第一节金属变形概述--西安交大材料科学基础
- 格式:ppt
- 大小:1.36 MB
- 文档页数:16
《材料科学基础》(804)考试大纲一、《材料科学基础》(804)参考教材如下:
石德珂编著,《材料科学基础》第二版,机械工业出版社,2003二、《材料科学基础》考试大纲
第一章材料结构的基本知识
1、原子结构
2、原子结合键
3、原子排列方式
4、晶体材料组织
5、材料的稳态结构与亚稳态结构
第二章材料中的晶体结构
1、晶体学基础
2、纯金属的晶体结构、
3、离子晶体的结构
4、共价晶体的结构
第三章高分子材料结构
1、概述
2、高分子链的结构与构象
3、高分子的聚集态结构
4、高分子材料的性能与结构
第四章晶体缺陷(本章对位错的能量与交互作用不做要求)
1、点缺陷
2、位错的基本概念
3、位错的能量及交互作用。
西安交通大学《材料科学基础》课程教学大纲英文名称:Fundamentals of Materials Science课程编号:MATL3001学时:96 学分:6适用对象:材料科学与工程专业本科生先修课程:大学物理、普通化学、物理化学、工程力学课程的性质和目的“材料科学基础”是材料科学与工程学科各专业本科生的必修课,是后续各门专业课程的理论基础课,也是材料科学与工程学科各专业的材料工作者从事材料科学基础研究以及开发新材料、新工艺必备的基本知识和基本能力。
学习本课程的目的,是使学习者深刻理解材料的成分-结构-工艺-组织-性能诸方面的内在联系的根本原因、基本知识和基本应用,为学习后续专业课程奠定坚实的基础理论知识;为将来创造新理论、研制新材料、开发新工艺提供新思路和理论指导课程教学内容绪论第一章材料结构的基本知识第一节原子结构一、原子的电子分布;二、元素周期表及性能的周期性变化第二节原子结合键一、一次键;二、二次键;三、混合键;四、结合键的本质及原子间距第三节原子排列方式一、晶体与非晶体;二、原子排列的研究方法第二章材料中的晶体结构第一节晶体学基础一、空间点阵和晶胞;二、晶系和布拉菲点阵;三、晶向指数和晶面指数;四、晶面间距;五、晶带及晶带定理;六、晶体的极射赤面投影图第二节纯金属的晶体结构一、金属的典型晶体结构;二、多晶型性;三、晶体的原子半径;第三节离子晶体的结构一、离子晶体的主要特点;二、离子半径、配位数和负离子配位多面体;三、离子晶体的结构规则;四、离子晶体的典型结构第四节共价晶体的结构一、共价晶体的主要特点;二、共价晶体的典型结构第三章晶体缺陷第一节点缺陷一、点缺陷的类型;二、点缺陷的浓度;三、点缺陷与材料行为;第二节位错的基本概念一、位错学说的产生;二、位错的几何形态;三、位错的运动第三节位错的弹性性质一、应力和应变分析;二、位错的应力场;三、为错的应变能第四节作用在位错线上的力一、Petch-Koehler公式;二、外加应力对位错的作用力;三、位错间的互作用力;四、位错与溶质原子的互作用力; 五、位错的线张力; 六、位错运动的点阵阻力;七、晶体表面对位错的作用力——映像力第五节实际晶体结构中的位错一、全位错;二、堆垛层错;三、不全位错;四、位错反应第六节晶体中的界面一、晶界的结构与晶界能;二、表面及表面能;三、表面吸附与晶界内吸附;四、浸润行为;五、界面能与显微组织形貌的变化第四章材料的相结构与相图第一节材料的相结构一、固溶体;二、化合物第二节二元相图及其类型一、相图的基本知识;二、一元系相图;三、二元系相图;四、材料性能与相图的关系第三节复杂相图分析一、分析方法;二、复杂相图分析举例;三、铁-碳合金相图第四节相图的热力学基础一、固溶体的吉布斯自由能-成分曲线;二、克劳修斯-克莱普隆方程;三、相平衡条件;四、由吉布斯自由能-成分曲线推测相图第五节三元系相图及其类型一、三元相图的成分表示方法;二、三元匀晶相图;三、三元系中的相平衡分析;四、具有四相共晶反应的三元系相图;五、三元系相图实例分析第五章材料的凝固第一节材料凝固时晶核的形成一、结晶的基本规律;二、均匀形核;三、形核率;四、非均匀形核第二节材料凝固时晶体的生长一、晶核长大的必要条件;二、固/液界面的微观构造;三、晶核长大方式第三节固溶体的凝固一、固溶体的平衡凝固;二、固溶体的不平衡凝固;三、成分过冷及其影响第四节共晶合金的凝固一、共晶体的形态;二、共晶体的形核及生长;三、先共晶相的形态第五节制造工艺与凝固组织一、铸锭和铸件凝固的组织与偏析;二、连续铸造和熔化焊的凝固组织第六节用凝固法材料的制备技术一、区域提纯;二、制备单晶;三、用快速冷凝法制备金属玻璃;四、定向凝固第六章高分子材料的结构第一节高分子材料概述一、高分子材料的基本概念;二、高分子材料的合成;三、高分子材料的分类第二节高分子链的结构及构象一、高分子链的化学组成;二、结构单元的键接方式和构型;三、高分子链的几何形状;四、高分子链的构象及柔顺性第三节高分子的聚集态结构一、晶态聚合物的结构;二、非晶态聚合物的结构;三、聚合物的结晶度与玻璃化温度第四节高分子材料的性能与结构一、高分子材料的主要性能特点;二、高分子材料性能与结构的关系;三、改变高分子材料性能的途径第七章固态扩散第一节扩散定律及其应用一、扩散第一定律;二、扩散第二定律第二节扩散的微观机制一、扩散的主要机制;二、扩散系数;三、扩散激活能第三节扩散的驱动力及反应扩散一、扩散的驱动力;二、反应扩散第四节影响扩散的因素一、温度的影响;二、原子键力的影响;三、晶体结构的影响;四、固溶体类型及浓度的影响;五、晶体缺陷的影响第八章材料的变形与断裂第一节金属变形概述第二节金属的弹性变形一、弹性变形的主要特点;二、弹性模量的物理意义;三、弹性模量在工程上的应用第三节滑移与孪生变形一、晶体的滑移与观察;二、滑移机制;三、晶体的滑移系;四、孪生变形第四节单晶体的塑性变形一、施密特定律;二、晶体的始滑移系;三、夹头固定情况下滑移过程中的晶体转动;四、晶体滑移的种类;六、单晶体表面滑移线方位(晶向指数)的确定第五节多晶体的塑性变形一、多晶体塑性变形的特点;二、细晶强化及其机理第六节纯金属的形变强化一、金属的形变强化;二、形变强化的位错机理;三、单晶体的形变强化;四、形变强化的工程意义第七节合金的变形与强化一、固溶体的变形与固溶强化;二、多相合金的变形与强化第八节冷变形金属的组织与性能一、冷变形金属的组织变化;二、冷变形金属的性能变化第九节金属的断裂一、理论断裂强度;二、实际断裂强度第十节冷变形金属的回复和再结晶一、冷变形金属加热时的组织和性能变化;二、冷变形金属的回复;三、冷变形金属的再结晶;四、再结晶后的晶粒长大第十一节金属的热变形、蠕变及超塑性一、金属的热变形;二、金属的蠕变;三、金属的超塑性第十二节陶瓷晶体的变形一、陶瓷晶体变形的特点;二、影响陶瓷晶体变形的主要因素第十三节高分子材料的变形一、热塑性塑料的变形;二、热固性塑料的变形第九章固体材料的电子结构与物理性能第一节固体的能带理论一、能带的形成;二、金属的能带结构与导电性;三、费米能;四、半导体与绝缘体第二节半导体一、本征半导体;二、掺杂半导体;三、化合物半导体第三节材料的磁性一、原子的磁矩;二、抗磁体、顺磁体和铁磁体;三、磁化曲线与磁畴结构第四节材料的光学性能一、光子的能量;一、光的吸收与透射;二、材料的发光性能第五节材料的热学性能一、摩尔热容;二、热膨胀;三、导热性能第六节形状记忆合金一、问题的提出;二、形状记忆现象;三、形状记忆效应;四、形状记忆原理简介;五、常用形状记忆合金;六、形状记忆合金应用举例;七、工程设计练习;八、本节小结;九、一道课后思考题课程重点在上述教学内容中,重点为以下四部分:第二章材料的晶体结构一般情况下,金属材料都是晶态,陶瓷材料中大多呈晶态,而高分子材料为部分晶态。
1 晶体结构不同的晶体可能有相同的晶体点阵。
正确错误2 晶体中与每一个阵点相对应的基元都是相同的。
正确错误3 晶体中与一个阵点相对应的基元都是一个原子。
正确错误4 晶体中与一个阵点相对应的基元可能是一个原子,也可能是多个原子。
正确错误5 如果晶体中与一个阵点相对应的基元是多个原子,这些原子必定不是同一种原子。
正确错误6 在由一种原子组成的晶体中,与一个阵点相对应的基元必定是一个原子。
正确错误7 对不同的晶体,与一个阵点相对应的基元必定都是不相同的。
正确错误8 一个简单正交晶体的。
正确错误9 对一个简单正交晶体:。
正确错误10 根据立方晶系晶面间距的计算公式,计算得纯铜晶体的。
正确错误11 体心立方晶体{110}中的所有晶面属于同一个晶带。
正确错误12 晶体中任意两个相交晶面一定属于同一个晶带。
正确错误13 、、三个晶面属于同一个晶带。
正确错误14 体心立方晶体{100}晶面族中的晶面属于[100]晶带。
正确错误15 Zn是密排六方结构,属简单六方点阵。
正确错误16 晶体中面密度越高的晶面,其面间距必定也越大。
正确错误17 晶体中非平衡浓度空位及位错的存在都一定会使晶体的能量升高。
正确错误18 晶体中的位错环有可能是一个纯刃型位错,但绝不可能是一个纯螺型位错。
正确错误19 晶体中的不全位错一定与层错区相连,反之亦然。
正确错误20 如果晶体中的亚晶界是由刃位错墙构成的,则相邻亚晶粒间的位向差越大,位错墙中位错的间距就越大。
正确错误21 如果晶体中的亚晶界是由刃位错墙构成的,则相邻亚晶粒间的位向差越大,亚晶界的比界面能越大。
正确错误22 位错线的运动方向总是垂直于位错线。
23 位错线的运动方向总是平行于位错线。
正确错误24 位错线的运动方向总是垂直于其柏氏矢量。
正确错误25 位错线的运动方向总是平行于其柏氏矢量。
正确错误26 位错运动所引起的晶体滑移方向总是平行于其柏氏矢量。
正确错误27 位错运动所引起的晶体滑移方向总是垂直于其柏氏矢量。
第一章8.计算下列晶体的离于键与共价键的相对比例(1)NaF (2)CaO (3)ZnS解:1、查表得:X Na =0.93,X F =3.98根据鲍林公式可得NaF 中离子键比例为:21(0.93 3.98)4[1]100%90.2%e ---⨯=共价键比例为:1-90.2%=9.8% 2、同理,CaO 中离子键比例为:21(1.00 3.44)4[1]100%77.4%e---⨯=共价键比例为:1-77.4%=22.6%3、ZnS 中离子键比例为:21/4(2.581.65)[1]100%19.44%ZnS e--=-⨯=中离子键含量共价键比例为:1-19.44%=80.56%10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关系。
答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。
稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。
稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。
但在一定条件下,亚稳态结构向稳态结构转变。
第二章1.回答下列问题:(1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与 [111],(132)与[123],(322)与[236] (2)在立方晶系的一个晶胞中画出(111)和 (112)晶面,并写出两晶面交线的晶向指数。
(3)在立方晶系的一个晶胞中画出同时位于(101). (011)和(112)晶面上的[111]晶向。
解:12.有一正交点阵的 a=b, c=a/2。
某晶面在三个晶轴上的截距分别为 6个、2个和4个原子间距,求该晶面的密勒指数。
一失效分析1 断裂可分为几类?韧性断裂和脆性断裂如何区分?答:1)根据材料断裂前所产生的宏观变形量大小,将断裂分为韧性断裂和脆断裂。
2)韧性断裂是断裂前发生明显宏观塑性变形。
而脆性断裂是断裂前不发生塑性变形,断裂后其断口齐平,由无数发亮的小平面组成。
2 断裂过程分为几个阶段?韧性断裂和脆性断裂的断裂过程的区别在哪里?答:1)无论是韧性断裂还是脆性断裂,其断裂过程均包含裂纹形成和扩展两个阶段。
裂纹自形成到扩展至临界长度的过程称为裂纹亚稳扩展阶段,在这一阶段裂纹扩展阻力大,扩展速度较慢;而把裂纹达到临界长度后的扩展阶段称为失稳扩展阶段,在这一阶段裂纹扩展阻力小,扩展速度很快。
2)对于韧性断裂,裂纹形成后经历很长的裂纹亚稳扩展阶段,裂纹扩展与塑性变形同时进行,直至达到临界裂纹长度,最后经历失稳扩展阶段而瞬时断裂,因此韧性断裂前有明显的塑性变形。
对于脆性断裂,裂纹形成后很快达到临界长度,几乎不经历裂纹亚稳扩展阶段就进入裂纹失稳扩展阶段,裂纹扩展速度极快,故脆性断裂前无明显塑性变形。
3 什么是材料的韧性?评价材料韧性的力学性能指标有哪些?答:1)韧性是表示材料在塑性变形和断裂过程中吸收能量的能力,它是材料强度和塑性的综合表现。
材料韧性好,则发生脆性断裂的倾向小。
2)评价材料韧性的力学性能是冲击韧性和断裂韧性。
冲击韧性是材料在冲击载荷下吸收塑性变形功和断裂功的能力,常用标准试样的冲击吸收功Ak表示。
断裂韧度KIC是评定材料抵抗脆性断裂的力学性能指标,指的是材料抵抗裂纹失稳扩展的能力。
4 材料韧性指标的含义及应用?答:1)冲击吸收功Ak是衡量材料冲击韧性的力学性能指标,冲击吸收功由冲击试验测得,它是将带有U形或V形缺口的标准试样放在冲击试验机上,用摆锤将试样冲断。
冲断试样所消耗的功即为冲击吸收功Ak,其单位为J。
Ak越高和韧脆转变温度TK越低,则材料的冲击韧性越好。
2)断裂韧度KIC是评定材料抵抗脆性断裂的力学性能指标,指的是材料抵抗裂纹失稳扩展的能力,其单位为MPa·m1/2或MN·m-3/2。