶点式,再利用函数平移规则:上加下减,左加右减,即可解答.【详解】y=2x2-8x+9=2(x-2)2+1所以由y=2x2的图象先向右平移2个单位再向上平移1个单位得到二次函数y=2x2-8x+9的图象.故选A【点睛】本题考查二次函数平移,熟练掌握二次函数平移规律“上加下减,左加右减”是解题关键. 4.A【解析】【分析】首先根据二次函数解析式确定抛物线的对称轴为x=12,再根据抛物线的增减性以及对称性可得y1,y2,y3的大小关系.【详解】解:∵二次函数y =﹣x 2+x ﹣3=﹣(x ﹣12)2﹣114,∴对称轴为x =12, ∵a <0, ∴x <12时,y 随x 增大而增大, ∵(3,y 3)关于对称轴的对称点为(﹣2,y 3) ∴y 3=y 1<y 2. 故选:A . 【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的性质,关键是掌握二次函数的增减性. 5.D 【解析】 【分析】首先求出抛物线与x 轴两个交点坐标,然后由题意得到n n A B 111n n =-+,进而求出1122A B A B ++⋅⋅⋅20152015A B +的值.【详解】 令y =x 2()211n n n +-+x ()11n n +=+0, 即x 2()211n n n +-+x()11n n +=+0, 解得:x 1n =或x 11n =+, 故抛物线y =x 2()211n n n +-+x ()11n n ++与x 轴的交点为(1n ,0),(11n +,0),由题意得:n n A B 111n n =-+,则1122A B A B ++⋅⋅⋅20152015A B +=11111122320152016-+-++-=11201520162016-=. 故选D . 【点睛】本题考查了抛物线与x 轴交点的知识,解答本题的关键是求出n n A B . 6.B 【解析】 【分析】根据二次函数图象上点的坐标特征,把三个点的坐标分别代入二次函数解析式,计算出y 1、y 2、y 3的值,然后比较它们的大小. 【详解】当x=-3时,y 1=-x 2=-9;当x=-1时,y 2=-x 2=-1;当x=2时,y 3=-x 2=-4, 所以y 1<y 3<y 2. 故选B . 【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式. 7.A 【解析】 【分析】先确定两个抛物线的顶点坐标,再利用点平移的规律确定抛物线平移的情况. 【详解】解:抛物线y=-x 2的顶点坐标为(0,0),抛物线y=﹣(x+2)2﹣3的顶点坐标为(-2,-3),而点(0,0)向左平移2个,再向下平移3个单位可得到(-2,-3),所以抛物线y=-x 2向左平移2个,再向下平移3个单位得到抛物线y=﹣(x+2)2﹣3. 故选A . 【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 8.C【解析】【分析】 根据图上给出的条件是与x 轴交于(1,0),叫我们加个条件使对称轴是x=2,意思就是抛物线的对称轴是x=2是题目的已知条件,这样可以求出a 、b 的值,然后即可判断题目给出四个人的判断是否正确.【详解】解:∵抛物线过(1,0),对称轴是x=2,3022a b b a++=⎧⎪∴⎨-=⎪⎩ 解得a=1,b=-4,∴y=x 2-4x+3,当x=3时,y=0,所以小华正确;当x=4时,y=3,小彬也正确,小明也正确;抛物线被x 轴截得的线段长为2,已知过点(1,0),则可得另一点为(-1,0)或(3,0),所以对称轴为y 轴或x=2,此时答案不唯一,所以小颖错误.故选:C .【点睛】本题是开放性题目,要把题目的结论作为题目的条件,再推理出四个人说的结论的正误.难度较大.9.B【解析】【分析】求得平移后抛物线的顶点坐标,根据平移规律求得原抛物线的顶点坐标,写出原抛物线解析式,即可取得a 、b 、c 的值.【详解】y =x 2+5x+6=(x+)2﹣.则其顶点坐标是(﹣,﹣),将其右左平移2个单位长度,再向上平移3个单位长度后得到(﹣,).故原抛物线的解析式是:y =(x+)2+=x 2+x+3.所以a =b =1,c =3.所以a ﹣b+c =1﹣1+3=3.故选B .【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.10.D【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】 解:①由抛物线的对称轴可知:02b a -<, ∴0ab >,由抛物线与y 轴的交点可知:22c +>,∴0c >,∴0abc >,故①正确;②抛物线与x 轴只有一个交点,∴0∆=,∴240b ac -=,故②正确;③令1x =-,∴20y a b c =-++=, ∵12b a-=-, ∴2b a =,∴220a a c -++=,∴2a c =+,∵22c +>,∴2a >,故③正确;④由图象可知:令0y =,即202ax bx c =+++的解为121x x ==-,∴22ax bx c ++=-的根为121x x ==-,故④正确; ⑤∵11124-<-<-, ∴12y y >,故⑤正确;故选D .【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.11.﹣12.【解析】【分析】将抛物线化成顶点式,可得h ,k 的值,代入计算即可.【详解】解:∵y =x 2﹣6x +5=x 2﹣6x +9﹣4=(x ﹣3)2﹣4,∴h =3,k =﹣4,∴hk =3×(﹣4)=﹣12.故答案是:﹣12.【点睛】本题考查了抛物线的顶点式,熟练掌握顶点式的转化是解题关键.12.b≥-4【解析】【分析】因为a=1>0,根据左同右异可知,对称轴在y 轴的左侧时,b >0,对称轴在y 轴右侧时,b <0,对称轴x=-2b ≤2时,二次函数y=x 2+bx+2的图象与阴影部分(含边界)一定有公共点. 【详解】抛物线y=x 2+bx+2与y 轴的交点为(0,2),∵C (4,2),当对称轴在y 轴的右侧时当C 与(0,2)是对称点时,抛物线的对称轴的位置在最右边,∴对称轴0<-2b ≤2时,二次函数y=x 2+bx+2的图象与阴影部分(含边界)一定有公共点, ∴-4≤b <0.当对称轴在y 轴或y 轴的右侧时,都满足条件则有-02b ≤ 解得:b ≥0, 故有b≥-4故答案为b≥-4.【点睛】本题考查了二次函数图象与系数的关系,解题时,利用了二次函数对称轴的位置列不等式来求b 的取值范围,并利用数形结合的思想.13.b>3【解析】【分析】可设出对称的两个点P ,Q 的坐标,利用两点关于直线y=x 成轴对称,可以设直线PQ 的方程为y=-x+a ,由于P 、Q 两点存在,所以方程组2y x a y x bx =-+⎧⎨=+⎩有两组不同的实数解,利用中点在直线上消去b ,建立关于a 的函数关系,求出变量a 的范围.【详解】解:设抛物线上关于直线l 对称的两相异点为P (x 1,y 1)、Q (x 2,y 2),线段PQ 的中点为M (x 0,y 0),设直线PQ 的方程为y=x+a ,由于P 、Q 两点存在,所以方程组2y x a y x bx=-+⎧⎨=+⎩有两组不同的实数解, 即得方程x 2+(1+b )x -a=0.①判别式△=21b ()+-41a ⨯⨯-()>0.② 由①得x 0=x1x22+=-1b 2+,y 0=-x 0+a=1b 2++a ∵M (x 0,y 0)在y=x 上,x 0=y 0∴-1b 1b 22++=+a ∴a=-b-1代入②解得b >3或b <-1 ∵b>2,∴b >3故答案为b >3【点睛】本题考查了直线与抛物线的位置关系,以及对称问题,属于难题,有一定的计算量. 14.22(1)8y x =+-【解析】【分析】利用顶点式求解即可,设y=a (x+1)2-8,把(0,6)-代入求解.【详解】设y=a (x+1)2-8,把(0,6)-代入,得-6=a ×(0+1)2-8,∴a=2,∴22(1)8y x =+-.故答案为:22(1)8y x =+-.【点睛】本题考查了用待定系数法求二次函数解析式的方法,关键是根据条件确定抛物线解析式的形式,再求其中的待定系数.一般式:y=ax 2+bx+c (a≠0);顶点式y=a (x-h )2+k ,其中顶点坐标为(h ,k );交点式y=a (x-x 1)(x-x 2),抛物线与x 轴两交点为(x 1,0),(x 2,0).15.(-1,-4)【解析】【分析】根据抛物线的顶点式直接得到答案.【详解】二次函数22(1)4y x =-+-图象的顶点坐标是(1,4)--.【点睛】本题考查二次函数的顶点式,二次函数的顶点式为y=a (x-h )2+k ,顶点坐标是(h ,k ),解决此题需注意坐标的符号问题.16.()211y x =-+【解析】【分析】沿直线y=x y=ax 2 (a≠0)向右平移1个单位,向上平移1个单位,即可得到平移后抛物线的表达式.【详解】解:∵抛物线2y x =沿直线y x =向上平移,相当于抛物线()2y ax a 0=≠向右平移1个单位,向上平移1个单位,∴根据平移的规律得到:“同簇抛物线”的表达式是()2y x 11=-+.故答案为:()2y x 11=-+.【点睛】本题考查了二次函数的几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式只考虑平移后的顶点坐标,即可求出解析式.17.>【解析】【分析】通过比较点M 和点N 到y 轴的距离的远近判断y 1与y 2的大小.【详解】解:抛物线y=x 2的对称轴为y 轴,而M (x 1,y 1)到y 轴的距离比N (x 2,y 2)点到y 轴的距离要远,所以y 1>y 2.故答案为:>.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.利用二次函数的图象比较二次函数值的大小比较简便.18.丙【解析】【分析】设甲乙正确,利用顶点时写出抛物线的解析式为y=5(x-1)2+3,然后计算自变量为-1和2对应的函数值,从而判断丙错误.【详解】若甲乙对,则抛物线的解析式为y=5(x-1)2+3,当x=-1时,y=23,此时丙错误;当x=2时,y=8,此时丁正确.而其中有且仅有一个说法是错误的,所以只有丙错误.故答案为丙.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.19.8【解析】【分析】根据公式法可求对称轴,可得关于b 的一元一次方程,解方程即可.【详解】∵抛物线y=2x 2-bx+3的对称轴经过点(2,-1),∴对称轴x=-22b =2, 解得:b=8.故答案为8.【点睛】此题考查二次函数的性质,掌握利用公式法求对称轴是解决问题的关键.20.y=x2﹣4x+3.【解析】【分析】由图表的信息知:第一、二、四、五个点的坐标都关于x=2对称,所以错误的一组数据应该是(2,-2);可选取其他四组数据中的任意三组,用待定系数法求出抛物线的解析式.【详解】解:选取(0,3)、(1,0)、(3,0);设抛物线的解析式为y=a(x﹣1)(x﹣3),则有:a(0﹣1)(0﹣3)=3,a=1;∴y=(x﹣1)(x﹣3)=x2﹣4x+3.故答案为y=x2﹣4x+3【点睛】本题考查了用待定系数法求函数解析式的方法,能够正确的判断出错误的一组数据是解答此题的关键.21.(1)y=﹣(x+1)2+4(2)抛物线与 y 轴的交点 C(0,3)(3)6【解析】【分析】(1)根据配方法步骤将解析式配成顶点式可得;(2)求出y=0时x的轴可得点A、B的坐标,求出x=0时y的值可得点C的坐标;(3)根据抛物线的顶点坐标及其与坐标轴的交点可画出抛物线的图象,再由三角形的面积公式可得答案.【详解】(1)∵y=﹣x2﹣2x+3=﹣(x2+2x+1﹣1)+3=﹣(x+1)2+4,∴抛物线的顶点坐标为(﹣1,4),对称轴为直线 x =﹣1; (2)当 y =0 时,﹣x 2﹣2x+3=0,解得:x =1 或 x =﹣3,∴抛物线与 x 轴的交点 A (﹣3,0)、B (1,0),当 x =0 时,y =3,∴抛物线与 y 轴的交点 C (0,3);(3)其函数图象如下图所示:S △ABC = AB•y C = ×4×3=6.【点睛】本题考查的知识点是抛物线与x 轴的交点,二次函数的性质,二次函数的三种形式,解题的关键是熟练的掌握抛物线与x 轴的交点,二次函数的性质,二次函数的三种形式.22.(1) D 的坐标为125,24⎛⎫-⎪⎝⎭;(2) 4x 1-<<. 【解析】【分析】 ()1根据抛物线2y x bx c =++与y 轴交于点()C 0,6-与x 轴的一个交点坐标是()A 2,0-,可以求得该抛物线的解析式,然后将解析式化为顶点式,即可求得点D 的坐标;()2根据平移的特点,可以得到平移后抛物线的解析式,从而可以写出当y 0<时x 的取值范围.【详解】解:()1抛物线2y x bx c =++与y 轴交于点()C 0,6-与x 轴的一个交点坐标是()A 2,0-, {c 642b c 0=-∴-+=,得{b 1c 6=-=-, ∴抛物线的解析式为22125y x x 6(x )24=--=--, ∴此抛物线的顶点D 的坐标为125,24⎛⎫- ⎪⎝⎭; ()2抛物线的解析式为2125y (x )24=--, ∴此图象沿x 轴向左平移2个单位长度后对应的函数解析式为:22125325y (x 2)(x )2424=-+-=+-, ∴平移后抛物线的对称轴为直线3x 2=-,当y 0=时,1x 4=-,2x 1=, ∴当y 0<时x 的取值范围是4x 1-<<.【点睛】本题考查抛物线与x 轴的交点、二次函数的性质、二次函数图象与几何变换,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.23.(1)当m =0时,△ABC 的面积最大为8;(2)Q 点的坐标为(﹣6,0)或(0,0).【解析】【分析】(1)把n =﹣4代入得到带有m 的解析式解析式y =x 2﹣6mx+9m 2﹣4,再用带有m 的值表示出A 、B 、C 的坐标,然后得出三角形面积判断最大值;(2)把n =4m+4代入原解析式得到y =(x ﹣3m )2+4m+4,得出顶点P 的坐标,再根据动点Q 到抛物线的顶点P 的距离最小时为PQ 的横坐标相同,即可得出Q 的坐标.【详解】解:(1)若n =﹣4,则y =x 2﹣6mx+9m 2﹣4,当x =0时,y =9m 2﹣4,∴C (0,9m 2﹣4),∵这个函数图象开口向上,与x 轴交于A ,B 两点(点A ,B 分别在x 轴的正、负半轴),与y 轴交于点C ,∴9m 2﹣4<0,当y =0时,x 2﹣6mx+9m 2﹣4=0,x 1=3m+2,x 2=3m ﹣2,∴A (3m+2,0),B (3m ﹣2,0),∵3m+2﹣(3m ﹣2)=4,∴AB =4,∴S △ABC =1•2C AB y =12×4•(﹣9m 2+4)=﹣2m 2+8, ∵﹣2<0,∴当m =0时,△ABC 的面积最大为8;(2)若n =4m+4,则y =x 2﹣6mx+9m 2+4m+4=(x ﹣3m )2+4m+4,∴P (3m ,4m+4),当动点Q 到抛物线的顶点P 的距离最小值为4时,则Q 为(3m ,0)且4m+4=±4, 解得m =﹣2或m =0,∴Q 点的坐标为(﹣6,0)或(0,0).【点睛】本题是二次函数的动点题型,此题综合性较强,难度较大,解题的关键是注意数形结合与方程思想的应用.24.(1)()0,3A ;(2)3y x =-+;(3)a<−1或a>3【解析】【分析】(1)抛物线C :y=ax 2-2ax+3与y 轴交于点A ,令x=0,即可求得A 的坐标;(2)令y=0,解方程即可求得B 的坐标,然后根据待定系数法即可求得直线l 的解析式; (3)当a=3时,抛物线C 过点B (1,0),此时k=-3.当a=-1时,抛物线C 过点B (3,0),此时k=-1.结合图象即可求得.【详解】(1)∵抛物线C:y=ax 2−2ax+3与y 轴交于点A ,∴点A 的坐标为(0,3).(2)当a=−1时,抛物线C 为y=−x 2+2x+3.∵抛物线C与x轴交于点B,且点B在x轴的正半轴上,∴点B的坐标为(3,0).∵直线l:y=kx+b过A,B两点,∴330bk b=⎧⎨+=⎩.解得13kb=-⎧⎨=⎩.∴直线l的解析式为y=−x+3.(3)如图,当a>0时,当a=3时,抛物线C过点B(1,0),此时k=−3.结合函数图象可得a>3.当a<0时,当a=−1时,抛物线C过点B(3,0),此时k=−1.结合函数图象可得a<−1.综上所述,a的取值范围是a<−1或a>3.【点睛】本题考查一次函数和二次函数综合,解题的关键是掌握待定系数法求解析式.25.使剪出的矩形DECF面积最大,点D应该选在AB的中点.【解析】【分析】根据直角三角形的性质求出BC,根据勾股定理求出AC,根据矩形的面积公式列出函数解析式,根据二次函数的性质解答即可.【详解】解:∵∠C=90°,∠A=30°,∴BC =12AB =3,由勾股定理得,AC ==在Rt △ADF 中,∠A =30°,∴AD =2DF ,AF DF ,∴CF =AC ﹣AF =,则矩形DECF 面积=DF ×()2=23)24DF -+当DF =32时,剪出的矩形DECF 面积最大, 则AD =2DF =3,∴使剪出的矩形DECF 面积最大,点D 应该选在AB 的中点.【点睛】本题考查的是勾股定理、二次函数的性质、矩形的性质,根据勾股定理、矩形的面积公式列出二次函数解析式是解题的关键.26.(1)顶点坐标为M (-1,-2),12x -<<;(2)四边形AMDN 是矩形,理由见解析;(3)a =329 【解析】【分析】(1)把222(0)y ax ax a a =++->化为顶点式()212y a x =+-,即可求出顶点坐标;根据图像即可求出次函数L 1 ,L 2 的y 值同时随着x 的增大而增大时,x 的取值范围; (2)由两点间的距离公式求出MN 的长,用含a 的代数式表示出AD 的长,根据AD =MN列方程即可求出a 的值;由两点间的距离公式可求AN =MD ,AM =DN ,从而可证四边形AMDN是平行四边形,又AD =MN ,所以可证四边形AMDN 是矩形;(3)当B ,C 是线段AD 的三等分点时,分两种情况,根据两点间的距离公式求解:①点C 在点B 的左边,②点B 在点C 的左边.【详解】(1)∵222(0)y ax ax a a =++->∴()212y a x =+-,∴顶点坐标为M (-1,-2);∵M (-1,-2),N (2,2),∴当1x >-时, L 1 的y 值随着x 的增大而增大,当2x <时,L 2的y 值随着x 的增大而增大. ∴x 的取值范围是12x -<< .(2)如图1,MN =,当y=0时,即()2120a x +-=,解得1A x =--1B x =-+当y=0时,即()2220a x --+=,2C x =-2D x =+∴AD=(2+-(1--=3+当AD=MN 时,即3+,解得a =2. 当 a =2时,1A x =--2,2D x =3,∵==∴AN=DM,∵==,∴AM=DN,∴四边形AMDN 是平行四边形,∵AD=3-(-2)=5,MN=5,∴AD=MN,∴四边形AMDN 是矩形 ;(3)当B,C是线段AD的三等分点时,存在以下两种情况:①点C在点B的左边,如图2,BC=(21a-+-(22a-=232a-+AC=BD=3 ,即232a-+,解得29a=;②点B在点C的左边,如图3,CB=(22a--(21a-+=23a-AB=CD=22a,即22a23a-329a= .【点睛】本题考查了二次函数一般式与顶点式的互化,二次函数的图像与性质,两点间的距离公式,矩形的判定,数形结合及分类讨论的数学思想.掌握一般式化顶点式的方法是解(1)的关键;灵活运用两点间的距离公式是解(2)的关键;分两种情况求解是解(3)的关键.27.(1)am2+1;(2)a=﹣1;(3)0≤BC′≤94.【解析】【分析】(1)代入0x =求出y 值,此问得解;(2)设抛物线对称轴与x 轴交于点E ,由二次函数的对称性可得出ABD 为等腰直角三角形,进而可得出2AB DE =,利用二次函数图象上点的坐标特征可得出点B 、D 的坐标,由2AB DE =可得出关于a 的无理方程,解之即可得出a 值;(3)由(1)(2)可得出点B 、C 的坐标,由旋转的性质可得出点'C 的坐标,利用两点间的距离公式可求出2'2BC m m =-++,再利用二次函数的性质即可求出:当1522m -≤≤时,'BC 的长度范围. 【详解】解:(1)当x =0时,y =ax 2﹣2amx +am 2+1=am 2+1,∴点C 的纵坐标为am 2+1.故答案为am 2+1.(2)设抛物线对称轴与x 轴交于点E ,如图1所示.∵DA =DB ,∠DAB =45°,∴△ABD 为等腰直角三角形,∴AB =2DE .∵y =ax 2﹣2amx +am 2+1=a (x ﹣m )2+1,∴点D 的坐标为(m ,1).当y =0时,ax 2﹣2amx +am 2+1=0,即a (x ﹣m )2=﹣1,解得:x 1=m x 2=m∴AB =2, 解得:a =﹣1.(3)由(1)(2)可知:点C 的坐标为(0,1﹣m 2),点B 的坐标为(m +1,0).∵点C 绕O 逆时针旋转90°得到点C ′,∴点C ′的坐标为(m 2﹣1,0),∴BC ′=|m +1﹣(m 2﹣1)|=|﹣m 2+m +2|.∵﹣m 2+m +2=﹣(m ﹣12)2+94,﹣12≤m ≤52,∴当m=52时,﹣m2+m+2取得最小值,最小值为﹣74;当m=12时,﹣m2+m+2取得最大值,最大值为94,∴当﹣12≤m≤52时,﹣74≤﹣m2+m+2≤94,∴当﹣12≤m≤52时,0≤BC′≤94.【点睛】本题考查了二次函数图象上点的坐标特征、等腰直角三角形、解无理方程、两点间的距离公式以及二次函数的性质,解题的关键是:(1)代入0x 求出y值;(2)利用等腰直角三角形的性质找出关于a的无理方程;(3)利用二次函数的性质找出'BC的长度范围.28.(1)y=-12x2+ x+4;(2)当m=2时,PE2;(3)存在,满足题意的d3的值为2或665.【解析】【分析】(1)由直线y=-x+4得出B(4,0),C(0,4),即可得出A(-2,0),将A与B坐标代入抛物线解析式求出a与b的值,即可确定出抛物线解析式;(2)已知P点横坐标,根据直线AB、抛物线的解析式,求出C、P的坐标,由此得到线段PC的长;在Rt△OBC中,∠OCB=45°,根据平行线的性质得出∠PFD=45°,解直角三角形即可求出PD的表达式,利用二次函数的性质求出PD的最大值即可.(3)见解析.【详解】解:(1)由y=-x+4得当x=0时,y=4;当y=0时,x=4.∴B (4,0) ,C (0,4), ∴ OB =4.∴ OA =12OB =2, ∴ 点 A (-2,0). 把A (-2,0),B (4,0)分别代入抛物线y =ax 2+bx +4中,得4230,16430.a b a b -+=⎧⎨++=⎩ 解得1,21.a b ⎧=-⎪⎨⎪=⎩ ∴ 抛物线的解析式为 y =-12x 2+ x +4. (2)∵ 点P 的横坐标为m ,则P (m ,-12m 2+ m +4). 过点P 作PF ∥y 轴交BC 于点F ,则F (m ,-m +4) .∴ PF =-12m 2+ m +4-(-m +4)=-12m 2+2m . 在Rt △OBC 中,OB =4,OC =4.又 PF ∥y 轴, ∴ ∠PFD =∠OCB=45°.∴ PD =PF ·sin ∠PFD = PF ·sin ∠OCB =22(-12m 2+2m )=-24(m -2)22 ∵ 0<m <4,-24<0,∴ 当m =2时,PE 2 (3)存在,∵y =-12x 2+ x +4=-12(x-1)²+92, ∴C 点坐标为(1,3),如图,d 1= d 2=12d 3 ,满足题意的d3的值为2或6或655.【点睛】本题考查了二次函数的应用以及解析式的确定、解直角三角形等知识,主要考查学生数形结合思想的应用能力,。
二次函数总复习经典练习题1.抛物线y=-3x2+2x-1 的图象与坐标轴的交点情况是( )(A) 没有交点.(B) 只有一个交点.(C) 有且只有两个交点.(D) 有且只有三个交点.2.已知直线y=x 与二次函数y=ax2-2x- 1 图象的一个交点的横坐标为1,则 a 的值为( )(A)2 .(B)1 .(C)3 .(D)4 .3.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y 轴于点C,则△ ABC的面积为( ) (A)6 .(B)4 .(C)3 .(D)1 .24.函数y=ax 2+bx+ c 中,若a> 0,b< 0,c<0,则这个函数图象与x 轴的交点情况是( )(A) 没有交点.(B) 有两个交点,都在x 轴的正半轴.(C) 有两个交点,都在x 轴的负半轴.(D) 一个在x 轴的正半轴,另一个在x 轴的负半轴.5.已知(2 ,5) 、(4 ,5)是抛物线y=ax2+bx+c 上的两点,则这个抛物线的对称轴方程是( ) a(A) x= .(B) x=2.(C) x=4.(D) x=3.b6.已知函数y=ax2+bx+ c 的图象如图 1 所示,那么能正确反映函数y=ax+ b 图象的只可能是( )7.二次函数y=2x2-4x+5 的最小值是_____ .28.某二次函数的图象与x轴交于点( -1,0) ,(4 ,0) ,且它的形状与y=-x2形状相同.则这个二次函数的解析式为_____ .9.若函数y=-x2+4 的函数值y> 0,则自变量x 的取值范围是______ .10.某品牌电饭锅成本价为70 元,销售商对其销量与定价的关系进行了调查,结果如下:801001101008060为获得最大利润,销售商应将该品牌电饭锅定价为元.11.函数y=ax 2-(a-3)x+ 1 的图象与x 轴只有一个交点,那么 a 的值和交点坐标分别为12.某涵洞是一抛物线形, 它的截面如图3 所示, 现测得水面宽AB 1.6m, 涵洞顶点O 到水面的距离为2.4m, 在图中的直角坐标系内, 涵洞所在抛物线的解析式为13.(本题8 分)已知抛物线y=x2-2x-2 的顶点为A,与y 轴的交点为B,求过A、B 两点的直线的解析式.14.(本题8分)抛物线y=ax2+2ax+a2+2的一部分如图3所示,求该抛物线在y 轴左侧与x 轴的交点坐标.15.(本题8 分)如图4,已知抛物线y=ax2+bx+c(a> 0)的顶点是C(0,1),直线l :y=-ax+3 与这条抛物线交于P、Q两点,且点P 到x 轴的距离为2.(1)求抛物线和直线l 的解析式;(2)求点Q的坐标.16.(本题8 分)工艺商场以每件155 元购进一批工艺品.若按每件200 元销售,工艺商场每天可售出该工艺品100 件;若每件工艺品降价 1 元,则每天可多售出该工艺品 4 件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?17.(本题10 分))杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第 1个月到第x 个月的维修保养费用累计为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元) ,g也是关于x 的二次函数.(1) 若维修保养费用第 1 个月为 2 万元,第 2 个月为 4 万元.求y 关于x 的解析式;(2) 求纯收益g 关于x 的解析式;(3) 问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?18(本题10分)如图所示,图4- ①是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m,支柱A3B3=50m,5 根支柱A1B1、A2B2、A3B3、A4B4、A5B5 之间的距离均为15m,B1B5∥ A1A5,将抛物线放在图4- ②所示的直角坐标系中.(1) 直接写出图4- ②中点B1、B3、B5的坐标;(2) 求图4- ②中抛物线的函数表达式;(3) 求图4- ①中支柱A2B2、A4B4 的长度.B319、如图5,已知A(2,2),B(3,0).动点P( m,0)在线段OB上移动,过点P作直线l 与x 轴垂直.(1) 设△ OAB中位于直线l 左侧部分的面积为S,写出S与m之间的函数关系式;(2) 试问是否存在点P,使直线l 平分△ OAB的面积?若有,求出点P 的坐标;若无,请说明理由.更多学习方法和中高考复习资料,免费下载,扫一扫关注微信:答案:一、1.B 2 .D 3 .C 4 .D 5 .D 6.B二、 7.3 8 .y =- x +3x +4 9 .- 2< x <2 10 .1301 115 211. a =0, ( ,0);a =1,(-1,0);a =9,( ,0) 12 . y x 23 3 413.抛物线的顶点为 (1,- 3),点 B 的坐标为 (0,- 2).直线 AB 的解析式为 y =-x -2 14.依题意可知抛物线经过点 (1,0) .于是 a + 2a + a 2+ 2=0,解得 a 1=-1,a 2=-2.当 a = -1 或 a =-2 时,求得抛物线与 x 轴的另一交点坐标均为 ( -3,0)2 15. (1) 依题意可知 b =0,c =1,且当 y =2 时,ax 2+1=2①,- ax +3=2②.由①、②解得 a =1, x =1.故抛物线与直线的解析式分别为: y =x 2+ 1,y =- x +3;(2) Q ( -2,5)216.设降价 x 元时,获得的利润为 y 元.则依意可得 y =(45-x )(100 +4x )= -4x 2+80x +4500, 即 y =-4(x -10)2+4900.故当 x =10时, y 最大=4900(元)2217. (1) 将(1,2)和(2,6) 代入 y =ax 2+bx ,求得 a =b =1.故 y =x 2+x ;(2) g =33x -150-y , 22即 g =-x 2+32x -150;(3) 因 y =-(x -16) 2+106,所以设施开放后第 16 个月,纯收益最大.令 g =0,得- x 2+ 32 x - 150=0.解得 x =16± 106 ,x ≈16- 10.3=5.7( 舍去 26.3) .当 x =5 时, g <0, 当 x =6 时, g >0,故 6 个月后,能收回投资18.(1) B 1( 30,0), B 3 (0,30) , B 5 (30,0) ;(2)设抛物线的表达式为 y a (x 30)(x 30) ,把 B 3 (0,30) 代入得 y a(0 30)(0 30) 30.1∴ a .30∵所求抛物线的表达式为: y3)∵ B 4 点的横坐标为 15, 1 45∴B 4 的纵坐标 y 4 (15 30)(15 30) .4 30 2∵ A 3B 3 50 ,拱高为 30,1 (x 30)(x 30) . 30∴立柱A4B445 8520 (m) .22由对称性知:85A2B2 A4B4 (m) .2四、1 2 1 119.(1)当0≤m≤2时,S= m2;当2<m≤3时,S= ×3×2-(3 -m)(-2m+6)= -m22 2 2+6m-6.(2)若有这样的P点,使直线l 平分△ OAB的面积,很显然0<m<2.由于△ OAB3 1 3的面积等于3,故当l 平分△ OAB面积时,S= .∴ m2.解得m= 3 .故存在这样2 2 2的P点,使l 平分△ OAB的面积.且点P的坐标为(3 ,0).。
二次函数专题训练(含答案)一、 填空题1.把抛物线221x y -=向左平移2个单位得抛物线,接着再向下平移3个 单位,得抛物线.2.函数x x y +-=22图象的对称轴是,最大值是.3.正方形边长为3,如果边长增加x 面积就增加y ,那么y 与x 之间的函数关系是.6.抛物线异号时,7.抛物线x 的取值8.若a . 9...15.如果二次函数m x x y +-=62的最小值是1,那么m 的值是.二、选择题:16.在抛物线1322+-=x x y 上的点是()A.(0,-1)B.⎪⎭⎫ ⎝⎛0,21 C.(-1,5)D.(3,4) 17.直线225-=x y 与抛物线x x y 212-=的交点个数是()A.0个B.1个C.2个D.互相重合的两个18.关于抛物线c bx ax y ++=2(a ≠0),下面几点结论中,正确的有()① 当a ?0时,对称轴左边y 随x 的增大而减小,对称轴右边y 随x 的增大而增大,当a ?0时,情况相反.② 抛物线的最高点或最低点都是指抛物线的顶点.③ 只要解析式的二次项系数的绝对值相同,两条抛物线的形状就相同.④ 一元二次方程02=++c bx ax (a ≠0)的根,就是抛物线c bx ax y ++=2与x 轴交点的横坐标.A.①②③④B.①②③C.①②D.①19.二次函数y=(x+1)(x-3),则图象的对称轴是()20.如果一次函数b ax y +=的图象如图代bx -3图代21.若抛物线c bx ax y ++=2 A.2B.2122.若函数xa y =的图象经过点(1,-2)轴左侧,图象与负半y 轴相交轴右侧,图象与负半y 轴相交b+c=0,则那时图象经过的点是(),-1)D.(-1,1)与y 轴交于A 点,与x 轴正半轴交于B ,△ABC =6,则b 的值是()A.b=5B.b=-5C.b=±5D.b=4图代13-3-1426.二次函数2ax y =(a ?0),若要使函数值永远小于零,则自变量x 的取值范围是()A .X 取任何实数B.x ?0C.x ?0D.x ?0或x ?027.抛物线4)3(22+-=x y 向左平移1个单位,向下平移两个单位后的解析式为()A.6)4(22+-=x yB.2)4(22+-=x yC.2)2(22+-=x yD.2)3(32+-=x y28.二次函数229k ykx x y ++=(k ?0)图象的顶点在()A.y 轴的负半轴上B.y 轴的正半轴上C.x 轴的负半轴上D.x 轴的正半轴上29.四个函数:xy x y x y 1,1,-=+=-=(x ?0),2x y -=(x ?0),其中图象经过原 点的函数有()A.1个B.2个30.不论x 为值何,函数c bx ax y ++=2A.a ?0,Δ?C .a ?0,Δ?31.已知二次函数1222+-+=b ax x y 和轴上两上不同的点32.已知二次函数c bx ax y ++=2y 轴上.33.A ,B 两点,该ABC=90°,求:(1)直线AB 的解析式;(2)抛 图代13-3-16c 交x 轴正方向于A ,B 两点,交y 轴正方向于C .(1)求a ,c 满足的关系;(2)设∠ACB=PA 与⊙O 的位置关系并证明.35.y 轴,桥拱的DGD '部分为一段抛物线,顶点C 的高度为8米,AD 和A 'D '是两侧高为5.5米的支柱,OA 和OA '为两个方向的汽车通行区,宽都为15米,线段CD 和C 'D '为两段对称的上桥斜坡,其坡度为1∶4.求(1)桥拱DGD '所在抛物线的解析式及CC '的长;(2)BE 和B 'E '为支撑斜坡的立柱,其高都为4米,相应的AB 和A 'B '为两个方向的行人及非机动车通行区,试求AB 和A 'B '的宽;(3)按规定,汽车通过该桥下时,载货最高处和桥拱之间的距离不得小于0.4米,车载大型设备的顶部与地面的距离均为7米,它能否从OA (或OA ')区域安全通过?请说明理由.图代13-3-1736.已知:抛物线2)4(2+++-=m x m x y 与x 轴交于两点)0,(),0,(b B a A (a ?b ).O为坐标原点,分别以OA ,OB 为直径作⊙O 1和⊙O 2在y 轴的哪一侧?简要说明理由,并指出两圆的位置关系.37.如果抛物线1)1(22++-+-=m x m x y 与x 轴都交于A ,B 两点,且A 点在x 轴的正半轴上,B 点在x 同的负半轴上,OA 的长是a ,OB 的长是b.(1) 求m 的取值范围;(2) 若a ∶b=3∶1,求m 的值,并写出此时抛物线的解析式;(3) 设(2)中的抛物线与y 轴交于点C ,抛物线的顶点是M ,问:抛物线上是否存在点P ,使△PAB 的面积等于△BCM 面积的8倍?若存在,求出P 点的坐标;若不存在,请说明理由.38.已知:如图代13-3-18,EB 是⊙O 的直径,且EB=6,在BE 的延长线上取点P ,使EP=EB.A 是EP 上一点,过A 作⊙O 的切线AD ,切点为D ,过D 作DF ⊥AB 于F ,过B 作AD 的垂线BH ,交AD 的延长线于H ,连结ED 和FH.图代(1) 若AE=2,求AD 的长.(2) 当点A 在EP 上移动(点A 不与点E 论;②设ED=x ,BH=y ,求y 与x 39.已知二次函数(2)254(222--+--=m x m m x y A ,B (点A 在点B 右边),与y 轴的交点为(1) 若△ABC 为Rt △,求m 的值;(2) 在△ABC 中,若AC=BC ,求∠ACB (3)40.满足(1)(2)y 轴于F ,求直线EF 的解析式.(3)C 点,顶点在⊙C 上,与y 轴交点为B ,求41.q px x ++2图象的顶点为M. (1) m 取何实数值, 二次函数q px x y ++=2的图象与直线m x y +-=总有两个不同的交点.(2) 在(1)的条件下,若直线m x y +-=过点D (0,-3),求二次函数q px x y ++=2的表达式,并作出其大致图象.图代13-3-20(3) 在(2)的条件下,若二次函数q px x y ++=2的图象与y 轴交于点C ,与x 同 的左交点为A ,试在直线x y 21=上求异于M 点P ,使P 在△CMA 的外接圆上.42.如图代13-3-20,已知抛物线b ax x y ++-=2与x 轴从左至右交于A ,B 两点,与y 轴交于点C ,且∠BAC=α,∠ABC=β,tg α-tg β=2,∠ACB=90°.(1) 求点C 的坐标;(2) 求抛物线的解析式;(3) 若抛物线的顶点为P ,求四边形ABPC 的面积.参考答案动脑动手1. 设每件提高x 元(0≤x ≤10),即每件可获利润(2+x )元,则每天可销售(100-10x ) 件,设每天所获利润为y 元,依题意,得∴当x=4时(0≤x ≤10)所获利润最大,即售出价为14元,每天所赚得最大利润360元.当32-=m 时,432322++-=x x y . (3) 当AB=BC 时,22344343⎪⎭⎫ ⎝⎛+=-m m , ∴78-=m . ∴42144782++-=x x y .可求抛物线解析式为:43232,461161,494222+--=+-=+-=x x y x x y x y 或42144782++-=x x y . 3.(1)∵)62(4)]5([222+---=∆m m图代13-3-21∴不论m 取何值,抛物线与x 轴必有两个交点.令y=0,得062)5(222=+++-m x m x0)3)(2(2=---m x x ,∴3,221+==m x x .(2)由(132-+=m d ∵m 2+10?0(3)①当∴A (2,0)142+-=xx y 该抛物线的对称轴是直线x=7225=b .①25)2-.②0,121=-=b b .不存在,b=0,舍去.∴b=-1. .-25≤b ?-1;b ?-1,且b ≠0.同步题库一、 填空题1.3)2(21,)2(2122-+-=+-=x y x y ;2.81,41=x ;3.9)3(2-+=x y ;4. 2)2(22+--=x y ;5.互为相反数;6.y 轴,左,右;7.下,x=-1,(-1,-3),x ?-1;8.四,增大;9.向上,向下,a b x a b ac a b 2,44,22-=⎪⎪⎭⎫ ⎝⎛--;10.向下,(h,0),x=h ;11.-1,-2;12.x ?-1;13.-17,(2,3);14.91312-⎪⎭⎫ ⎝⎛+=x y ;15.10. 二、选择题16.B17.C18.A19.A20.C21.D22.B23.B24.D25.B26.D27.C28.C29.A30.D三、解答题31.解法一:依题意,设M (x 1,0),N (x 2,0),且x 1≠x 2,则x 1,x 2为方程x 2+2ax-2b+1=0的两个实数根,∴a x x 221-=+,1x ·122+-=b x .∵x 1,x 2又是方程3(2-+-a x ∴x 1+x 2=a-3∴⎩⎨⎧+--22b a 解得⎩⎨⎧==1b a 当a=1,b=0∴a=1,12+-b 的图象对称轴为a x -=,1的图象的对称轴为23-=a x , x 轴上两个不同的点M ,N ,. 23-a . 1=.12+-b x 和1222-+--=b x x y .依题意,令y=0,得01222=+-+b x x ,01222=-+--b x x .①+②得022=-b b .解得2,021==b b .∴⎩⎨⎧==;0,1b a 或⎩⎨⎧==.2,1b a 当a=1,b=0时,二次函数的图象与x 轴只有一个交点,∴a=1,b=0舍去.当a=1,b=2时,二次函数为322-+=x x y 和322+--=x x y 符合题意.∴a=1,b=2.32.解:∵c bx ax y ++=2的图象与x 轴交于点B (x 1,0),C (x 2,0), ∴c x x b x x =⋅-=+21,.又∵132221=+x x 即(x ∴(2--a b 又由y 的图象过点A (2,2-a b与y 设y (1)6,3,==OD OC . 0,4)或(0,-4).P ,B 两点直线的解析式为或3,6,2,====OC OD OB OCOP OD OB . ∴OP=1,这时P 点坐标为(0,1)或(0,-1).当P 点坐标为(0,1)时,可设过P ,B 两点直线的解析式为y=kx+1.有0=-2k+1.得21=k . ∴121+-=x y .当P 点坐标为(0,-1)时,可设过P ,B 两点直线的解析式为y=kx-1,有0=-2k-1, 得21-=k . ∴121--=x y . (2) 当B (3,0),C (-2,0),D (0,6)时,同理可得y=-3x+9,或y=3x-9, 或11+-=x y ,(解法二:设抛物线的解析式为:c bx ax y ++=2,又设点A (4,0)关于x=-1的对称是D.∵CA=1+4=5,∴CD=5.∴OD=6.∴D 点坐标为(-6,0).将点A (4,0),B (0,2),D (-6,0)代入抛物线方程,得解得2,61,121=-=-=c b a .∴抛物线的解析式为:2611212+--=x x y . 34.解:(1)A ,B 的横坐标是方程032=+-c x ax 的两根,设为x 1,x 2(x 2?x 1),C 的纵坐标是C.又∵y 轴与⊙O 相切,∴OA ·OB=OC 2.∴x 1·x 2=c 2.又由方程032=+-c x ax 知 c x x =⋅,∴在Rt △PAE 中,a PE 4=. ∴25==AE PE tg β. ∴tg β=tg α.∴β=α.∴∠PAE=∠ADE.∵∠ADE+∠DAE=90°∴PA 和⊙D 相切.35.解:(1)设DGD '所在的抛物线的解析式为c ax y +=2,由题意得G (0,8),D (15,5.5).∴⎩⎨⎧+==.255.5,8c a c 解得⎪⎩⎪⎨⎧=-=.8,901c a∴DGD '所在的抛物线的解析式为89012+-=x y . ∵41=AC AD 且AD=5.5, ∴AC=5.5×4=22(米). ∴2215(2)(22+⨯=+⨯=='AC OA OC c c )=74答:cc (2)∵BC EB ∴∴答:AB 和A 'B (3) 在901-=x y 1(OA ')区域安全通过.O 2外切于原点O ,a ?0,b ?0.02=的两个根a ,b 异号.,∴m ?-2.PO 1O 2Q 是直角梯形.2212b Q O =(或221a 或1). PO 1O 2Q 是矩形.根据题意,计算得22121b S Q O PO =四边形(或221a 或1). (3)∵4)2()2(4)4(22++=+-+=∆m m m ?0∴方程02)4(2=+++-m x m x 有两个不相等的实数根.∵m ?-2,∴⎩⎨⎧+=+=+.02,04 m ab m b a∴a ?0,b ?0.∴⊙O 1与⊙O 2都在y 轴右侧,并且两圆内切.37.解:(1)设A ,B 两点的坐标分别是(x 1,0)、(x 2,0),∵A ,B 两点在原点的两侧,∴x 1x 2?0,即-(m+1)?0,解得m ?-1.∵)1()1(4)]1(2[2+⨯-⨯--=∆m m当m ?-1时,Δ?0,∴m 的取值范围是m ?-1.(2)∵a ∶b=3∶1,设a=3k ,b=k (k ?0),则x 1=3k ,x 2=-k ,∴⎩⎨⎧-⋅-(33k k k k 解得1=m ∵31=m 时,21=+x x ∴2+-⋅+⋅.)1(,1q q ==.2,2q py=2x+2.N 点坐标是(0,2),MNC BCN S ∆∆+设P 点坐标是(x,y ),∵BCM ABP S S ∆∆=8,∴1821⨯=⨯⨯y AB . 即8421=⨯⨯y . ∴4=y .∴4±=y .当y=4时,P 点与M 点重合,即P (1,4),当y=-4时,-4=-x 2+2x+3, 解得221±=x .∴满足条件的P 点存在.P 点坐标是(1,4),)4,221(),4,221(---+.38.(1)解:∵AD 切⊙O 于D ,AE=2,EB=6,∴AD 2=AE ·AB=2×(2+6)=16.∴AD=4.图代13-2-23(2)①无论点A 在EP 上怎么移动(点A 不与点E 重合),总有ED AD =.证法一:连结∵AH 是⊙∴∠又∵BH ⊥AH ∴∠有∠=90°=∠在△DFB DF ⊥AB ,∠DFB=∠DHB=90FHED AH AD =. DB ,的切线,∠DEF.,BH ⊥DH ,∠DBH.F ,H 两点,EDF=∠DFH.FH. ∴FHED AH AD =. ②∵ED=x ,BH=,BH=y ,BE=6,BF=BH ,∴EF=6y.又∵DF 是Rt △BDE 斜边上的高,∴△DFE ∽△BDE , ∴EBED ED EF =,即EB EF ED ⋅=2. ∴)6(62y x -=,即6612+-=x y . ∵点A 不与点E 重合,∴ED=x ?0.A 从E 向左移动,ED 逐渐增大,当A 和P 重合时,ED 最大,这时连结OD ,则OD ⊥PH.∴OD ∥BH.又12,936==+=+=PB EO PE PO ,4,=⋅==POPB OD BH PB PO BH OD , ∴246,4=-=-===BF EB EF BH BF ,由ED 2=EF ·EB 得12622=⨯=x ,2⎭⎝2过A 作AD ⊥BC ,垂足为D ,∴AB ·OC=BC ·AD.∴58=AD .∴545258sin ===∠AC AD ACB .图代13-3-25(3)CO AB S ABC ⋅=∆21 ∵212942≥+-=m m u , ∴当21=u ,即2=m 时,S 有最小值,最小值为45. 40.解:(1)∵OA ⊥OB ,OA ∶OB=4∶3,⊙D 的半径为2,∴⊙C 过原点,OC=4,AB=8. A 点坐标为⎪⎭⎫ ⎝⎛0,532,B 点坐标为⎪⎫ ⎛24,0.∴⊙C 的圆心C (2)由EF 是⊙D ∵∴∠COA=∠CAO ∴Rt △AOB ∽Rt ∴OA OC AB OE =32034+-=x y . ⎪⎭⎫ ⎝⎛+4512,516,可得 5242++x . ⎪⎭⎫ ⎝⎛-4512,516,得 ∴5244852+--=x x y . 综合上述,抛物线解析式为5243252++-=x x y 或5244852+-=x x y . 41.(1)证明:由有m x x +-=21, ∴m y m x m x 31,32,23===.∴交点)31,32(m m M . 此时二次函数为m m x y 31322+⎪⎭⎫ ⎝⎛-= m m mx x 31943422++-=. 由②③联立,消去y ,有0329413422=-+⎪⎭⎫ ⎝⎛--m m x m x .∴无论m 为何实数值,二次函数x y +=2图代(2)解:∵直线∴∴∴M (-21)2(22-=-+=x x y 为△CMA 外接圆的直径,P 在这个圆上, ∠.过M 作MS ⊥y 轴于S ,MS 的延长线与PR 的Q.222121)2(⎪⎭⎫ ⎝⎛+++=n n MP . 22222213n n NP NC CP +⎪⎭⎫ ⎝⎛-=+=. 202=CM. 而222CM CP MP =+,∴20213121)2(2222=+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+++n n n n ,即062252=-+n n , ∴012452=-+n n ,0)2)(65(=+-n n . ∴2,5621-==n n . 而n 2=-2即是M 点的横坐标,与题意不合,应舍去. ∴56=n ,42.0,当0122=++-x x 时,21±=x .∴)0,21(),0,21(+-B A .延长PC 交x 轴于点D ,过C ,P 的直线为y=x+1,∴点D 坐标为(-1,0).∴DCA DPB ABPC S S S ∆∆-=四边形。
初中数学:二次函数的性质练习(含答案)知识点1 二次函数的最大(小)值1.当x=________时,二次函数y=x2-2x+6有最小值________.2.函数y=(x-2)(3-x)取得最大值时,x=________.3.求下列函数的最大值(或最小值)以及对应的自变量的值:(1)y=2x2-3x-5;(2)y=-x2+2x+3;(3)y=x2-4x-5.知识点2 二次函数图象与坐标轴的交点4.二次函数y=x2-2x+1的图象与x轴的交点情况是( )A.有一个交点 B.有两个交点C.没有交点 D.无法确定5.抛物线y=x2-5x-6与x轴的两个交点坐标分别为________________.6.已知二次函数的图象经过点(-1,-8),顶点为(2,1).(1)求这个二次函数的表达式;(2)分别求这个二次函数图象与x轴、y轴的交点坐标.7.将抛物线y=x2-4x+4沿y轴向下平移9个单位,所得新抛物线与x轴正半轴交于点B,与y轴交于点C,顶点为D.求:(1)点B,C,D的坐标;(2)△BCD的面积.知识点3 抛物线的对称性及增减性8.对于二次函数y=12(x-2)2,当x________时,函数值y随x的增大而减小;当x________时,函数值y随x的增大而增大;当x=________时,函数取得最________值为________.9.已知抛物线y=ax2(a>0)过A(-2,y1),B(-1,y2)两点,则下列关系式一定正确的是( )A.y1>0>y2 B.y2>0>y1C.y1>y2>0 D.y2>y1>010.二次函数图象上部分点的坐标对应值列表如下:x …-3-2-101…y …-3-2-3-6-11…则该函数图象的对称轴是( )A.直线x=-3 B.直线x=-2C.直线x=-1 D.直线x=011.已知二次函数y=x2+(m-1)x+1,当x>1时,y随x的增大而增大,则m的取值范围是________.图1-3-112.某广场有一喷水池,水从地面喷出(如图1-3-1所示),以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-12x 2+2x 的一部分,则水喷出的最大高度是( )A .4米B .3米C .2米D .1米13.点P 1(-1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y =-x 2+2x +c 的图象上,则y 1,y 2,y 3的大小关系是( )A .y 3>y 2>y 1B .y 3>y 1=y 2C .y 1>y 2>y 3D .y 1=y 2>y 314.若一次函数y =(a +1)x +a 的图象过第一、三、四象限,则二次函数y =ax 2-ax ( )A .有最大值a 4B .有最大值-a4C .有最小值a 4D .有最小值-a415.已知a ,b ,c 为实数,点A (a +1,b ),B (a +2,c )在二次函数y =x 2-2ax +3的图象上,则b ,c 的大小关系是b ________c (用“>”或“<”填空).16.如图1-3-2所示,已知函数y =-12x 2+bx +c 的图象经过A (2,0),B (0,-6)两点.(1)设该二次函数的图象的对称轴与x 轴交于点C ,连结BA ,BC ,求△ABC 的面积; (2)若该函数自变量的取值范围是-1≤x ≤8,求函数的最大值和最小值.图1-3-217.已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y轴相交于点C,且点A,C在一次函数y2=43x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.18.已知二次函数y=x2+px+q图象的顶点M为直线y=12x+12与y=-x+m-1的交点.(1)用含m的代数式来表示顶点M的坐标(直接写出答案);(2)当x≥2时,二次函数y=x2+px+q与y=12x+12的值均随x的增大而增大,求m的取值范围;(3)若m=6,当x取值为t-1≤x≤t+3时,二次函数的最小值为2,求t的取值范围.详解详析1.1 5 [解析] ∵y =x 2-2x +6=(x -1)2+5,∴当x =1时, y 最小值=5. 2.523.解:(1)二次函数y =2x 2-3x -5中的二次项系数2>0,因此抛物线y =2x 2-3x -5有最低点,即函数有最小值.∵y =2x 2-3x -5=2⎝⎛⎭⎪⎫x -342-498,∴当x =34时,函数y =2x 2-3x -5取得最小值-498.(2)∵y =-x 2+2x +3=-(x -1)2+4,-1<0, ∴当x =1时,函数y =-x 2+2x +3取得最大值4. (3)∵y =x 2-4x -5=(x -2)2-9,1>0,∴当x =2时,函数y =x 2-4x -5取得最小值-9. 4.A [解析] 二次函数y =x 2-2x +1, ∵b 2-4ac =4-4=0,∴二次函数图象与x 轴有一个交点. 故选A.5.(-1,0),(6,0)6.解:(1)设y =a (x -2)2+1, 把(-1,-8)代入,得-8=9a +1,解得a=-1,所以这个二次函数的表达式为y=-(x-2)2+1.(2)令y=0,则-(x-2)2+1=0,解得x1=3,x2=1,所以这个二次函数图象与x轴的交点坐标是(1,0),(3,0).令x=0,则y=-3.所以这个二次函数图象与y轴的交点坐标是(0,-3).7.解:(1)抛物线y=x2-4x+4沿y轴向下平移9个单位后所得抛物线的函数表达式是y =x2-4x+4-9,即y=x2-4x-5.y=x2-4x-5=(x-2)2-9,则点D的坐标是(2,-9).在y=x2-4x-5中,令x=0,则y=-5,则点C的坐标是(0,-5),令y=0,则x2-4x-5=0,解得x=-1或5,则点B的坐标是(5,0).(2)如图,过点D作DA⊥y轴于点A.则S △BCD =S 梯形AOBD -S △BOC -S △ADC =12×(2+5)×9-12×5×5-12×2×4=15.8.≤2 ≥2 2 小 09.C [解析] ∵y =ax 2(a >0),∴抛物线的开口向上,对称轴为y 轴,在对称轴左侧,y 随x 的增大而减小.∵-2<-1,∴y 1>y 2>0,因此选择C 选项.10.B11.m ≥-1 [解析] 抛物线的对称轴为直线x =-m -12=1-m 2,∵当x >1时,y 的值随x 值的增大而增大, ∴1-m2≤1,解得m ≥-1.12.C [解析] ∵水在空中划出的曲线是抛物线y =-12x 2+2x 的一部分,∴喷水的最大高度就是水在空中划出的抛物线y =-12x 2+2x 的顶点的纵坐标.∵y =-12x 2+2x =-12(x -2)2+2,∴抛物线的顶点坐标为(2,2),故喷水的最大高度为2米.13.D [解析] 抛物线的对称轴是直线x =1,开口向下,根据“点到对称轴的水平距离越近,函数值越大”的原则,应选D.14.B [解析] 因为一次函数y =(a +1)x +a 的图象过第一、三、四象限,所以⎩⎨⎧a +1>0,a <0,因此-1<a <0,而y =ax 2-ax =a ⎝⎛⎭⎪⎫x -122-14a ,所以二次函数有最大值-a 4. 15.< [解析] ∵对称轴为直线x =a , ∴A (a +1,b ),B (a +2,c )在对称轴右侧. ∵1>0,∴抛物线开口向上,∴在对称轴右侧,y 随x 的增大而增大, ∴b <c .16.解:(1)将点A (2,0),B (0,-6)代入y =-12x 2+bx +c ,得⎩⎨⎧0=-12×4+2b +c ,c =-6.解得⎩⎨⎧b =4,c =-6.∴对称轴是直线x =4,∴AC =2,BO =6, ∴△ABC 的面积为12×2×6=6.(2)由(1)知函数表达式为y =-12x 2+4x -6.当x =-1时,y =-10.5; 当x =8时,y =-6.又由(1)知函数图象的顶点坐标为(4,2),∴当x =4时,函数取得最大值2;当x =-1时,函数取得最小值-10.5. 17.解:根据OC 长为8可得一次函数中的n 的值为8或-8. 分类讨论:(1)当n =8时,易得A (-6,0).∵抛物线经过点A ,C ,且与x 轴的交点A ,B 在原点的两侧,∴抛物线开口向下,则a <0,如图①.∵AB =16,且A (-6,0),∴B (10,0),而点A ,B 关于对称轴对称,∴对称轴为直线x =-6+102=2.要使y 1随着x 的增大而减小,∴x ≥2;(2)当n =-8时,易得A (6,0).∵抛物线过A ,C 两点,且与x 轴的交点A ,B 在原点两侧,∴抛物线开口向上,则a >0,如图②.∵AB =16,且A (6,0),∴B (-10,0),而点A ,B 关于对称轴对称,∴对称轴为直线x =6-102=-2.要使y 1随着x 的增大而减小,∴x ≤-2.综上所述,自变量x 的取值范围为x ≥2或x ≤-2.18.解:(1)由⎩⎨⎧y =12x +12,y =-x +m -1,解得⎩⎪⎨⎪⎧x =2m -33,y =m 3,即交点M 的坐标为⎝ ⎛⎭⎪⎫2m -33,m 3. (2)∵二次函数y =x 2+px +q 图象的顶点M 为直线y =12x +12与y =-x +m -1的交点,坐标为⎝ ⎛⎭⎪⎫2m -33,m 3,且当x ≥2时,二次函数y =x 2+px +q 与y =12x +12的值均随x 的增大而增大, ∴2m -33≤2,解得m ≤92.(3)∵m =6,∴顶点M 的坐标为(3,2),∴二次函数的表达式为y =(x -3)2+2,∴函数y 有最小值为2.∵当x 取值为t -1≤x ≤t +3时,二次函数的最小值为2,∴t -1≤3,t +3≥3,解得0≤t ≤4.。