数字通信系统仿真
- 格式:docx
- 大小:358.23 KB
- 文档页数:10
matlab 通信仿真案例
在MATLAB中,通信仿真是一个常见的应用领域,可以用于模拟
和分析数字通信系统的性能。
下面我将从多个角度介绍几个常见的
通信仿真案例。
1. OFDM系统仿真,OFDM(正交频分复用)是一种常见的多载
波调制技术,用于高速数据传输。
你可以使用MATLAB来建立一个基
本的OFDM系统仿真模型,包括信道估计、均衡和解调等模块。
通过
仿真可以分析系统在不同信噪比下的误码率性能,优化系统参数以
及算法设计。
2. 无线通信系统仿真,你可以使用MATLAB建立一个简单的无
线通信系统仿真模型,包括传输信道建模、调制解调、信道编码、
多天线技术等。
通过仿真可以评估系统的覆盖范围、传输速率、抗
干扰能力等性能指标。
3. MIMO系统仿真,MIMO(多输入多输出)技术在无线通信中
得到了广泛应用。
你可以使用MATLAB建立一个MIMO系统仿真模型,包括空间多路复用、信道估计、预编码等。
通过仿真可以分析系统
的信道容量、波束赋形技术对系统性能的影响等。
4. LTE系统仿真,LTE(长期演进)是目前移动通信领域的主流技术之一。
你可以使用MATLAB建立一个LTE系统仿真模型,包括物理层信号处理、上下行链路传输、信道编码解码等。
通过仿真可以评估系统的覆盖范围、传输速率、干扰抑制能力等性能指标。
以上是一些常见的通信仿真案例,通过MATLAB你可以方便地建立仿真模型,分析系统性能,并优化系统设计。
希望这些案例能够帮助到你。
通信原理课程设计实验报告专业:通信工程届别:07 B班学号:0715232022姓名:吴林桂指导老师:陈东华数字通信系统设计一、 实验要求:信源书记先经过平方根升余弦基带成型滤波,成型滤波器参数自选,再经BPSK ,QPSK 或QAM 调制(调制方式任选),发射信号经AWGN 信道后解调匹配滤波后接收,信道编码可选(不做硬性要求),要求给出基带成型前后的时域波形和眼图,画出接收端匹配滤波后时域型号的波形,并在时间轴标出最佳采样点时刻。
对传输系统进行误码率分析。
二、系统框图三、实验原理:QAM 调制原理:在通信传渝领域中,为了使有限的带宽有更高的信息传输速率,负载更多的用户必须采用先进的调制技术,提高频谱利用率。
QAM 就是一种频率利用率很高的调制技术。
t B t A t Y m m 00sin cos )(ωω+= 0≤t ≤Tb式中 Tb 为码元宽度t 0cos ω为 同相信号或者I 信号;t 0s i n ω 为正交信号或者Q 信号;m m B A ,为分别为载波t 0cos ω,t 0sin ω的离散振幅;m 为m A 和m B 的电平数,取值1 , 2 , . . . , M 。
m A = Dm*A ;m B = Em*A ;式中A 是固定的振幅,与信号的平均功率有关,(dm ,em )表示调制信号矢量点在信号空间上的坐标,有输入数据决定。
m A 和m B 确定QAM 信号在信号空间的坐标点。
称这种抑制载波的双边带调制方式为正交幅度调制。
图3.3.2 正交调幅法原理图 Pav=(A*A/M )*∑(dm*dm+em*em) m=(1,M)QAM 信号的解调可以采用相干解调,其原理图如图3.3.5所示。
图3.3.5 QAM 相干解调原理图四、设计方案:(1)、生成一个随机二进制信号(2)、二进制信号经过卷积编码后再产生格雷码映射的星座图 (3)、二进制转换成十进制后的信号 (4)、对该信号进行16-QAM 调制(5)、通过升余弦脉冲成形滤波器滤波,同时产生传输信号 (6)、增加加性高斯白噪声,通过匹配滤波器对接受的信号滤波 (7)、对该信号进行16-QAM 解调五、实验内容跟实验结果:本方案是在“升余弦脉冲成形滤波器以及眼图”的示例的基础上修改得到的。
数字频带通信系统仿真数字频带通信系统仿真数字频带通信系统是一种利用数字信号传输信息的通信系统。
它主要通过将模拟信号转换为数字信号来实现传输。
数字频带通信系统仿真就是对数字频带通信系统进行模拟网络测试和评估的过程。
数字频带通信系统仿真的目的是验证数字频带通信系统的性能,发现并改正系统的缺陷,为系统升级提供数据支持。
数字频带通信系统仿真能够消除数字频带通信系统在实际网络中的误差和噪音,提高数字频带通信系统的精度和可靠性。
同时也能够对数字频带通信系统中的各种参数进行测试和分析,找出系统中的瓶颈,优化系统的效率。
数字频带通信系统仿真通常包括以下步骤:首先,需要确定仿真系统的目标。
通过确定系统的目标,可以确保仿真系统的设计和实施为用户提供有意义的结果。
目标通常包括测试和评估数字频带通信系统的各种参数,如可靠性、响应时间、吞吐量、延迟等。
其次,需要设计仿真系统。
这涉及到仿真系统的整体结构和各个模块的设计。
仿真系统的结构应该清晰明了,每个模块必须与其他模块互相协调,每个部分的交互必须能够实现模拟真实系统的操作。
然后,需要确定仿真的输入和输出。
仿真的输入可以是真实网络数据或人工输入数据,仿真的输出需要包括仿真测试结果、统计数据、网络流量图表等。
接下来,需要实现仿真系统。
此步骤包括开发软件工具和编写仿真脚本。
此外,还需要进行仿真系统的数据生成、分析和处理,以便为仿真结果提供有价值的数据。
最后,需要执行仿真系统并分析结果。
执行仿真系统需要权衡时间、物力和财务方面的成本。
通过分析仿真结果,可以识别系统的性能瓶颈、检测系统的问题并进行优化、评估系统的可靠性和准确性。
分析不断演变的仿真数据可以帮助发现随时间而变化的趋势和瓶颈。
最后,还可以将仿真数据与实际网络数据进行比较。
总之,数字频带通信系统仿真对于评估系统的各种参数、检测系统的问题以及优化系统的性能和可靠性至关重要。
其有效性和准确性可以从多个方面确保网络的高品质和高可靠性运行。
一、物理层仿真实验1、实验目的:初步掌握数字通信系统的仿真方法。
完成一个通信系统的搭建,并仿真得到相应的BER-Eb/No性能曲线,完成系统性能的分析。
2、实验原理通信系统仿真就是要通过计算机产生各种随机信号,并对这些信号做相应的处理以获得期望的结果,但是要求计算机产生完全随机的数据时不可能的,只能算是伪随机数。
从预测的角度看,周期数据是完全可以预测的,但当周期趋于无穷大时,可以认为该数据具有伪随机特性。
产生伪随机数的算法通常有:Wishmann-Hill算法产生均匀分布随机变量该算法是通过将3个周期相近的随机数发生器产生的数据序列进行相加,进而得到更大周期的数据序列。
定义三个随机数发生器:Xi+1=(171xi)mod(30269)Yi+1=(170yi)mod(30307)Zi+1=(172zi)mod(30323)以上三式中均需要设定一初始值(x0,y0,z0),这三个初始值一般称为种子。
产生的三个序列的周期分别是:30269、30307、30323。
将这三个序列组合相加即可得到一个周期更大的均匀分布随机序列:Ui=(Xi/30269+Yi/30307+Zi/30323)mod(1)逆变换法产生Rayleigh分布随机变量逆变换法的基本思想是:将一个不相关均匀分布的随机序列U映射到一个具有概率分布函数Fx(x)的不相关序列随机序列X,条件是要产生的随机变量的分布函数具有闭合表达式。
R=sqrt(-2σ2 ln(u))根据上式即可将均匀分布的随机变量映射为Rayleigh分布的随机变量。
根据Rayleigh分布随机变量产生Gussian分布随机变量通信系统中的噪声通常建模为白高斯噪声,其含义是功率谱是白的,信号分布是满足高斯的。
基于Rayleigh随机变量,可以方便的产生Gussian分布的随机变量。
关系如下:X=R*COS(2πu1)Y=R*SIN(2πu2)其中U1和U2分别是两个均匀分布的随机变量,产生的X和Y均为高斯随机变量。
第一章信号通过系统的仿真1.若x(t)=(1/(2л)1/2)e-t2/2,t∈[a,b],将x(t)进行周期拓展,信号周期为T(可任意设置),计算和描绘出期信号x(t)的幅度和相位频谱。
实验结果:(以下所示为a=-6,b=6,n=24,tol=的图形)(1)已知信号幅度谱(2)已知信号相位谱2.信号定义为x(t)= cos(2л*47t)+cos(2л*219t), 0≤t≤100, 其它假设信号以1000抽样/秒进行抽样。
用MATLAB设计一个低通Butterworth滤波器。
确定并绘出输出的功率谱和输入功率谱比较(滤波器的阶数及截频可自行确定)。
实验结果:(以下为阶数=4,截频=100Hz的图形)(1)输入信号功率谱密度(2)输出信号功率谱密度第二章随机过程仿真1.从下式的递归关系中产生一个高斯马尔可夫过程的1000个(等间距)样本的序列Xn=+ωn n=1,2,…1000,式中X0=0,ωn是一个零均值,方差为1,独立的随机变量序列。
绘出序列{ Xn,1≤n≤1000}与时序n的关系及相关函数N-mRx(m)=1/(N-m)ΣXn Xn+m m=0,1,…50 式中N=1000.n-1实验结果:(1)高斯——马尔可夫过程(2)高斯马尔可夫过程的自相关函数2.假设一个具有抽样序列{X(n)}的白噪声过程通过一个脉冲响应如下所示的线性滤波器nh(n)= ,n≥00, n<0求输出过程{Y(n)}的功率谱和自相关函数Ry(τ)。
实验结果:(1)输出的功率谱(2)输出的自相关第三章模拟调制仿真1.用MATLAB软件仿真AM调制。
被调信号为1, (t0/3)>t>0;m(t)=-2, (t0/3)≤t≤(2*t0/3);0, 其它;利用AM 调制方式调制载波。
假设t0=,fc=250hz;调制系数a=。
实验结果:1)调制信号、载波、已调信号的时域波形2)已调信号的频域波形2.被调信号为1, t0/3>t>0;m(t)=-2, t0/3<= t<2*t0/3;0, 其它;采用频率调制方案。
数字通信系统的设计与仿真摘要:数字通信系统是数字传输的过程,模拟信号到达接收端必须先将模拟信号转换成数字信号,数字信号在信道中传输会有损耗,因此合理的采用信道的编/译码和调制、解调是十分重要的,本实验采用systemview 进行仿真.关键字:眼图、误码率、调制、解调.1数字通信系统模型与原理1.1数字通信系统模型数字通信系统是利用数字信号来传递信息的通信系统,如图1所示.图1数字通信系统模型1.1.1 信源编码与译码信源编码有两个基本功能:一是提高信息传输的有效性,即通过某种数据压缩技术设计减少码元数目和降低码元速率.二是完成模/数(A/D)转换,即当信息源给出的是模拟信号时,信源编码器将其转换成数字信号,以实现模拟信号的数字化传输.信源译码是信源编码的逆过程.1.1.2 信道编码与译码信道编码的目的是增强数字信号的抗干扰能力.数字信号在信道传输时受到噪声等影响后将会引起差错.为了减少差错,信道编码器对传输的信息码元按一定的规则加入保护成分,组成所谓“抗干扰编码”.接收端的信道译码器按相应的规则进行解码,从中发现错误或纠正错误,提高通信系统的可靠性.1.1.3 加密与解密在需要实现保密通信的场合,为了保证所穿信息的安全,认为地将被传输的数字序列扰乱,即加上密码,这种处理过程叫加密.在接收端利用与发送端相同的密码复制品对收到的数字序列进行解密,恢复原来信息.1.1.4 数字调制与解调数字调制就是把数字基带信号的频谱搬移到高频处,形成适合在信道中传输的带通信号.基带的数字调制方式有振幅键控(ASK)、频移键控(FSK)、绝对相移键控、相对相移键控(DPSK).在接收端可以采用相干解调或非相干解调还原数字基带信号.对高斯噪声下的信号检测,一般用相关器或匹配滤波器来实现.1.1.5 同步同步是使收发两端的信号在时间上保持步调一致,是保证数字通信系统有序、准确、可靠工作的前提条件.按照同步的公用不同,分为载波同步、位同步、群同步和网同步.数字通信的主要特点(1) 抗干扰能力强,尤其是数字信号通过中继再生后可消除噪声积累(2) 数字信号通过差错控制编码,可提高通信的可靠性.(3) 由于数字通信传输一般采用二进制码,所以可使用计算机对数字信号进行处理,实现复杂的远距离大规模自动控制系统和自动数据处理系统,实现以计算机为中心的通信网.(4) 在数字通信中,各种消息(模拟的和离散的)都可变成统一的数字信号进行传输.在系统对数字信号传输情况的监视信号、控制信号及业务信号都可采用数字信号.数字传输和数字交换技术结合起来组成的ISDN 对于来自不同信源的信号自动地进行变换、综合、传输、处理、存储和分离,实现各种综合业务.(5) 数字信号易于加密处理,所以数字通信保密性强.数字通信的缺点是比模拟信号占带宽,然而,由于毫米波和光纤通信的出现,带宽已不成问题.2 系统的设计过程为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配.这种用数字基带信号控制载波,把数字基带信号变换为数字带同信号的过程称为数字调制.在接收端通过解调器把带通信号还原成数字基带信号的过程称为数字解调.通常把包括调制和解调过程的数字传输系统叫做数字带通传输系统.一般来说,数字调制与模拟调制技术有的方法:把数字基带信号当作模拟信号的特殊情况处理;是利用数字信号的离散取值特点通过开关键控载波,2.1 信源编码模拟信号转换成数字信号包括三个步骤:抽样,量化,编码.(1) 抽样:把模拟信号在时间上离散化,变换为模拟抽样信号.(2) 量化:将抽样信号在幅度上离散化,变换成量化信号.(3) 编码:用二进制码元来表示有限的量化电平.抽样定理指出:设一个连续模拟信号m(t)中的最高频率〈f h ,则以间隔时间T〈1/2f h的周期性冲激脉冲对它抽样时,m(t)将被这些抽样值所完全确定.由于抽样时间间隔相等,所以此定理又称均匀抽样定理.例如模拟信号的最高频率为10hz,则采样频率为30hz.2.2 信道格雷码的编/译码数字信号在传输过程中,由于受到干扰的影响,码元波形将变坏,,接收端收到后可能发生错误判决,故采用GRAY编\译码方式来进行差错控制. 格雷码的编码和译码设备都不太复杂,而且检错的能力较强.格雷码除了具有线性码的一般性质外,还具有循环性.循环性是指任一码组循环一位(即将最右端的一个码元移至左端,或反之)后,仍为该码中的一个码组.2.3 2FSK信号的调制与非相干解调2.3.1 调制原理键控法:在二进制基带矩形脉冲序列的控制下通过开关电路对两个不同的独立频率进行选通,使其在每一个码元T s 期间输出 f1或f0两个载波之一, 图2所示.键控法产生的2FSK信号,是由于电子开关在两个独立的频率源之间转换形成,故相邻码元之间的相位不一定连续. 2FSK信号可以看成两个ASK的相加,图3所示.图2 键控法产生2FSK 信号的原理图图3 相位连续的2FSK 信号波形2.3.2 2FSK 信号的非相干解调2FSK 的非相干解调:其原理是将2FSK 信号分解为上下两路2ASK 信号分别进行解调,然后进行判决.这里的抽样判决是直接比较两路信号抽样值的大小,可以不专门设置门限.判决规则应与调制规则相呼应,调制时若规定“1”符号对应载波频率w 1,则接收时上支路的样值较大,应判为“1”;反之则判为“0”.2FSK 信号的非相干解调方框图如图4所示,其可视为由两路2ASK 解调电路组成.这里,两个带通滤波器(带宽相同,皆为相应的2ASk 信号带宽;中心频率不同,分别为w 1、w 2 起分路作用,用以分开两路2ASK 信号. 振荡器f 1选通开关 反相器 想加器 振荡器f 2 选通开关基带信号 2FSK 信号图4 2FSK信号非相干解调方框图2.4 模拟FIR滤波器的设计通过选择菜单上的”Filter/Analog”按扭,可以设计五种模拟滤波器.它们是:巴特沃斯,巴赛尔,切比契夫,椭圆,线性相位.这些滤波器可以是低通、高通或带通,所选滤波器的一般形状由滤波器的类型决定,需要输入的数据是滤波器的极点数、-3db带通或截止频率、相位纹波系数、增益等参数,按”finish”完成设计.低通滤波器:去掉信号中不必要的高频成分,降低采样频率,避免频率混淆,去掉高频干扰.带通滤波器:高通滤波器同低通滤波器的组合.对滤波器而言,所有频率都应是采样速率的分数,即相对的百分比系数.例如,系统的采样速率为1MHZ,所涉及的FIR低通滤波器的截止频率为50KH Z,则滤波器涉及窗口输入的截止频率为0.05(50KH Z/1MH Z),如果在滤波器前面连接的是抽样器或采样器的图符,则这些图符的频率也必须是滤波器采样速率的分数. 2.5 眼图分析眼图是指利用实验的方法估计和改善(通过调整)传输系统性能时在示波器上观察到的一种图形.观察眼图的方法是:用一个示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形像人的眼睛,故称为“眼图”.从“眼图”上可以观察出码间串扰和噪声的影响,从而估计系统优劣程度.另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能.眼图的“眼睛” 张开的大小反映着码间串扰的强弱.“眼睛”张的越大,且眼图越端正,表示码间串扰越小;反之表示码间串扰越大当存在噪声时,噪声将叠加在信号上,观察到的眼图的线迹会变得模糊不清.若同时存在码间串扰,“眼睛”将张开得更小.与无码间串扰时的眼图相比,原来清晰端正的细线迹,变成了比较模糊的带状线,而且不很端正.噪声越大,线迹越宽,越模糊;码间串扰越大,眼图越不端正.眼图对于展示数字信号传输系统的性能提供了很多有用的信息:可以从中看出码间串扰的大小和噪声的强弱,有助于直观地了解码间串扰和噪声的影响,评价一个基带系统的性能优劣;可以指示接收滤波器的调整,以减小码间串扰.(1) 最佳抽样时刻应在“眼睛” 张开最大的时刻.(2) 对定时误差的灵敏度可由眼图斜边的斜率决定.斜率越大,对定时误差就越灵敏. 在抽样.(3) 时刻上,眼图上下两分支阴影区的垂直高度,表示最大信号畸变.眼图中央的横轴位置应对应判决门限电平.(4) 在抽样时刻上,上下两分支离门限最近的一根线迹至门限的距离表示各相应电平的噪声容限,噪声瞬时值超过它就可能发生错误判决.(5) 对于利用信号过零点取平均来得到定时信息的接收系统,眼图倾斜分支与横轴相交的区域的大小,表示零点位置的变动范围,这个变动范围的大小对提取定时信息有重要的影响.2.6 误码率分析对于二进制双极性信号,假设它在抽样时刻的点平取值为+A或-A(分别对应信码“1或“0”),在-A 和+A之间选择一个适当的电平V d作为判决门限,根据判决准则将会出现以下几种情况:(1) 对“1”码:当X>V d,判为“1”码(正确);当X<V d,判为“0”码(错误).(2) 对“0”码:当X<V d,判为“0”码(正确);当X>V d,判为“1”码(错误).假设信源发送“1”码的概率为P(1),发送“0”码的概率为P(0),则二进制基带传输系统的总误码率Pe= P(1) P(0/1)+ P(0) P(1/0) 其中P(0/1)= P(X<V d),P(1/0) = P(X>V d)3参数的设定(1)模拟信源:正弦函数,频率fs=10hz,幅度A=1V;。
Matlab/Simulink通信系统建模与仿真实例分析教学设计一、教学目标本课程旨在通过【Matlab/Simulink通信系统建模与仿真实例分析】的教学,使学生掌握如下知识和能力:1.了解数字通信系统基本概念及其发展过程;2.掌握数字通信系统的建模方法和仿真技术;3.能够通过实例分析,掌握数字通信系统的性能分析方法;4.能够设计数字通信系统并进行仿真。
二、教学内容1. 数字通信系统概述•数字通信系统基本概念•数字通信系统的应用领域及其发展历程2. 数字通信系统建模方法•数字信号的基本特性•采样、量化和编码的基本原理•数字调制技术•误差控制编码技术3. 数字通信系统的仿真技术•Simulink仿真环境的基本概念和使用方法•通信系统仿真模型设计方法4. 数字通信系统的性能分析方法•常见数字通信系统的性能参数及其定义•数字通信系统的误码率分析方法5. 数字通信系统设计与仿真实例分析•基于Matlab/Simulink的通信系统建模和仿真实例分析三、教学方法本课程采用主题讲授和案例分析相结合的教学模式。
主要教学方法包括:1.讲授:教师通过课堂讲解授予基本概念、原理和技术,并采取案例分析的方法,使学生逐步领悟和掌握学习内容。
2.实验:采用Matlab/Simulink仿真软件进行数字通信系统建模和仿真实验。
3.课堂讨论:设计选题和应用实践案例的课堂讨论。
四、教学评估本课程的教学评估主要通过期末考试、实验报告和作业完成情况来进行。
1. 期末考试期末考试采用闭卷考试形式,主要测试学生对数码通信系统理论的掌握情况,考核内容覆盖课程中所讲述的主要内容。
2. 实验报告实验报告要求学生通过Matlab/Simulink仿真软件对数字通信系统进行建模和仿真,并撰写学习笔记和所完成实验的结果分析。
3. 作业完成情况教师将根据课堂讨论和布置的作业对学生的学习情况进行评估。
五、教学资源教师将为本课程提供以下教学资源:1.选取优秀的课程设计案例,供学生进行仿真和分析;2.为学生提供Matlab/Simulink仿真软件的操作指导和优秀的资源链接。
通信系统设计仿真软件通信系统设计仿真软件是指一种通过计算机模拟通信系统性能的工具。
它可以模拟整个通信系统,包括信源、信道、接收机等,并支持各种不同类型的信号,例如模拟信号、数字信号、频带受限信号等。
这种软件通常用于设计和优化新型通信系统,并且在通信工程师的日常工作中也扮演着重要的角色。
首先,通信系统设计仿真软件在通信系统设计方面具有重要作用。
通过使用这种软件,工程师可以快速创建并评估各种通信系统的性能,包括信噪比、误码率、带宽利用率、传输速度等等。
这能够大大缩短设计周期,避免在实际测试中浪费时间和资源。
另外,通过对仿真数据的分析,工程师可以更好地理解信道特性,从而做出更明智的决策。
其次,通信系统设计仿真软件对于新型通信技术的开发和测试也非常有用。
随着通信技术的不断进步,越来越多的新型技术被开发出来,其中一部分需要在高噪声环境下进行测试。
这时,使用通信系统设计仿真软件可以模拟各种不同的环境,包括高噪声、高速移动等等,从而评估新技术的性能。
通过这种方法,工程师可以快速找到新技术的优势和缺点,并对其进行进一步的改进。
第三,通信系统设计仿真软件也非常有用在通信系统故障诊断和维护方面。
经常出现在通信系统中的故障,例如误码率过高、信号丢失等等问题,通常是由于系统中某个部件的故障或拓扑结构错误所引起。
通过使用仿真软件,工程师可以快速定位故障,并推断出可能的原因。
这种方法可以大大缩短通信系统故障排除时间,并避免在实际测试中浪费时间和资源。
最后,通信系统设计仿真软件也用于教育和培训。
通信系统是复杂的,设计仿真软件的使用需要深入的理解和技巧。
因此,越来越多的通信工程师和学生使用仿真软件进行培训和学习。
这种仿真软件在教学中的优点包括:提供一个安全、低成本和可重复的实验平台,支持实时数据采集和分析,并提供可视化的数据展示和实验结果。
总之,通信系统设计仿真软件在通信系统设计、新技术开发、故障排查和教育培训等方面都有着广泛的应用和优势。
.. .信电学院通信工程专业CDIO二级项目项目设计说明书(2010/2011学年第二学期)项目名称:通信系统仿真题目:基于Simulink的数字通信系统仿真专业班级:通信工程09-1班学生:------学号:09-----指导教师:----设计周数:1周设计成绩:2011年7月8日目录1项目设计的目的 (3)1.1任务要求 (3)1.2项目目的....................................................................................................... .3 2系统设计正文 (3)2.1系统分析 (3)2.1.1数字通信系统主要原理 (3)2.1.2数字通信系统模型的建立 (6)2.2系统设计 (6)2.3实验结果 (7)2.3.1仿真结果 (7)2.3.2结果分析 (10)3设计总结 (10)4参考文献 (11)1 项目设计的目的 1.1任务要求(1)对数字通信系统主要原理和技术进行研究,包括二进制相移键控(2PSK )及解调技术和高斯噪声信道原理等。
(2)建立数字通信系统数学模型;(3)建立完整的基于2PSK 的模拟通信系统模型; (4)对系统进行仿真、分析。
1.2项目目的通过我们对本学期课程的学习和理解,综合运用课本中所学到的理论知识完成通信系统模型的设计。
以及锻炼我们查阅资料的能力,数字信号的simulink 建模仿真能力。
学会简单电路的实验调试和测试方法,增强我们的动手能力。
为以后学习和工作打下基础。
2系统设计正文 2.1系统分析2.1.1数字通信系统主要原理 (1)二进制相移键控(2PSK )原理在二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散变化时,则产生二进制移相键控(2PSK)信号。
通常用已调信号载波的 0°和 180°分别表示二进制数字基带信号的 1 和 0。
基于SystemView的数字通信系统的仿真设计引言通信的根本任务是远距离传输信息,准确地传输数字通信中的一个重要环节。
设计数字传输系统的基本考虑是选择一组有限的离散波形来表示数字信息。
这些离散波形可以是未经调制的不同电平信号,也可以是调制后的信号形式。
由于未经调制的脉冲电信号所占据的频带通常从直流和低频开始,因而称为数字基带信号。
在某些有线信道中,数字基带信号可以直接传输,这种传输方式称为数字信号的基带传输;而在另外一些信道想,数字基带信号必须经过调制,将信号频谱搬移到高频段才能在信道中传输,然后在收端用解调器把信道中传输的已调信号还原成基带信号,这种传输方式称为数字信号的频带传输(或载波传输)。
基带传输包含着数字通信技术的许多问题,频带传输是基带信号调制后再传输的,因此频带传输也存在基带问题,基带传输的许多问题,频带传输同样需考虑。
如果把调制与解调过程看做是广义信道的一部分,则任何数字传输系统均可等效为基带传输系统。
理论上还可证明,任何一个采用线性调制的频带传输系统,总可以由一个等效的基带传输系统来代替。
下面我们将介绍一些解决数字通信系统中的实际问题的一些方法。
第1章课程设计目的和要求及原理1.1 本课程设计的目的(1)使学生掌握系统各功能模块的基本工作原理;(2)培养学生掌握电路设计的基本思路和方法;(3)能提高学生对所学理论知识的理解能力;(4)能提高和挖掘学生对所学知识的实际应用能力和创新能力;(5)提高学生的科技论文写作能力。
1.2 课程设计的任务及要求1)基本要求:(1)学习SystemView仿真软件;(2)对需要仿真的通信系统各功能模块的工作原理进行分析;(3)提出系统的设计方案,选择合适的模块;(4)对所设计系统进行仿真;(5)并对仿真结果进行分析。
2)创新要求:在基本要求达到后,可进行创新设计,完善系统的性能。
3)课程设计论文编写要求:(1)要按照书稿的规格打印誊写课程设计论文;(2)论文包括目录、绪论、正文、小结、参考文献、谢辞、附录等;(3)课程设计论文装订按学校统一要求完成。
通信系统仿真课程设计一、课程设计概述通信系统仿真课程设计是通信工程专业的重要课程之一,旨在通过实践操作,让学生掌握通信系统仿真的基本原理、方法和技能。
本课程设计涉及到多个学科领域,如数字信号处理、模拟电路设计、通信原理等。
二、课程设计目标1.了解通信系统仿真的基本原理和方法;2.掌握Matlab软件的使用;3.熟悉数字信号处理和模拟电路设计;4.能够运用所学知识,完成一个简单的通信系统仿真实验。
三、课程设计内容1.数字信号处理(1)采样定理(2)离散傅里叶变换(3)数字滤波器设计2.模拟电路设计(1)放大器电路(2)滤波器电路(3)混频器电路3.通信原理(1)调制与解调技术(2)误码率分析(3)传输链路建立与维护4.Matlab软件使用(1)Matlab基础语法(2)Matlab图像绘制(3)Matlab数据处理与分析四、课程设计步骤1.确定仿真系统的需求和设计目标;2.搜集相关资料,了解仿真系统的基本原理和方法;3.进行仿真系统的设计和实现,包括数字信号处理、模拟电路设计、通信原理等方面;4.对仿真结果进行分析和评估,得出结论;5.撰写课程设计报告。
五、课程设计案例以一个简单的调制解调系统为例,介绍通信系统仿真课程设计的具体步骤。
1.需求分析设计一个基于QPSK调制解调技术的通信系统,要求实现以下功能:(1)产生随机比特序列并进行QPSK调制;(2)添加高斯白噪声并计算误码率;(3)对接收信号进行QPSK解调,并恢复原始比特序列。
2.搜集资料了解QPSK调制解调技术的基本原理和方法,学习Matlab软件的使用方法。
3.系统设计(1)产生随机比特序列并进行QPSK调制利用Matlab软件生成随机比特序列,并将其转换为QPSK符号。
通过画图工具绘制星座图,观察符号分布情况。
(2)添加高斯白噪声并计算误码率在发送信号中添加高斯白噪声,模拟信道的干扰。
通过误码率分析工具计算误码率。
(3)对接收信号进行QPSK解调,并恢复原始比特序列利用Matlab软件对接收信号进行QPSK解调,得到恢复后的比特序列。
数字通信仿真课程设计一、教学目标本课程旨在通过数字通信仿真课程设计,让学生掌握数字通信的基本原理和仿真方法,培养学生运用数字通信理论知识解决实际问题的能力。
1.了解数字通信的基本概念、原理和仿真技术。
2.掌握数字信号处理、信道编码、调制解调等基本技术。
3.熟悉数字通信系统的性能评估和优化方法。
4.能够运用数字通信理论知识分析和解决实际问题。
5.具备使用仿真软件进行数字通信系统设计和仿真的能力。
6.能够撰写规范的实验报告,对实验结果进行分析和讨论。
情感态度价值观目标:1.培养学生对数字通信技术的兴趣和热情,提高学生的人文素养。
2.培养学生团队协作、创新精神和实践能力。
3.使学生认识到数字通信技术在现代社会中的重要性和应用价值。
二、教学内容本课程的教学内容主要包括数字通信基本原理、数字信号处理、信道编码、调制解调、数字通信系统性能评估和优化等。
1.数字通信基本原理:介绍数字通信的基本概念、优点和缺点,了解数字通信系统的基本组成。
2.数字信号处理:学习数字信号的采样、量化、编码和恢复等基本过程,掌握数字信号处理的原理和方法。
3.信道编码:学习信道编码的原理和常用编码方案,如汉明码、奇偶校验码、卷积码等。
4.调制解调:掌握数字调制解调的基本原理和方法,如ASK、FSK、PSK、QAM等。
5.数字通信系统性能评估和优化:学习数字通信系统的性能评估指标,如误码率、信噪比等,掌握系统优化的方法。
三、教学方法本课程采用讲授法、讨论法、案例分析法和实验法等多种教学方法,以激发学生的学习兴趣和主动性。
1.讲授法:通过讲解数字通信基本原理、技术和应用,使学生掌握相关理论知识。
2.讨论法:学生针对数字通信领域的热点问题进行讨论,培养学生的思考和表达能力。
3.案例分析法:分析数字通信系统的实际案例,使学生更好地理解理论知识在实际中的应用。
4.实验法:通过数字通信仿真实验,培养学生动手能力和实际问题解决能力。
四、教学资源本课程的教学资源包括教材、参考书、多媒体资料和实验设备等。
[实验四] 数字基带传输系统
一、实验目的
1、掌握数字基带信号传输的无失真条件。
2、掌握奈奎斯特第一准则。
3、掌握通过眼图分析法来衡量基带传输系统性能的方法。
二、实验内容
1、学习掌握数字基带信号传输的无失真条件。
2、通过仿真验证奈奎斯特第一准则。
3、通过仿真观测系统眼图。
三、实验结果分析
实验内容1:验证奈奎斯特第一准则仿真原理图:
图4-1验证奈奎斯特第一准则仿真原理图结果如下:
图4-2 输入信号的波形
图4-3 输出信号的波形
图4-4 输入信号与输出信号的波形叠加
图4-5 经过升余弦滤波器整形后的信号波形
图4-6 经过升余弦滤波器整形后的信号与原信号的叠加波形
结果分析:由输入信号与输出信号的波形叠加可观察到收发波形基本一致,加入一定幅度的噪声仍然能正常传输,奈奎斯特第一准则得到验证。
改变噪声幅度,错误波形可能增多。
实验内容2:用于观察眼图的基带传输系统仿真原理图:
结果如下:
图4-8 二元码眼图(噪声幅度为0.1V)
图4-9 二元码眼图(噪声幅度为1V)
图4-10 三元码眼图
图4-11 四元码眼图
结果分析:增大噪声幅度,眼图的“眼睛”张开的幅度变小,二进制信号传输时的眼图只有
一只“眼睛”,当传输三元码时,会显示两只“眼睛”,传输四元码时,会显示三只“眼睛”。
实验十数字通信系统误码率仿真分析一、实验目的1)掌握几种典型数字通信系统误码率的分析方法。
2)掌握误码率对数字通信系统的影响及改进方法。
二、实验内容1)编写MATLAB程序,以QAM系统为例进行误码率的仿真。
2)观察不同噪声及噪声大小对误码率的影响。
3)分析影响误码率变化的因素并提出解决方法。
4)将分析方法推广到其他通信系统并撰写实验报告。
三、实验代码1、主代码如下:clear;clc;%用来仿真QAM的误比特率snr=1:1:11;%先来计算理论误比特率error_theory=(1-(1-(2*(1-1/sqrt(16))*1/2*erfc(1/sqrt(2)*sqrt(3*4*10.^(snr/10)/( 16-1))))).^2)/4;semilogy(snr,error_theory,'-+r');grid on%用理论的误比特率来决定需要仿真的点数N=floor(1./error_theory)*100+100; %floor表示整数N(find(N<5000))=5000;%开始仿真p=0.5; %产生1的概率for i=1:length(N);%首先产生随机二进制序列source=randsrc(1,N(i),[1,0;p,1-p]);%对产生的二进制序列进行QAM调制[source1,source2]=Qam_modulation(source);%插值sig_insert1=insert_value(source1,8);sig_insert2=insert_value(source2,8);[source1,source2]=rise_cos(sig_insert1,sig_insert2,0.25,2);%将滤波后的信号加入高斯白噪声[x1,x2]=generate_noise(source1',source2',snr(i));sig_noise1=x1';sig_noise2=x2';[sig_noise1,sig_noise2]=rise_cos(sig_noise1,sig_noise2,0.25,2);[x1,x2]=pick_sig(sig_noise1,sig_noise2,8);sig_noise1=x1;sig_noise2=x2;%解调signal=demodulate_sig(sig_noise1,sig_noise2);%计算误比特率error_bit(i)=length(find(signal-source)~=0)/N(i);end;%画出图形semilogy(snr,error_bit,'-*b');hold onsemilogy(snr,error_theory,'-+r');grid onlegend('实际值','理论值','location','NorthEast');2、调用的函数:1)QAM调制函数%QAM调制函数function [yy1,yy2]=Qam_modulation(x)%对产生的二进制序列进行QAM调制%首先进行串并转换,将原二进制序列转换成两路信号N=length(x);a=1:2:N;y1=x(a);y2=x(a+1);%分别对两路信号进行QPSK调制%对两路信号分别进行2~4电平转换a=1:2:N/2;temp11=y1(a);temp12=y1(a+1);y11=temp11*2+temp12;temp21=y2(a);temp22=y2(a+1);y22=temp21*2+temp22;%对两路信号分别进行相位调制yy1(find(y11==0))=-3;yy1(find(y11==1))=-1;yy1(find(y11==3))=1;yy1(find(y11==2))=3;yy2(find(y22==0))=-3;yy2(find(y22==1))=-1;yy2(find(y22==3))=1;yy2(find(y22==2))=3;2)解调函数%QAM解调函数function y=demodulate_sig(x1,x2);%x1=[3 -1 -3 1];%x2=[-3 1 3 -1];xx1(find(x1>=2))=3;xx1(find((x1<2)&(x1>=0)))=1;xx1(find((x1>=-2)&(x1<0)))=-1;xx1(find(x2<-2))=-3;xx2(find(x2>=2))=3;xx2(find((x2<2)&(x2>=0)))=1;xx2(find((x2>=-2)&(x2<0)))=-1;xx2(find(x2<-2))=-3;%xxx1=xx1%xxx2=xx2temp1=zeros(1,length(xx1)*2);temp1(find(xx1==-1)*2)=1;temp1(find(xx1==1)*2-1)=1;temp1(find(xx1==1)*2)=1;temp1(find(xx1==3)*2-1)=1;temp2=zeros(1,length(xx2)*2);temp2(find(xx2==-1)*2)=1;temp2(find(xx2==1)*2-1)=1;temp2(find(xx2==1)*2)=1;temp2(find(xx2==3)*2-1)=1;%x11=temp1%x22=temp2n=length(temp1);for i=1;2;2*n-1y(i)=temp1((i+1)/2);y(i+1)=temp2((i+1)/2);end3)叠加高斯噪声函数function [y1,y2]=generate_noise(x1,x2,snr)%叠加高斯噪声snr1=snr+10*log10(4);%符号信噪比ss=var(x1+i*x2,1);y=awgn([x1+j*x2],snr1+10*log10(ss/10),'measured'); y1=real(y);y2=imag(y);4)插值函数function y=insert_value(x,ratio)%对两路信号进行插值y=zeros(1,ratio*length(x));a=1:ratio:length(y);y(a)=x;5)升余弦滤波函数function [y1,y2]=rise_cos(x1,x2,fd,fs)%升余弦滤波[yf,tf]=rcosine(fd,fs,'fir/sqrt');[yo1,to1]=rcosflt(x1,fd,fs,'filter/Fs',yf);[yo2,to2]=rcosflt(x2,fd,fs,'filter/Fs',yf);y1=yo1;y2=yo2;6)采样函数function [y1,y2]=pick_sig(x1,x2,ratio)%采样y1=x1(ratio*3*2+1:ratio:(length(x1)-ratio*3*2));y2=x2(ratio*3*2+1:ratio:(length(x2)-ratio*3*2));四、实验结果。
西南石油大学“通信工程2012级专业综合实践”报告报告题目:数字通信系统仿真和实现学院:电气信息学院作者:联系方式:****:**完成日期 2016年 1月 12日一、设计任务(1)通过使用MATLAB中的SIMULINK仿真平台,搭建了仿真模型,来对比分析通信系统的性能,设计要求:选择2种以上合适的调制方式;选用2种以上噪声信道;选择2种以上的信源编码方式;选用2种以上的信道编码方式。
性能分析要求:比较不同信源、信道编码方式对系统的影响;比较噪声信道变化时对系统的影响;比较不同的信道带宽对系统的影响;比较不同调制方法对系统的影响。
性能指标包括:误码率、传输速率、流量。
(2)通过编写MATLAB程序,实现仿真中的具体调制方式、信源编码和信道编码。
二、设计原理图1 数字通信系统模型数字通信系统是利用数字信号来传递信息的通信系统,如图1所示。
它的主要组成结构为信源编/译码器、加密/解密模块、信道编/译码器,数字调制/解调器和信道。
由信源编码器输出的二进制数字序列成为信息序列,信源编码的主要目的其一是减少码元数目,降低码元速率,提高通信的有效性,其二可以使模拟信号数字化进行传输。
之后它传送到加密模块,信息序列通过加密模块主要是为了保证通信的安全。
加密后的序列送入信道编码器。
信道编码器的目的是在二进制信息序列中以受控的方式引入一些冗余,以便于在接收机中用来克服信号在信道中传输时所遭受的噪声和干扰的影响。
因此,所增加的冗余是用来提高接收数据的可靠性以及改善接受信号的逼真度的。
三、设计软件Simulink是MATLAB中的一种可视化仿真工具,是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。
Simulink可以用连续采样时间、离散采样时间或两种混合的采样时间进行建模,它也支持多速率系统,也就是系统中的不同部分具有不同的采样速率。
为了创建动态系统模型,Simulink提供了一个建立模型方块图的图形用户接口(GUI) ,这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。
四、设计方案(一)信源编码本次设计分别采用两种时间波形编码,一是A律PCM脉冲编码调制,二是μ律PCM 脉冲编码调制。
1.非均匀量化非均匀量化是根据喜好的不同区间来确定量化间隔的。
对于信号取值小的区间,其量化间隔也小;反之,量化间隔就越大。
非均匀量化是一种在整个动态范围内量化间隔不相等的量化。
换言之,非均匀量化是根据输入信号的概率密度函数来分部量化电平,以改善量化性能。
与均匀量化相比,有两个主要优点:(1)当输入量化器的信号具有非均匀分布的概率密度时,非均匀量化器的输出端可得较高的平均信号量化噪声功率比。
(2)非均匀量化时,量化噪声功率的均方根值基本上与信号抽样值成比例。
因此,量化噪声对大小信号的影响大致相同,即改善了小信号时的量化信噪比。
通常使用的压缩器中,大多采用对数式压缩,即y=ln x。
广泛采用的两种对数压缩特性是μ律压缩和A律压缩。
美国采用μ律压缩,我国和欧洲各国均采用A律压缩,下面分别讨论两种压缩的原理。
2.A律压扩A律压缩的压缩特性为y={Ax1+lnA,1≤x≤1A(a)1+lnAx 1+lnA ,1A≤x≤1 (b)其中,上式中(b)是A律的主要表达式,但它当x=0时,y→∞,这样不满足对压缩特性的要求,所以当x很小时应对它加以修正。
A为压缩参数,A=1时无压缩,A值越大压缩效果越明显。
在现行的国际标准中A=87.6,此时信号很小时(即小信号时),从上式可以看到信号被放大了16倍,这相当于与无压缩特性比较,对于小信号的情况,量化间隔比均匀量化时减小了16倍,因此,量化误差大大降低;而对于大信号的情况例如x=1/A,量化间隔比均匀量化时增大了5.47倍,量化误差增大了。
A律压缩通常采用13折线来近似。
3.μ律压扩μ律压缩的压缩特性为y=ln (1+μx)ln (1+μ), 0≤x≤1其中,μ是压缩系数,y是归一化的压缩器输出电压,x是归一化的压缩器输入电压。
μ=0时,压缩特性是一条通过原点的直线,故没有压缩效果,小信号性能得不到改善,μ值越大压缩效果越明显,一般当μ=100时,压缩效果就比较理想了。
在国际标准中取μ=255。
μ律一般采用15折线来近似。
(二)信道编码本次设计采用线性分组码与循环码。
1.线性分组码既是线性码又是分组码的码称为线性分组码。
监督码元仅与本组信息码元有关的码称为分组码,监督码元与信息码元之间的关系可以用线性方程表示的码称为线性码。
因此,一个码子中的监督码元只与本码子的信息码元有关,而且这种关系可以用线性方程来表示的就是线性分组码,通常表示为(n,k)。
2.循环码循环码是线性码的一个重要的子类,它有以下两大特点:第一,码的结构可以用代数方法来构造和分析,并且可以找到各种实用的译码方法;第二,由于其循环特性,编码运算和伴随式计算,可用反馈移位寄存器来实现,硬件实现简单。
(三)通信信道信道是通信系统的基本环节之一。
在通信系统中,发送端产生的数据通过信源编码和信号调制转化成调制信号,然后进入信道。
这些调制信号通过信道到达接收端,在接收端通过与发送端相反的过程得到原始数据。
系电脑的传输质量影响着信号的接收和解调。
1.加性高斯白噪声信道如果噪声的取值服从零均值高斯分布,而任意不同时刻的取值互相独立,则称这样的噪声信号为高斯白噪声(AWGN)。
高斯白噪声的自相关函数为一个冲激函数,其功率谱密度函数为常数。
2.瑞利衰落信道瑞利衰落信道是一种无线电信号传播环境的统计模型。
这种模型假设信号通过无线信道之后,其信号幅度是随机的,即“衰落”,并且其包络服从瑞利分布。
这一信道模型能够描述由电离层和对流层反射的短波信道,以及建筑物密集的城市环境。
12瑞利衰落只适用于从发射机到接收机不存在直射信号(LoS,Line of Sight)的情况,否则应使用莱斯衰落信道作为信道模型。
(四)数字调制数字调制是现代通信的重要方法,它与模拟调制相比有许多优点。
数字调制具有更好的抗干扰性能,更强的抗信道损耗,以及更好的安全性;数字传输系统中可以使用差错控制技术,支持复杂信号条件和处理技术,如信源编码、加密技术以及均衡等。
1.二进制相移键控(BPSK)BPSK二进制相移键控。
是把模拟信号转换成数据值的转换方式之一,利用偏离相位的复数波浪组合来表现信息键控移相方式。
BPSK使用了基准的正弦波和相位反转的波浪,使一方为0,另一方为1,从而可以同时传送接受2值(1比特)的信息。
2.二进制查分相移键控(DBPSK)DBPSK信号的产生方法是先对基带信号进行查分编码得到差分码,在对差分码进行BPSK调制。
五、设计过程及分析(一)不同信源编码信源编码分别采用A律压扩与μ律压扩。
输入正弦模拟信号,采用bpsk调制,crc循环冗余校验码,输出误码率曲线。
整体框图如下图5-1示图5-1Signal generator 设为正弦波,频率幅度均为1。
如下图5-2示:图5-2Subsystem为信源编码模块,A律压缩如下图5-3示,μ律压缩如下图5-4示。
图5-3图5-4加性高斯白噪声信道设置如下图5-5示图5-5示波器输出波形,A律压缩如图5-6示,μ律压缩如图5-7示:图5-6图5-7输出误码率曲线如下图5-8所示:图5-8示(二)不同信道编码信道编码分别采用线性分组码与CRC循环冗余校验码,信源输入如前文A 律压扩一致,系统框图如前文图5-1一致,改为使用线性分组码,如图5-9示。
图5-9线性分组码示波器输出如图5-10示。
图5-10输出误码律曲线如图5-11示:图5-11(三)不同调制方式数字调制方式分别采用bpsk和dbpsk,信源编码为A律压扩的pcm编码,信道编码采用CRC,系统框图如图5-12示图5-12示波器输出如图5-13示:图5-13输出误码率曲线如图5-14示:图5-14(四)不同噪声信道噪声信道分别采用加性高斯白噪声信道和加性高斯白噪声+莱斯衰落信道,信源编码同前采用A律pcm编码,信道编码采用CRC,数字调制方式为BPSK,系统框图如下图5-15示。
图5-15示波器输出如图5-16示:图5-16误码率曲线如图5-17所示:图5-17(五)性能分析由前文讨论可以看出A律压缩性能好于μ律压扩,线性分组码性能好于CRC码,BPSK调制优于DBPSK,加入莱斯衰落后对于系统影响较大。
当然,通信系统的性能受多种因素影响,需要综合考虑整个系统所使用的结构。
参考资料:1.张水英《通信原理及MATLAB/Simulink仿真》人民邮电出版社2.张德丰《MATLAB通信工程仿真》机械工业出版社3.樊昌信《通信原理》国防工业出版社。