| rws (k ) |2
2 w
1 dz 1 C Sss ( z) H opt ( z)S xs ( z ) z 2πj
通过前面的分析, 因果维纳滤波器设计的一般方法可以按 下面的步骤进行:
(1) 根据观测信号x(n)的功率谱求出它所对应的信号模型的
传输函数,即采用谱分解的方法得到B(z)。 S xs ( z) (2) 求 B( z 1 ) 的Z反变换,取其因果部分再做Z变换,即 S xs ( z ) 舍掉单位圆外的极点,得 B( z 1 ) (3) 积分曲线取单位圆,应用(2.3.38)式和(2.3.39)式,计 算Hopt(z), E[|e(n)|2]min。
1 ˆ' rxx (m) N
N |m|1
n 0
x ( n ) x ( n m)
平稳随机序列通过线性系统:
y (n)
k
h( k ) x ( n k )
k
m y E[ y (n )]
h(k ) E[ x(n k )]
k
ryy (m)
m0
k=0, 1, 2, …
利用白化x(n)的方法求解维纳-霍夫方程:
x(n)=s(n)+υ (n)
H(z) (a)
ˆ y ( n) s ( n)
x(
x(n)
1 B( z )
w(n)
G(z) (b)
ˆ y ( n) s ( n)
x(
图2.3.5 利用白化x(n)的方法求解维纳-霍夫方程
D (m)
2 x
rxx (m)
2 x (m)