液晶电光效应实验
- 格式:docx
- 大小:75.28 KB
- 文档页数:4
⼤学物理实验---液晶光电效应实验题⽬:液晶电光效应实验⽬的:1、在掌握液晶光开关的基本⼯作原理的基础上,测量液晶光开关的电光特性曲线;2、观察液晶光开关的时间响应曲线,并求出液晶的上升时间和下降时间;3、测量液晶显⽰器的视⾓特性;4、了解⼀般液晶显⽰器件的⼯作原理。
实验原理:TN型液晶光开关⼯作原理两张偏振⽚贴于玻璃的两⾯,上下电极的定向⽅向相互垂直,P1的透光轴与上电极的定向⽅向相同,P2的透光轴与下电极的定向⽅向相同,于是P1和P2的透光轴相互正交。
在未加驱动电压的情况下,来⾃光源的⾃然光经过偏振⽚P1后只剩下平⾏于透光轴的线偏振光,该线偏振光到达输出⾯时,其偏振⾯旋转了90°。
这时光的偏振⾯与P2的透光轴平⾏,因⽽有光通过。
(见原理⽰意图)当施加⾜够电压时(⼀般为1~2伏),在静电场的作⽤下,液晶分⼦趋于平⾏于电场⽅向排列。
原来的扭曲结构被破坏,从P1透射出来的偏振光的偏振⽅向在液晶中传播时不再旋转,保持原来的偏振⽅向到达下电极。
这时光的偏振⽅向与P2正交,因⽽光被关断。
由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常⽩模式。
液晶光开关电光特性曲线液晶驱动电压和时间响应曲线实验步骤:1、校准透过率为100%,2、液晶电光特性的测量:静态模式下使电压从0v到6v记录相应的透射率。
绘制电光曲线图求出阈值电压与关断电压。
3、液晶时间特性曲线测定:静态闪烁状态,透过率为100%,电压为2v,由⽰波器观察到驱动电压波形及时间特性曲线,并求出上升时间与下降时间。
4、液晶视⾓特性的测量(1) ⽔平视⾓的测量电压在0v下,⾓度从-75度⾄+75度,读出每⼀⾓度下透射率的最⼤值。
电压在2v下,⾓度从-75度⾄+75度,读出每⼀⾓度下透射率的最⼩值。
计算对⽐度,绘制曲线图。
(2) 垂直视⾓的测量(同上)电压在0v下,⾓度从-75度⾄+75度,读出每⼀⾓度下透射率的最⼤值。
液晶电光效应实验报告一、实验目的1.通过实验观察液晶电光效应现象,并了解其基本原理;2.掌握液晶显示屏的工作原理和性能特点;3.了解液晶材料的应用领域。
二、实验仪器与材料1.液晶显示器2.外接电源3.实验电路连接线4.直流电压源三、实验原理四、实验步骤1.将液晶显示器与外接电源连接,确保电源正常工作;2.调节电源输出电压,使液晶显示器正常显示;3.逐渐调节电压,观察液晶显示器的显示变化;4.记录电压与显示效果之间的关系。
五、实验结果与分析根据实验记录,我们可得到以下实验结果:1.在无外电场作用下,液晶显示器显示正常;2.当外加电压逐渐增加时,液晶显示器出现逐渐变暗的现象;3.当外加电压达到一定值时,液晶显示器完全变暗。
根据实验结果,我们可以得出以下分析:1.无外电场作用时,液晶分子自由排列,光线可以正常透过;2.外加电压会改变液晶分子的排列方向,导致光线透过程度变化;3.随着电压的增加,液晶分子排列更趋于垂直方向,使得光线几乎无法透过,导致显示变暗。
六、实验结论通过本次实验,我们得到了以下结论:1.外加电场可以改变液晶分子的排列方向,从而改变液晶显示器的显示效果;2.液晶显示器可以通过改变电压来控制光的透过程度,实现显示效果;3.液晶电光效应在液晶显示器等设备中有广泛的应用。
七、实验心得通过这次实验,我深入了解了液晶电光效应的原理和应用。
液晶电光效应是现代光电技术中非常重要的一部分,广泛应用在液晶显示器、液晶电视等设备上。
了解和掌握液晶电光效应的基本原理对于学习液晶显示器等设备的工作原理和性能特点非常有帮助。
实验过程中,我学会了正确连接电路和使用电压源,同时也注意到了实验过程中的细节和注意事项。
通过实际操作,我更加深入地理解了液晶电光效应的原理和应用。
通过实验报告的撰写,我进一步加深了对实验结果的理解和分析,提高了实验报告的写作能力。
总的来说,本次实验使我受益匪浅,对液晶电光效应有了更为具体的认识。
液晶电光效应实验报告【实验目的】1.在掌握液晶光接点的基本掌握工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。
2.测量驱动力电压周期变化时,液晶光开关的时间器件响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。
3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。
4.了解液晶共同组成光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。
【实验仪器】液晶电光效应实验仪一台,液晶片一块【实验原理】1.液晶光开关的工作基本概念液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。
TN型光开关的结构:在两块玻璃板之间夹有正性取见向列相液晶,液晶水分子的形状如同火柴截叶一样,为棍状。
棍的长度在十几帕(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。
透明玻璃板的内表面涂有透明线圈,电极的表面预先作了定向处理(可用软绒布朝一个大方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子电容器按一定方向排列,且上下电极上的定向方向相互垂直。
上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。
然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下才电极的沿+45度方向排列,整个扭曲了90度。
理论和实验都确证,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。
取两张偏振片六面贴在玻璃的两面,P1的透光较厚轴与上时电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。
【实验目的】1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。
2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。
3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。
4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。
【实验仪器】液晶电光效应实验仪一台,液晶片一块【实验原理】1.液晶光开关的工作原理液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。
TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。
棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。
玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。
上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。
然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。
理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。
取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。
在未加驱动电压的情况下,来自光源的自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。
一、实验目的1. 了解液晶的基本特性和电光效应原理。
2. 掌握液晶电光效应的实验方法与操作步骤。
3. 分析液晶电光效应的实验数据,得出结论。
4. 理解液晶在光显示技术中的应用。
二、实验原理液晶是一种介于液体与固体之间的特殊物质,具有流动性、各向异性和光学各向异性等特性。
液晶的电光效应是指液晶分子在外电场作用下,其排列方向发生变化,从而导致光学性质发生改变的现象。
当液晶分子受到外电场作用时,分子会沿着电场方向排列,从而改变液晶的折射率。
这种折射率的变化会导致液晶对光的传播方向产生偏转,从而实现光调制。
三、实验器材1. 液晶盒2. 偏振片3. 电源4. 光源5. 光电探测器6. 信号发生器7. 示波器四、实验步骤1. 将液晶盒、偏振片、光源、光电探测器和信号发生器连接成实验电路。
2. 打开电源,调节信号发生器输出频率和幅度。
3. 观察光电探测器接收到的光信号,记录数据。
4. 改变液晶盒两端的电压,观察光电探测器接收到的光信号变化,记录数据。
5. 重复步骤3和4,分别记录不同电压下的光信号数据。
五、实验结果与分析1. 实验结果通过实验,我们得到了不同电压下液晶盒的光信号数据,如下表所示:| 电压/V | 光信号强度/au || ------ | -------------- || 0 | 1.0 || 1 | 0.8 || 2 | 0.6 || 3 | 0.4 || 4 | 0.2 || 5 | 0.1 |2. 结果分析根据实验数据,我们可以得出以下结论:(1)随着电压的增加,液晶盒的光信号强度逐渐减弱,说明液晶的电光效应随着电场强度的增加而增强。
(2)当电压为0V时,光信号强度最大,说明此时液晶盒处于正常状态,液晶分子排列整齐,对光的调制作用较弱。
(3)随着电压的增加,液晶分子排列逐渐混乱,对光的调制作用逐渐增强,导致光信号强度减弱。
六、实验总结本次实验成功地验证了液晶的电光效应,并得到了相应的实验数据。
液晶的电光效应实验报告液晶的电光效应实验报告引言液晶是一种特殊的物质,具有晶体和液体的特性。
它在电场的作用下会发生电光效应,这一现象在现代科技领域中有着广泛的应用。
本实验旨在研究液晶的电光效应,并探究其在液晶显示器等设备中的应用。
实验材料与仪器本实验所需材料包括液晶样品、电源、电极板、电压调节器等。
实验仪器包括显微镜、光源、示波器等。
实验步骤1. 准备工作:将液晶样品放置在显微镜下,调节显微镜的焦距,使样品清晰可见。
2. 搭建电路:将电源与电极板连接,通过电压调节器调节电压大小。
3. 观察现象:逐渐增加电压,观察液晶样品的变化。
记录不同电压下的观察结果。
4. 测量光强:使用光源照射液晶样品,通过示波器测量光强的变化。
记录不同电压下的光强数值。
实验结果与分析在实验过程中,我们观察到了液晶样品的电光效应。
随着电压的增加,液晶样品的透明度发生了明显的变化。
当电压较小时,液晶样品呈现出较高的透明度;而当电压较大时,液晶样品的透明度明显降低。
这种变化是由于电场的作用导致液晶分子的排列发生改变,进而影响了光的传播。
通过测量光强的变化,我们发现随着电压的增加,光强逐渐减小。
这是因为在电场的作用下,液晶分子的排列发生了改变,使得光的传播受到阻碍,从而导致光强减小。
这一现象在液晶显示器中得到了广泛的应用,通过调节电压,可以控制液晶的透明度,从而实现图像的显示和隐藏。
液晶的电光效应是基于液晶分子的特殊排列结构。
液晶分子具有长而细长的形状,可以自由旋转和移动。
在无电场作用下,液晶分子呈现出无序排列的液态状态;而在电场作用下,液晶分子会被电场所约束,呈现出有序排列的晶态状态。
这种有序排列会导致光的传播路径发生改变,从而产生电光效应。
液晶的电光效应在现代科技领域中有着广泛的应用。
最典型的应用就是液晶显示器。
液晶显示器利用液晶的电光效应,通过控制电场的大小和方向,实现图像的显示和隐藏。
液晶显示器具有体积小、能耗低、分辨率高等优点,已经成为了电子产品领域中不可或缺的一部分。
液晶电光效应【实验简介】液晶是介于液体与晶体之间的一种物质状态,即具有液体的流动性,又具有晶体各向异性的特性。
当光通过液晶时,会产生像晶体那样的偏振面旋转及双折射等效应。
液晶分子是含有极性基团的棒状极性分子,在外电场作用下,偶极子会按电场方向取向,使分子原有的排列方式发生变化,从而液晶的光学性质也随之发生改变,这种因外电场引起的液晶光学性质的改变称为液晶电光效应。
液晶电光效应的应用很广,利用液晶电光效应可以做成各种液晶显示器件、光导液晶光阀、光调制器、光路转换开关等,尤其是利用液晶电光效应制成的液晶显示器件,由于具有驱动压低(一般为几伏),功耗小,体积小,寿命长,环保无辐射等优点,在当今各种显示器件的竞争中有独领风骚之势,因此,研究液晶电光效应具有很重要的意义。
常用的液晶显示器件类型有:TFT型(有源矩阵液晶显示)、STN型(超扭曲液晶显示)、TN型(扭曲向列相液晶显示),其中TN型液晶显示器件原理比较简单,是TFT型、STN型液晶显示的基础,因此本实验研究TN型液晶材料,希望通过一些基本现象的观察和研究,对液晶有一个基本了解。
【实验目的】1.了解液晶的结构特点和物理性质。
2.了解液晶电光效应、液晶光开关的工作原理及简单液晶显示器件的显示原理。
3.通过液晶电光特性和时间响应特性曲线的观测,测量液晶的一些性能参数。
【预习思考题】1.扭曲向列相液晶具有那些物理特性,如何利用其电光效应制成液晶光开关?如何利用液晶光开关进行数字、图形显示?2.如何在示波器上显示驱动信号波形和时间响应曲线,如何测量响应曲线的上升时间和下降时间?【实验仪器】液晶盒及液晶驱动电源、二维可调半导体激光器、偏振片(两个)、光功率计、光电二极管探头、双踪示波器、白屏、光学实验导轨及元件底座、钢板尺【实验原理】1.液晶分类大多数液晶材料都是由有机化合物构成的。
这些有机化合物分子多为细长的棒状结构,长度为数nm,粗细约为0.1nm量级,并按一定规律排列。
液晶电光效应实验报告【实验目的】1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。
2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。
3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。
4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。
【实验仪器】液晶电光效应实验仪一台,液晶片一块【实验原理】1.液晶光开关的工作原理液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。
TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。
棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。
玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。
上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。
然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。
理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。
取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。
在未加驱动电压的情况下,来自光源的自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。
液晶电光效应实验(实验报告)
液晶电光效应实验
液晶电光效应是指在液晶分子结构扭曲时,液晶薄膜的透光度发生变化。
实验中,集成了一块液晶屏,将电压施加到液晶屏上,观察液晶屏对应位置的透光度变化,研究该变化规律,以深入加深对液晶电光效应的认识。
实验步骤如下:
1. 首先,将电路连接好,确保液晶屏上各电极连接无误,并检查电源是否已正常供电;
2. 将示波器的波形选择及参数确定好,接入电源,使示波器正常工作;
3. 称取一只仪器,将相应的液晶屏放在支架上,便于观察及调整;
4. 用外加电压试验液晶屏,每次增大一个单位,观察屏幕中每一点的透光度变化;
5.了解液晶屏的电光效应,在变化的电压影响下,调整透光度,并记录实验结果。
实验结果:
实验中,随着外加电压的不断增加,液晶屏中每一点的透光度也越来越低,最低的透光度约为17%左右,而外加电压可达最大值时,液晶屏的透光度大约为50%,可见外加电压对液晶屏的透光度有明显的影响。
实验结论:
根据实验结果可以清楚地看到,通过外加之电压可以有效地控制液晶屏的透光度,而随着外加电压的变化,液晶屏中每一点的透光度也会有相应的变化,从而实现视觉上的效果。
本次实验验证了液晶电光效应的存在,为进一步研究液晶电光效应提供了基础。
液晶电光效应实验报告一、实验目的1.了解液晶的基本原理和电光效应。
2.观察和测量液晶显示器在外加电场作用下的光学性质变化。
3.研究液晶显示器的工作原理。
二、实验仪器和材料1.液晶显示器2.外加电源3.直流稳压电源4.数显万用表5.电源线等三、实验原理液晶电光效应是指液晶因外加电场作用下发生的光学性质变化。
液晶的分子结构使其具有双折射效应,即当无电场作用时,液晶分子排列有序,折射率一致,透过的光线为线偏振光。
而当外加电场作用于液晶时,液晶分子排列发生变化,折射率不一致,透过的光线变为圆偏振光。
四、实验步骤1.将液晶显示器连接好外加电源和电源线,并接通电源使其工作。
2.调节电源输出电压,观察到显示器发出的图案。
3.利用数显万用表测量液晶显示器外加电压和电流。
4.记录显示器上显示的图案在不同电压下的变化情况。
五、实验结果与分析通过实验观察和测量,得到了液晶显示器在不同电压下显示的图案变化情况。
随着外加电压的增加,显示器上显示的图案也发生了变化。
在低电压下,显示器上的图案模糊不清,无法辨认;而在适当的电压范围内,图案变得清晰可辨,颜色也更加鲜艳。
但是当电压过高时,图案又变得模糊。
这种变化是由液晶电光效应引起的。
当电场强度较弱时,液晶分子大致保持有序排列,所以透过的光线呈线偏振光,显示的图案模糊。
当电场强度适中时,液晶分子会重新排列,折射率不一致,透过的光线变为圆偏振光,显示的图案变得清晰。
但是当电场强度过强时,液晶分子排列变得混乱,无法正确解码和显示,导致图案模糊。
六、实验结论通过本次实验,我们对液晶的基本原理和电光效应有了更深入的了解。
液晶显示器在外加电场作用下会发生光学性质的变化,从而实现图案的显示。
为了获得清晰可辨的图案,外加电压必须保持在适当的范围内,过高或者过低的电压都会导致图案模糊不清。
因此,在液晶显示器的使用过程中,要注意调节电压以获得最佳显示效果。
七、实验心得通过本次实验,我深入了解了液晶电光效应的原理和液晶显示器的工作原理。
液晶光电效应实验报告液晶光电效应是指在外加电场作用下,液晶分子发生取向改变,从而导致光学性质的变化。
本次实验旨在通过观察液晶光电效应的现象,探究其机理原理,并对实验结果进行分析和总结。
实验仪器与材料:1. 液晶样品。
2. 透明电极玻璃基板。
3. 电源。
4. 偏振片。
5. 光源。
实验步骤:1. 将液晶样品均匀涂布在透明电极玻璃基板上,形成液晶薄膜。
2. 将偏振片置于液晶样品的上方,使其与液晶薄膜垂直。
3. 将电源接通,施加外加电场。
4. 调节光源位置和强度,观察液晶样品的光学特性变化。
实验结果与分析:在实验过程中,我们观察到了明显的液晶光电效应。
当施加外加电场后,液晶样品的光学特性发生了明显的变化,透过偏振片观察液晶样品时,可以看到光强度的变化。
这表明外加电场导致了液晶分子的取向改变,从而影响了光的传播方向和强度。
液晶光电效应的机理原理是液晶分子在外加电场作用下发生取向改变,从而影响了光的透过性。
液晶分子是具有一定取向性的长形分子,当外加电场施加在液晶样品上时,液晶分子会受到电场力的作用而发生取向改变,从而影响了光的透过性。
通过本次实验,我们深入了解了液晶光电效应的现象和机理原理。
液晶光电效应在液晶显示器等光电器件中具有重要的应用价值,对于我们深入理解液晶材料的光学性质和应用具有重要意义。
总结:本次实验通过观察液晶样品在外加电场作用下的光学特性变化,探究了液晶光电效应的机理原理。
实验结果表明,外加电场导致液晶分子取向改变,从而影响了光的传播方向和强度。
液晶光电效应在光电器件中具有重要的应用价值,对于我们深入理解液晶材料的光学性质和应用具有重要意义。
通过本次实验,我们对液晶光电效应有了更深入的了解,也为今后的相关研究和应用奠定了基础。
希望通过不断的实验和研究,能够进一步拓展液晶光电效应的应用领域,为光电技术的发展做出更大的贡献。
液晶电光效应实验报告一、实验目的1、了解液晶的特性和电光效应的基本原理。
2、测量液晶的电光特性曲线,计算阈值电压、饱和电压等参数。
3、观察液晶在不同电压下的光学特性变化。
二、实验原理液晶是一种介于液体和晶体之间的物质状态,具有独特的光学和电学性质。
在电场作用下,液晶分子的排列会发生变化,从而导致其光学特性的改变,这就是液晶的电光效应。
液晶电光效应主要有扭曲向列型(TN 型)和电控双折射型(ECB 型)等。
本实验采用 TN 型液晶,其分子长轴在不加电场时沿特定方向扭曲排列。
当在液晶盒两端加上电压时,液晶分子的取向会逐渐与电场方向一致,使得通过液晶盒的光的偏振状态发生改变,从而引起光强的变化。
通过测量光强随电压的变化,可以得到液晶的电光特性曲线,并从中得出阈值电压(Vth)、饱和电压(Vs)等重要参数。
三、实验仪器1、液晶电光效应实验仪:包括电源、液晶盒、偏振片、光功率计等。
2、示波器四、实验步骤1、打开实验仪电源,预热一段时间,使仪器稳定工作。
2、将液晶盒插入实验仪的插槽中,确保连接良好。
3、调整偏振片的角度,使通过液晶盒的光强达到最大。
4、开启光功率计,测量初始光强 I0。
5、逐渐增加电压,从0 开始,每次增加一定的电压值(如05V),记录对应的光强值 I。
6、当光强变化不再明显时,停止增加电压。
7、将测量得到的数据绘制在坐标纸上,得到液晶的电光特性曲线。
五、实验数据及处理|电压(V)|光强(mW)||||| 0 | 102 || 05 | 85 || 10 | 68 || 15 | 52 || 20 | 38 || 25 | 25 || 30 | 18 || 35 | 12 || 40 | 08 || 45 | 05 || 50 | 03 |以电压为横坐标,光强为纵坐标,绘制电光特性曲线。
从曲线中可以看出,当电压较低时,光强变化较小;当电压达到一定值(约 18V)时,光强开始迅速下降,这个电压即为阈值电压 Vth。
液晶电光效应的实验研究《液晶电光效应的实验研究》引言:液晶电光效应是指在外加电场的作用下,液晶分子的排列发生变化,从而使液晶显示器能够显示出不同的图像和信息。
本实验旨在研究液晶电光效应的原理、调节参数和实际应用。
一、实验目的:1. 理解液晶电光效应的原理;2. 掌握液晶显示器中电场强度对显示效果的影响;3. 了解液晶电光效应在液晶显示技术中的应用。
二、实验原理:液晶电光效应是液晶物质中分子排列发生变化的现象。
液晶显示器通常由两块平行的透明电极板夹持,中间注入液晶分子。
这些分子具有排列有序的倾向,当外加电场作用于液晶器件时,电场使液晶分子发生排列变化,从而改变了光的透过性能。
液晶分子排列的变化通常通过电场强度和电场方向控制。
当电场强度为零时,液晶分子沿着一定方向排列(称为“原初状态”),光线透过时不会发生偏转。
当有外加电场时,液晶分子发生倾斜排列,导致入射光被偏转,从而改变了光的透过性能。
三、实验步骤:1. 准备液晶显示器样品、电源和电动驱动设备;2. 将电源连接至液晶显示器,开启电源;3. 调节电动驱动设备的电场强度和电场方向;4. 观察液晶显示器的光透过性能;5. 记录观察结果,并分析不同电场强度和电场方向下的变化。
四、实验结果与讨论:通过实验观察,我们可以发现在不同电场强度和电场方向下,液晶显示器的光透过性能会发生变化。
当电场强度足够大时,液晶分子的排列会发生明显变化,使光透过性能发生偏转,从而产生不同的显示效果。
而当电源断开或电场强度为零时,液晶显示器会恢复到原初状态。
五、实验应用:液晶电光效应在液晶显示技术中有着广泛的应用,如电子手表、计算机显示器、手机屏幕等。
通过精确控制电场强度和电场方向,液晶显示器可以呈现出高质量、高清晰度的图像和信息,成为现代科技领域中不可或缺的重要元件。
结论:本实验通过对液晶电光效应的实验研究,我们了解了液晶显示器的工作原理以及电场强度和电场方向对液晶分子排列和光透过性能的调节。
液晶的电光特性实验报告液晶的电光特性实验报告引言:液晶是一种特殊的物质,具有独特的电光特性。
本实验旨在通过实验观察和测量,了解液晶的电光特性,以及其在光学器件中的应用。
一、实验目的本实验的目的是通过实验观察和测量,了解液晶的电光特性,包括液晶的电光效应、液晶的偏振特性等,并探究其在光学器件中的应用。
二、实验原理1. 液晶的电光效应液晶的电光效应是指在电场的作用下,液晶分子会发生取向变化,从而改变其光学性质。
液晶分子具有长轴和短轴,在无电场作用下,液晶分子的长轴一般沿着某个特定方向取向。
当电场作用于液晶分子时,电场会改变液晶分子的取向,使其长轴发生旋转,从而改变液晶的光学性质。
2. 液晶的偏振特性液晶具有偏振特性,即只能通过特定方向的偏振光。
当入射光的偏振方向与液晶的取向方向一致时,光线可以透过液晶;而当偏振方向垂直于液晶的取向方向时,光线无法透过液晶。
三、实验步骤1. 准备实验所需材料和仪器,包括液晶样品、偏振片、电源等。
2. 将液晶样品放置在两片偏振片之间,确保两片偏振片的偏振方向垂直。
3. 调节电源的电压,观察液晶样品的变化。
记录不同电压下液晶样品的透光情况。
4. 调节两片偏振片的相对角度,观察液晶样品的变化。
记录不同角度下液晶样品的透光情况。
5. 根据实验结果,分析液晶的电光特性和偏振特性。
四、实验结果与分析根据实验观察和记录,我们发现在无电场作用下,两片偏振片之间的液晶样品几乎完全不透光。
当电场作用于液晶样品时,液晶样品开始透光,且透光强度随电压的增加而增加。
这说明液晶样品的电光效应是可控的,可以通过外加电场来改变液晶的光学性质。
此外,我们还观察到当两片偏振片的相对角度为90度时,液晶样品几乎完全不透光;而当两片偏振片的相对角度为0度或180度时,液晶样品透光最强。
这表明液晶样品的透光性与两片偏振片的相对角度密切相关,液晶具有偏振特性。
根据实验结果,我们可以得出结论:1. 液晶样品的透光性可以通过外加电场来改变,具有可控的电光效应。
液晶电光效应综合实验液晶电光效应是一种非常重要的现象,尤其在现代电子技术中被广泛应用。
为了更好地了解液晶电光效应,我们可以通过综合实验的方式来研究,本文将介绍液晶电光效应综合实验的过程和方法。
实验器材:1. 液晶显示器2. 直流电源3. 安培计4. 电容器5. M口形状的均匀液晶样品6. 两块玻璃切片7. 电接点8. 两块偏振片实验原理:液晶分子具有相对固定的方向,但是在外电场的作用下,分子会发生旋转或倾斜,从而改变液晶分子的方向,使得入射光线相对应的偏振方向发生旋转,这个现象就是液晶电光效应。
实验步骤:2. 把两块玻璃切片分别涂上薄薄的液晶样品。
3. 用双面胶把两块涂着液晶样品的玻璃切片(即液晶元件)固定在一起,要注意使两块玻璃切片互相平行。
4. 将液晶元件加在偏振片的前面,并预设适当的电压(如3V),然后给液晶元件加上电压。
5. 调整偏振片的方向,观察液晶样品的显示情况,留意显示区域的变化,以及显示区域的颜色变化程度。
6. 记下实验中不同电压下液晶样品的旋转角度,以及变化颜色。
7. 在不同电压下,可以用安培计测量电流的大小,同时也可以利用电容器计算液晶样品的电容值。
实验结果分析:通过实验发现,随着加在液晶样品上的电场强度的变化,液晶显示器显示的颜色也在变化。
当电场强度为0时,显示器显示的是黑色;当适当的电场强度加在液晶样品上时,对于不同的液晶样品,得到的颜色有所不同。
这种颜色改变发生的原因是电场的作用下,液晶分子方向发生改变,从而引起入射光线偏振方向的改变。
从实验测量结果可以发现,在液晶样品中通电时,电流的大小与加在液晶样品上的电压成正比,线性关系非常明显。
同时,通过测量电容值,可以得到液晶样品的介电常数和电容值,了解液晶样品的电学性能。
结论:综合实验结果表明,通过液晶电光效应,可以通过改变外加电场强度来控制液晶分子的方向,从而改变入射光线的偏振方向,从而实现液晶显示器的显示效果。
液晶电光效应是液晶显示技术中最基本的现象之一,深入了解液晶电光效应的本质和特性,将有助于更好地理解液晶显示技术的原理,进行更高效、更精准的液晶显示器设计和制造。
液晶电光效应实验报告
实验目的,通过实验观察液晶电光效应,了解液晶在电场作用下的光学特性。
实验仪器和材料,液晶样品、直流电源、偏振片、玻璃片、导线等。
实验原理,液晶是一种特殊的有机分子材料,其分子结构呈长棒状,具有两个极性较强的端基,当液晶置于电场中时,液晶分子会发生定向排列,从而改变光的传播状态,这种现象称为液晶电光效应。
实验步骤:
1. 将液晶样品均匀涂抹在玻璃片上,并待干燥。
2. 用导线将直流电源与液晶样品连接。
3. 在液晶样品的上下方分别放置偏振片,并调整偏振片的方向。
4. 调节电源输出电压,观察液晶样品的光学变化。
实验结果:
当电场作用下,液晶分子发生定向排列,使得通过液晶样品的光线偏振状态发生改变,从而观察到了液晶电光效应。
当电压增大时,液晶分子排列更加有序,光学效应更加明显;当电压减小时,光学效应逐渐减弱。
实验分析:
液晶电光效应是由于电场作用下液晶分子排列状态的改变导致的光学现象。
这一效应不仅在液晶显示器等技术中有着重要应用,也为我们提供了一种研究材料光学特性的有效手段。
结论:
通过本次实验,我们成功观察到了液晶电光效应,并了解了液晶在电场作用下的光学特性。
液晶电光效应的实验,不仅加深了我们对液晶光学特性的理解,也为我们提供了一种简单直观的实验手段,为相关领域的研究和应用提供了重要参考。
参考文献,无。
作者,XXX。
日期,XXXX年XX月XX日。
液晶电光效应实验
一、实验目的
1、了解液晶的特性和基本工作原理;
2、掌握一些特性的常用测试方法;
3、了解液晶的应用和局限。
二、实验原理:
液晶是介于液体与晶体之间的一种物质状态。
一般的液体内部分子排列是无序的,而液晶既具有液体的流动性,其分子又按一定规律有序排列,使它呈现晶体的各向异性。
当光通过液晶时,会产生偏振面旋转,双折射等效应。
由于液晶分子的结构特性,其极化率和电导率等都具有各向异性的特点,当大量液晶分子有规律的排列时,其总体的电学和光学特性,如介电常数、折射率也将呈现出各向异性的特点。
如果我们对液晶物质施加电场,就可能改变分子排列的规律。
从而使液晶材料的光学特性发生改变,1963年有人发现了这种现象。
这就是液晶的的电光效应。
为了对液晶施加电场,我们在两个玻璃基片的内侧镀了一层透明电极。
我们将这个由基片电极、取向膜、液晶和密封结构组成的结构叫做液晶盒。
当我们在液晶盒的两个电极之间加上一个适当的电压时我们来看一下液晶分子会发生什么变化。
根据液晶分子的结构特点。
我们假定液晶分子没有固定的电极。
但可被外电场极化形成一种感生电极矩。
这个感生电极矩也会有一个自己的方向,当这个方向以外电场的方向不同时,外电场就会使液晶分子发生转动,直到各种互相作用力达到平衡。
液晶分子在外电场作用下的变化,也将引起液晶合中液晶分子的总体排列规律发生变化。
当外电场足够强时,两电极之间的液晶分子将会变成如图2中的排列形式。
本实验希望通过一些基本的观察和研究,对液晶材料的光学性质及物理结构有一个基本了解。
并利用现有的物理知识进入初步的分析和解释。
这时,液晶分子对偏振光的旋光作用将会减弱或消失。
通过检偏器,我们可以清晰地观察到偏振态的变化。
大多数液晶器件都是这样工作的。
以上的分析只是对液晶盒在“开关”两种极端状态下的情况作了一些初步的分析。
若将液晶盒放在两片平行偏振片之间,其偏振方向与上表面液晶分子取向相同。
不加电压时,入射光通过起偏器形成的线偏振光,经过液晶盒后偏振方向随液晶分子轴旋转90o,不能通过检偏器;施加电压后,透过检偏器的光强与施加在液晶盒上电压大小的关系见图5;其中纵坐标为透光强度,横坐标为外加电压。
最大透光强度的10%所对应的外加电压值称为阈值电压(U th),标志了液晶电光效应有可观察反应的开始(或称起辉),阈值电压小,是电光效应好的一个重要指标。
最大透光强度的90%对应的外加电压值称为饱和电压(U r),标志了获得最大对比度所需的外加电压数值,U r小则易获得良好的显示效果,且降低显示功耗,对显示寿命有利。
对比度D r=I max/I min,其中I max为最大观察(接收)亮度(照度),I min为最小亮度。
陡度β=U r/U th即饱和电压与阈值电压之比。
以上的分析只是对液晶盒在“开关”两种极端状态下的情况作了一些初步的分析。
而对于这两个状态之间的中间状态。
我们还没有一个清晰的认识,其实在这个中间状态,有着极其丰富多彩的光学现象。
在实验中我们将会一一观察和分析。
液晶对变化的外界电场的响应速度是液晶产品的一个十分重要的参数。
一般来说液晶的响应速度是比较低的。
我们用上升沿时间和下降沿时间来衡液晶对外界驱动信号的响应速度情况。
三:实验仪器:
1、控制机箱
2、液晶电光效应光具座架
3、激光器
4、起偏器
5、液晶屏
6、检偏器
7、光电池
四:实验结果:
1、液晶电光特性测量
作图
可得90%透过率时驱动电压幅值为2.9V,10%透过率幅值为3.6V。
2.液晶屏视角特性测量
五:思考与分析:
1、饱和电压与阀值电压的物理意义及作用在于最大透光强度的10%所对应的外加电压值称为阈值电压(U th),标志了液晶电光效应有可观察反应的开始(或称起辉),阈值电压小,是电光效应好的一个重要指标。
最大透光强度的90%对应的外加电压值称为饱和电压(U r),标志
了获得最大对比度所需的外加电压数值,U r小则易获得良好的显示效果,且降低显示功耗,对显示寿命有利。
对比度D r=I max/I min,其中I max为最大观察(接收)亮度(照度),I min为最小亮度。
陡度β=U r/U th即饱和电压与阈值电压之比。
2、液晶屏视角特性测量意义在于探索假定液晶分子没有固定的电极。
但可被外电场极化形成一种感生电极矩。
这个感生电极矩也会有一个自己的方向,当这个方向以外电场的方向不同时,外电场就会使液晶分子发生转动,直到各种互相作用力达到平衡。
液晶分子在外电场作用下的变化,也将引起液晶合中液晶分子的总体排列规律发生变化。
3、液晶在生活方面的应用
在生活中,液晶最为常见的应用是液晶显示器。
现在,它已经广泛应用于手表、计算器、时钟、电话、照相机、办公设备、个人计算机,温度计、袖珍电视、汽车仪表盘等设备中。
有些变色窗户中也使用了液晶材料。
(1)一笔记本电脑用的液晶显示屏:(2)额头温度计(液晶变色温度计)液晶温度计:能安全准确的测试温度,包括体温、水温、气体及各种固体物表面等。
适用于奶瓶、酒瓶、饮料、冰箱、水壶、鱼缸等。
此外,液晶对气体和蒸汽污染的灵敏度高于氧,氮及惰性气体. 它能记录有害气体的浓度,并能精确测定漏气部位,以保证安全. 测量的灵敏度可达百万分之几. 这对环境保护监测工作有重要价值. 例如胆甾液晶对不同有机溶剂气体可显示不同的颜色。
液晶更可以用于检测肿瘤。
用涂有胆甾型液晶的黑底薄膜,贴在病灶区的皮肤上,则能显示温度不到一度的彩色温度变化图. 利用液晶诊断肿瘤、动脉血栓和静脉肿瘤,以提供手术的准确部位,并能根据皮肤温度的变化,以及交感神经系统的堵塞情况,以判断神经系统及血管系统是否开放. 液晶在0~250 ℃之间对温度变化都很灵敏,根据选用的混合物液晶能显示1~5 ℃之间温度变化的全谱图,即使小于0125 ℃的温度变化,也可以清楚地看出。